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Globalization and the sudden increase in the exchange of information, trade, and capital all 

around the world, driven by technological innovation, has given rise to complex global supply 

chain networks. Since optimally designing such networks can yield significant profits in the long 

run, supply chain optimization is an area of active interest. The motivation for the problem 

considered in this work is two-fold. First, in a modern supply chain network, data plays an 

important role. However, since traditional optimization solvers cannot readily make use of this 

data, there is a need for frameworks that can utilize data to make optimal decisions in such 

networks. Second, there is a growing interest in considering multiple levels of decisions while 

designing the supply chain. However, due to differences in scale, level of details, and 

computational expense of the resulting integrated model, the problem of integrated decision-

making is challenging. This work aims to propose machine learning-based frameworks that 

address these challenges.  

The problem of optimal inventory allocation is first solved in a multienterprise supply chain 

network where the supply chain model is available in the form of a complex simulation. Further, 

historical data of the process or data generated from process simulations is used to design the 

process while simultaneously considering the total cost of the process as well as the flexibility of 



iii 
 

the design obtained. The framework is applied to modular processes. It is shown that using 

machine learning-based frameworks, process-level details can be incorporated at the supply chain 

design stage. This approach allows quantitatively assessing the benefits of modular processes 

such as design standardization, reduced transportation cost due to decentralized manufacturing, 

and optimal production facility location. Finally, the study is extended to address the problem of 

multiperiod supply chain optimization under product demand uncertainty. The results 

demonstrate the efficacy of the machine learning-based optimization framework proposed in this 

work and yields a set of solutions that minimize the risk as well as the expected total cost of the 

supply chain network. 
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1 Introduction 

1.1 Supply chain optimization 

Globalization and the sudden increase in the exchange of information, trade, and capital all 

around the world, driven by technological innovation, has given rise to complex global supply 

chain networks. Since optimally designing such networks can yield significant profits in the long 

run, supply chain optimization is an area of active interest. As opposed to traditional supply chain 

networks, modern supply chain networks consist of entities that usually belong to different 

enterprises and are even spread geographically. Since entities in such supply chain networks 

operate based on their individual goals as opposed to a common goal in centralized networks, 

there is a growing interest towards developing new optimization frameworks that take into 

account different goals and operating policies of different entities in a supply chain [1]. Under 

such networks, the problem of optimal inventory allocation is known to have a significant impact 

on the service level and the total cost of the supply chain and thereby impacting the profit that 

an individual enterprise would make [2]. However, there are challenges associated with modeling 

and optimization of complex supply chain networks. 

The first challenge to address this problem is related to modeling a complex network. The 

modeling approaches in the existing literature can be broadly classified as analytical approaches 

and simulation-based approaches. Analytical methods formulate the problem as a mixed integer 

linear or nonlinear programming problem and solve using state-of-the-art optimization solvers. 

Even though these approaches benefit from efficient optimization techniques, modeling complex 

interactions in a network with the help of equation-based models is not always possible. To 

overcome these shortcomings, simulation-based approaches utilize a detailed simulation model 

that captures details of the supply chain network. Techniques such as agent-based modeling allow 
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a bottom-up approach towards building a simulation [3][4] and have been found useful in supply 

chain networks in various areas.  

The second challenge is related to optimization using simulation models for which there is a 

growing need for the development of novel optimization frameworks. Simulations are often built 

using commercial software, where the information about the underlying network is not available 

in closed form. As the simulation models aim for more accuracy, the computational expense of 

running the simulation increases, and numerical evaluation of derivatives to guide the search 

towards optimum becomes difficult. As a result, traditional optimization techniques cannot be 

used to solve this problem. To overcome this challenge, derivative-free optimization (DFO) 

methods are used. DFO algorithms rely only on the data from simulation models or physical 

experiments and do not require a closed-form expression of the problem. A common strategy to 

achieve this is to build a machine learning-based model or a surrogate model that approximates 

the simulation using a limited amount of data. The models are then iteratively updated as more 

data is collected. It has been shown that for an effective optimization algorithm, the choice of the 

surrogate model plays an important role. Another challenge in DFO is that many available 

algorithms and software packages rely on the assumption of continuity of the response. Since the 

response may not be continuous in some applications, especially for the case of supply chain 

networks, where the objective function is dependent on several discrete decisions. For this 

reason, optimization of problems with discontinuous response needs special attention. 

