CHEG 401 Chemical Process Dynamics and Control Fall 2020

Locations

	Class	ON-LINE (205 Gore)	MW 3:35 pm – 4:50 pm W 10:10 am-12:00 pm; W 1:15-3:05 pm	
	Lab	ON-LINE (046 Colburn)		
Instr	uctors			
	Babatunde Office hours: T	A. Ogunnaike BD	205 Colburn	ogunnaike@udel.edu
	Marianthi Office hours: T	G. Ierapetritou BD	223 Colburn	mgi@udel.edu
Teaching Assistants				
	Xue Zong Office hours: T	BD	250E ISE	xzong@udel.edu
	Yung Wei (Office hours: T	Jessie) Hsiao BD	367 BB ISE	ywhsiao@udel.edu

Textbook

Process Dynamics, Modeling, and Control Babatunde A. Ogunnaike and W. Harmon Ray Oxford University Press, New York, 1994 (Supplemented with draft chapters from the 2nd Edition currently in preparation)

Course Description and Policies

Objectives

This course covers the analysis of process dynamics and its use in designing automatic control systems. These two topics are covered sequentially, with the emphasis on feedback control of linear systems. However, more advanced topics, including multivariable control, digital control and model predictive control, are also introduced.

Information

The course will make use of CANVAS for posting of course handouts, homework solutions, grades, etc. However, please do not use e-mail or comments within CANVAS

for communicating with the instructors or the TAs; the e-mail addresses given above should be used for that purpose instead.

Homework

Problem sets should be handed in *before the start of class* on the due date; late hand-ins will not be accepted. A minimum of 50% of the maximum homework points is required to receive a passing grade in the course.

Answers handed in should have each problem starting on a new page, the problems arranged in the proper numerical sequence, and all pages stapled together. Your name should be printed neatly in the upper right-hand corner of each page of your assignment.

You may choose to work on homework assignments individually or in groups. The impact of homework assignments on your grade is determined much more by the influence the experience has on your exam performance than by the numerical grade given to the homework problems. Make sure that you maximize your learning experience by balancing the extent to which you rely on group input versus your individual effort. If you work in a group, each member must prepare his/her own written answers based on the group discussion, and list all the members at the beginning of the problem.

Computer Lab

The lab portion of the course is a computer lab in which Matlab and Simulink will be used to simulate the dynamics of open- and closed-loop systems; such simulations are especially critical in optimizing the design and tuning of controllers. The lab is an integral part of the course, and the knowledge and abilities developed in the lab will be required to work homework problems and the second midterm exam. Although lab reports may be prepared by students working in pairs, all students are expected to develop the expertise covered in the lab and should be able to use the simulation methods independently.

Make-up exams

No make-up exams will be given, because they constitute a different exam taken at a different time by only a few students. If you have a valid excuse (according to University rules) to miss a midterm exam, the grade for the missed exam will be prorated such that the other exams will carry an appropriately increased percentage of your overall course grade. If you miss the final or any other exam without acceptable justification you will be assigned a zero. If you do have acceptable justification to miss the final exam you must make arrangements to take it at another date. A note from the attending physician is required in case of medical excuses.

Academic honesty

The University has explicit rules on academic honesty (https://www1.udel.edu/stuguide/18-19/code.html) that will be strictly enforced.