In this dissertation, the aim is to review several machine learning-based models along with their 

use in DFO algorithms. Using suitable models, for the problem of multienterprise supply chain 

optimization, this dissertation aims to propose a DFO framework that addresses discontinuity of 

the response. Throughout the dissertation, the terms machine learning-based models, data-

driven models, and surrogate models are interchangeably used for models that address the 
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problems related to regression (predicting a real-valued response). For the classification problem, 

the terms classifier or machine learning-based classifier are used. 

1.2 Modular process supply chain optimization 

Globalization and increasing market competition have been a significant impetus for changing the 

pace and nature of businesses and innovation around the world. More and more customer-

orientated products are driving change in many industries, and product cycles are becoming 

shorter [5]. Modularization, process intensification, and design standardization are increasingly 

being recognized as critical factors to reduce the time to market for a product [6]. With a wide 

range of applications in the areas of gas conversion, solid conversion ammonia synthesis, CO2 

conversion, water purification, renewable energy, power generation, and chemical processing 

along with growing industrial interest, modular manufacturing provides a promising way forward 

for the process engineering [7][8]. 

Modular design involves the use of small and standardized modules of fixed size in a production 

process. Multiple identical devices may be assembled to achieve the desired production. Modular 

and distributed processes may not only contribute to decreases in distribution costs but also 

provide an alternative to overcome several manufacturing challenges. Small devices offer 

inherent safety and can be used for on-demand and on-site production of hazardous materials 

[9]. They provide a fast path to commercialization since challenges related to the scaling up of 

chemical processes are not substantial. Moreover, the time for construction of manufacturing 

facilities may be reduced, since modules can be preassembled in a shop and are not subject to 

delays related to weather and on-site inspections. Because of standardized units, the process of 

numbering up as a part of plant expansion becomes faster. Economically, as the standardized 

units or small modular plants are numbered up, vendors, as well as process engineers, gain 
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experience. As a result of the learning curve, the vendors may be able to sell the equipment for a 

lower price, and process engineers can reduce the time-to-market. All these factors contribute to 

a relatively lower risk of investment related to small modular designs.  

However, ensuring the feasibility of the process designed using a limited set of standardized 

modules is an important problem. In the presence of analytical equations for the underlying 

process, this problem is straightforward and can be solved using existing nonlinear or linear 

programming approaches. However, in many cases, the only available information is in the form 

of historical data or simulation models. In such cases, black-box or machine learning-based 

feasibility analysis methods are used. Black-box feasibility analysis methods rely on building a 

data-driven approximation of the feasible region[10]. There are two significant challenges in 

solving the black-box feasibility analysis problem. First, for process feasibility analysis, the existing 

literature relies on treating the whole process as a black box. This approach does not utilize 

feasibility information for individual units. Moreover, when designing the process based on 

several options for each module, the problem of process feasibility analysis may require a large 

number of surrogate models. The second challenge is related to flexibility analysis to hedge 

against exceptional realizations of process parameters[11]. In the presence of an equation-

oriented model, the problem of flexibility analysis has been explored for over three decades and 

is still an active area of research[12][13]. In the absence of closed-form expressions, however, the 

existing literature is limited to feasibility analysis. This dissertation intends to address the 

challenges related to process feasibility analysis and flexibility analysis by using proposing 

machine learning-based feasibility analysis framework. 

Even though the benefits of modular designs are well-known, quantifying their economic viability 

and their overall effect on the supply chain is a relatively underexplored problem. Since process 

feasibility analysis can be carried out for modular processes, several exciting problems can be 
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addressed for supply chains with modular processing. This dissertation aims to propose an 

integrated design and supply chain optimization framework using machine learning-based 

feasibility analysis to ensure the feasibility of the process. This way, the cost savings due to design 

standardization can be quantified. Moreover, the tradeoff between centralized and distributed 

manufacturing can be assessed. Finally, this dissertation aims to extend the proposed framework 

for modular supply chain optimization to the problem of optimization under product demand 

uncertainty.   

It should be noted that in the context of this work, modular designs refer to the design and 

construction of smaller chemical process units or even entire processes of fixed production 

capacities [14]. It is important to note that this definition includes the possibility of process 

intensification [15], transportable processing units [16], standardization of equipment modules 

[17], and even integrated or customized unit operations [8]. 

1.3 Outline of the dissertation 

This dissertation is organized as follows. Machine learning-based methods for regression, 

classification, and background on the specific problems of optimization and feasibility analysis is 

provided in Chapter 2. Chapter 3 proposes a framework to solve the optimal inventory allocation 

problem for a simulation-based optimization problem for a multienterprise supply chain. Chapters 

4-6 are aimed at solving the supply chain optimization problem for modular processing with a 

simultaneous consideration for process design. Chapter 4 first solves the design optimization of a 

modular process. In doing so, historical data of the process or data generated from process 

simulations is used to design the process while simultaneously considering the total cost of the 

process as well as the flexibility of the design obtained. Chapter 5 integrates supply chain 

optimization with process design optimization. It is shown that using machine learning-based 
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frameworks, process-level details can be incorporated at the supply chain design stage. This 

approach allows quantitatively assessing the benefits of modular processes such as design 

standardization, reduced transportation cost due to decentralized manufacturing, and optimal 

production facility location. The problem of supply chain optimization is further extended to 

address the problem of multiperiod supply chain optimization under product demand uncertainty 

in Chapter 6. Finally, Chapter 7 provides a summary of the work and potential future directions 

for the research. 



 
 

7 
 

2 Machine learning-based methods 

In this chapter, a background on machine learning-based methods is provided. Specific details 

related to the methods used in the dissertation are provided. In section 2.1, a review on machine 

learning-based regression models, or surrogate models is provided. Section 2.2 described support 

vector machines. Section 2.3 provides a comprehensive review of derivative-free optimization. 

Section 2.4 and section 2.5 offer a detailed overview of feasibility analysis and flexibility analysis, 

respectively. Section 2.6 reviews adaptive sampling approaches in the existing literature. Section 

2.7 describes the validation metrics used in this work to validate machine learning-based models. 

2.1 Surrogate models 

In this section, frequently used approaches for obtaining the surrogate 𝑓(𝑥) are discussed with a 

focus on the recent advances. The models that are designed to yield unbiased predictions at the 

sampled data are referred to as interpolation models, whereas models that are built by 

minimizing the error between given data and model prediction under a certain criterion are 

referred to as regression models. In this section, regression models such as linear regression, 

support vector regression are discussed followed by interpolation models such as RBF and Kriging. 

Finally, approaches utilizing more than one of these surrogates are discussed. With their ability to 

provide a quantitative measure of uncertainty in prediction, RBF and Kriging surrogates are the 

most popular choices for optimization and feasibility analysis. Therefore, special emphasis is given 

on these surrogates.  

2.1.1 Linear regression 

This is a commonly used approach where a surrogate is represented as a linear combination of 

the input variables as given by Eq. (1). 
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f̂(x) = w0 +∑xjwj

𝑑

𝑗=1

   (1) 

where x is a vector of size 𝑑;  𝑑 is the number of variables; 𝑤 is the vector of length 𝑑 + 1. To 

obtain the weight vector, sum of squared errors between the actual data and the surrogate 

predicted value is minimized. The unconstrained minimization problem can be formulated as 

given by Eq. (2). 

 min
𝑤
||𝑋𝑤 − 𝑦||

2

2
   (2) 

where 𝑋 is a matrix of size 𝑛 by 𝑑+1 where 𝑛 is the number of sample points and all elements in 

the first column of 𝑋 are 1 and columns 2 through 𝑑 + 1 correspond to the input vector; 𝑦 is a 

vector of size 𝑛 that represents function values at sample points. For the case of ordinary least 

squares, solution in analytical form is 𝑤 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦. When one or more of independent 

variables are perfectly correlated, the matrix 𝑋𝑇𝑋 becomes near singular. As a result, the 

coefficients 𝑤 are not uniquely defined. This kind of rank deficiency can occur in high dimensional 

problems where the number of data points is less than the number of variables. This is usually 

addressed by reducing number of variables by screening or by utilizing regularization techniques. 

As the number of variables (d) in this problem increases, either inherently from the problem or 

from a combination of existing variables, this system is suscpetible to produce high variance. Even 

though addition of extra variables leads to low bias on the data points used for building the model, 

high variance makes it difficult to have better predictions on new data points. This phenomenon 

is known as overfitting. To avoid this issue, the effect of unnecessary variables is either removed 

using subset selection or suppressed using regularization. Subset selection and regularization 

strategies are explained below. 

Subset selection 
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Subset selection refers to addressing the trade-off between prediction error and the regression 

model complexity by selecting a subset of variables. This step is followed by least squares 

regression for determining coefficients of the regression model. Several approaches for subset 

selection exist in the literature that are classified here as exhaustive search methods, heuristic 

methods, methods based on integer programming, methods relying on model fitness measures, 

Bayesian variable selection methods, and methods based on analyzing correlations between input 

variables and the output.  