Syllabus and Provisional Schedule

1.	Introduction to Process Control	Wed Sept 2
	Reading: Ogunnaike and Ray, Chapters 1 & 2	
Con	nputer Lab 0: Introduction to MATLAB/SIMULINK	Wed Sept 2
2.	Process Modeling and Review of Math Tools Reading: Ogunnaike and Ray, Chapter 4, 10	Mon Sept 7
3.	Basic Elements of Dynamic Analysis Reading: Ogunnaike and Ray, Chapter 3	Wed Sept 9
Con	uputer Supplement: MATLAB Exercises	Wed Sept 9
4.	Low Order Systems Reading: Ogunnaike and Ray, Chapter 5	Mon Sept 14
5.	Higher Order Systems Reading: Ogunnaike and Ray, Chapter 6	Wed Sept 16
Con	nputer Lab 1: Implementing Process model Equations in SIMULINK	Wed Sept 16
6.	Inverse Response and Time Delay Systems Reading: Ogunnaike and Ray, Chapters 7 & 8	Mon Sept 21
7.	Nonlinear Systems Reading: Ogunnaike and Ray, Chapter 10	Wed Sept 23
Con	nputer Lab 2: Open-loop process dynamics	Wed Sept 23
8.	Stability Reading: Ogunnaike and Ray, Chapter 11	Mon Sept 28
Computer Lab: No lab		Wed Sept 26
9.	Process Identification Reading: Ogunnaike and Ray, Chapter 13	Wed Sep 30
10.	Midterm Exam I	Mon Oct 5
Con	uputer Lab 3: Process identification	Wed Oct 7
11.	Intro to Feedback Control Systems Reading: Ogunnaike and Ray, Chapter 14	Wed Oct 7

12. Conventional Design Methods Reading: Ogunnaike and Ray, Chapter 15	Mon Oct 12
Computer Lab 4: Feedback control	Wed Oct 14
13. More Complex Control Structures Reading: Ogunnaike and Ray, Chapter 16	Wed Oct 14
14. Inverse Response and Time Delay Reading: Ogunnaike and Ray, Chapter 17	Mon Oct 19
Computer Lab 5: Cascade control	Wed Oct 21
15. Model-based Control Reading: Ogunnaike and Ray, Chapter 19	Wed Oct 21
16. Midterm Exam II (Take Home)	Mon Oct 26
Computer Lab 6: Feedforward control	Wed Oct 28
17. Introduction to Multivariable Processes Reading: Ogunnaike and Ray, Chapter 20	Wed Oct 28
18. RGA and Multiple Single Loop Designs Reading: Ogunnaike and Ray, Chapter 21	Mon Nov 2
Computer Lab: No Lab	Wed Nov 4
19. Multivariable Controller Design Reading: Ogunnaike and Ray, Chapter 22	Wed Nov 4
20. Introduction to Digital Control Reading: Ogunnaike and Ray, Chapters 23 & 24	Mon Nov 9
Computer Lab 7: Model-based Control-IMC/Discrete Control	Wed Nov 7
21. Introduction to Digital Control Reading: Ogunnaike and Ray, Chapters 23 & 24	Thurs Nov 8
22. Statistical Process Control Reading: Ogunnaike and Ray, Chapter 28	Mon Nov 16
Computer Lab 8: Multivariable Control	Wed Nov 18
23. Model Predictive Control Reading: Ogunnaike and Ray, Chapter 27	Wed Nov 18
Thanksgiving Break	Mon Nov 23
Computer Lab: No Lab	Wed Nov 25

Thanksgiving Break	Wed Nov 25	
24. Control Case Studies Reading: Ogunnaike and Ray, Chapter 30	Mon Nov 30	
Computer Lah: No lah	Wed Dec 2	
25. Introduction to Biological Control Systems Reading: Ogunnaike and Ray, 2 nd Ed. Chapter 14	Wed Dec 2	
26. Guest Lecture: Industrial Practice of Process Control	Mon Dec 7	
Computer Lab: No lab	Wed Dec 9	
27. Review and Summary	Wed Dec 9	
Final Exam	Date and location TBD	

Grading Summary

Total	600
Final	200
Exams: 2 (1 x 100, 1 x 120)	220
Lab modules: 8	80
Homework:	100

Total

600

Homework Schedule

HW #	Topic	Assigned Date	Due Date
1	Review of Math Tools		
	Dynamics	Sep 7	Sep 14
2	Low Order Systems	Sep 14	Sep 21
3	Higher Order, Inverse		_
	response, time delay	Sep 21	Sep 28
4	Stability/Process	Oct 5	Oct 12
	Identification		
5	Feedback Control	Oct 12	Oct 19
6	Feedforward/Cascade	Oct 19	Oct 26
	Control		
7	Multivariable Control	Nov 9	Nov 16
8	Model-Based/	Nov 16	Nov 30
	Discrete Control		
9	Review	Nov 30	Dec 7