Exhaustive search methods try to exhaustively explore all possible subsets of features and select 

the subset with minimum prediction error. Advantage of exhaustive search is that a number of 

regression models are obtained with comparable prediction accuracy. Even though these 

methods guarantee the selection of best possible model, computational complexity of exhaustive 

search increases rapidly as the number of subsets increases. An implementation of this approach 

is the leaps and bounds algorithm [18].  

Heuristic methods try to overcome this drawback by using greedy approaches such as forward-

stepwise regression, backward-stepwise regression, and forward-stagewise regression. In 

forward-stepwise regression, variable selection starts from an empty set of variables and 

proceeds by sequentially adding a variable that improves the fit by largest magnitude. 

Improvement in the fit is usually measured by using the F-statistic. Using sum squared error, F-

statistic quantifies the improvement achieved by addition of a new variable. Backward-stepwise 

regression is an opposite approach that starts from including all variables and sequentially 

removes variables that have least impact on the fit. Forward-stagewise regression is similar to 

forward-stepwise regression. However, in this case, only the coefficient of the newly added 

variable is adjusted keeping other coefficients constant. 
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Approaches that use integer programming for subset selection formulate the subset selection 

problem as an optimization problem. In these formulations, an error measure (EM) is minimized 

subject constraints that ensure subset selection. One way to impose such a constraint is by having 

an upper bound on the number of nonzero entries [19]. In addition to limiting the number of 

nonzero entities, these formulations can be adapted to ensure statistical properties such as 

robustness, selective and general sparsity of the model [20]. These approaches, however, need a 

prespecified value for number of variables that might not be known a priori.  Review of these 

approaches can be found in Liu and Motoda[21]. For a known number of variables to be selected, 

an example of problem formulation for these problems is given by Eq. (3-5)[22]. 

 minEM   (3) 

 
s. t.  ∑𝑧𝑙

𝑑

𝑖=1

= 𝑘   (4) 

 𝑤𝑙𝐿𝑧𝑙 ≤ 𝑤𝑙 ≤ 𝑤𝑙𝑈𝑧𝑙 , 𝑙 = 1,… , 𝑑   (5) 

 𝑧𝑙𝜖{0,1}, 𝑙 = 1,… , 𝑑   (6) 

where, 𝑧𝑙  is a binary variable for selection of variable 𝑙; 𝑘 is the number of subsets to be selected; 

for the coefficient 𝑤𝑙 in the regression model, 𝑤𝑙𝐿 and 𝑤𝑙𝑈 represent the lower and upper bounds 

respectively. Eq. (4) limits the number of nonzero coefficients used in the model. Eq. (5) imposes 

bounds on 𝑤𝑙 and forces 𝑤𝑙 to be 0 when 𝑧𝑙  is 0. 

Methods utilizing model fitness measures tackle the issue of prespecifying number of selected 

variables by including a penalty for number of nonzero variables. This way these methods address 

the tradeoff between model complexity and prediction accuracy. Several fitness measures exist 

in literature. One such measure is mean absolute error (MAE). An algorithm to minimize MAE is 

proposed and used for finding subset of variables [23]. Other such measures include Mallow’s Cp 

[24], Akaike information criterion (AIC)[25], Bayesian information criterion (BIC) [26], the Hannan-
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Quinn information criterion (HQIC) [27], the risk inflation criterion (RIC) [28], and mean squared 

error (MSE). These measures are shown in Table 2-1. These fitness measures can be used as EM 

in Eq. (3) to form a mixed integer quadratic program [29], [30]. AIC is based on the idea of 

minimizing discrepancy between the original distribution of the data and the distribution given by 

linear regression model. A well-known discrepancy measure called Kullback-Leibler divergence is 

used. Other discrepancy measures include Kolmogorov-smirnov and Hellinger discrepancy [31].  

AIC𝑐 represents correction term added to AIC for finite sample sizes [32].  𝐶𝑝 simply tries to 

minimize prediction error where mean squared error is the error measure. BICC seeks to maximize 

approximate posterior probability. These metrics are tabulated in (Table 2-1) where, 𝑝 < 𝑘 is the 

number of coefficients, 𝑁 is the number of sampled points, 𝜎̂2 is an estimate of the error variance.  

Table 2-1: Model fitness measures 

Model fitness measure definition 

AICc 
𝑁 log(

1

𝑁
∑(𝑦𝑖 − 𝑋𝑖𝑤)

2

𝑁

𝑖=1

) + 2𝑝 +
2𝑝(𝑝 + 1)

𝑁 − 𝑝 − 1
 

HQIC 
𝑁 log(

1

𝑁
∑(𝑦𝑖 − 𝑋𝑖𝑤)

2

𝑁

𝑖=1

) + 2𝑝 log(log(𝑁)) 

BICc ∑ (𝑦𝑖 − 𝑋𝑖𝑤)
2𝑁

𝑖=1

𝜎̂2
+ 𝑝 log(𝑁) 

RIC ∑ (𝑦𝑖 − 𝑋𝑖𝑤)
2𝑁

𝑖=1

𝜎̂2
+ 2𝑝 log(𝑘) 

Cp ∑ (𝑦𝑖 − 𝑋𝑖𝑤)
2𝑁

𝑖=1

𝜎̂2
+ 2𝑝 −𝑁 

Bayesian approach models the uncertainty over unknowns in a surrogate model using probability 

theory assuming those as random variables. The probability distribution that represents this 

uncertainty before obtaining samples is referred to as prior distribution and that after obtaining 
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samples is referred to as posterior distribution. Suppose that there are M models under 

consideration where ith model is represented by 𝑓𝑖 and unknowns corresponding to each model 

are represented as 𝜃𝑚. The aim is to select a model with highest posterior probability, which is 

given by Eq. (7). 

 
Pr(𝑓𝑚|𝑋) =

Pr(𝑋|𝑓𝑚)Pr(𝑓𝑚)

∑ Pr(𝑋|𝑓𝑘)Pr(𝑓𝑘)𝑘𝜖𝑀

   (7) 

where, 

Pr(𝑋|𝑓𝑘) = ∫Pr(𝑋|𝜃𝑘 , 𝑓𝑘)Pr(𝜃𝑘|𝑓𝑘)𝑑𝜃𝑘 

and 𝑋 is sampled data set,  𝜃𝑘 represents unknowns in surrogate model 𝑓𝑘. Bayesian variable 

selection problem is usually considered as a special case of the model selection problem where 

each model consists of a subset of variables. It should be noted that for comparison between two 

candidate models, the denominator on the right-hand side of Eq. (7) is the same and therefore, 

only numerator is usually considered for comparison. Finding the model with highest posterior 

probability is the fundamental motivation behind BIC.  

Another class of subset selection approaches is the one that relies on learning the correlation 

between input variables and the output. One such method is sure independence screening (SIS). 

Sure independence screening (SIS) relies on learning ranks of input variables according to their 

marginal correlation with output 𝑦. After standardizing columns of matrix 𝑋, where each column 

corresponds to each input variable, a vector 𝑋𝑇𝑦 is obtained which directly signifies marginal 

correlations of input variables with the output.  With this method, input variables having least 

impact on the output can be filtered out. Another famous approach involving a similar strategy of 

assessing impact of an input variable by monitoring correlation with output is least angles 

regression [33]. In this approach, coefficients are added in a similar fashion to forward-stepwise 
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regression. However, instead of obtaining a least squares solution, correlation with the output is 

monitored and new variables are added sequentially. 

Finally, subset selection is extremely important especially when the number of input variables is 

much higher than the size of available data set. Few of the approaches to address this class of 

problems include Dantzig selector [34], adaptive lasso and sure independence screening [35]. For 

high dimensional problems, Cadima et al. [36] review heuristic algorithms for subset selection. An 

extension of BIC for high dimensional problems known as extended BIC is proposed [37]. 

Regularization 

Subset selection methods lead to a discrete decision of either accepting or discarding a certain 

variable. This leads to high variance in prediction and does not reduce the prediction error of the 

regression model. Regularization leads to a continuous reduction of the regression model 

coefficients.  

Regularization penalizes magnitude of regression coefficients 𝑤 to modify the problem given in 

Eq. (2) to the form given in Eq. (8) [38]. 

 min
𝑤
 ||𝑋𝑤 − 𝑦||

2

2
+ C||𝑤||

q
   (8) 

where, 

 

 

||𝑤||
q
= (∑𝑤𝑖

𝑞

𝑑

𝑖=1

)

1/𝑞

   (9) 

and C is the parameter that decides magnitude of regularization. Eq. (9) is the expression of 𝑞𝑡ℎ 

norm. Value of q has a significant effect on properties of the regression model. Values 1 and 2 

represent two commonly used variants of regularization known as lasso and ridge regression 
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respectively [39]. In contrast to ridge regression, lasso has the ability to set regression coefficients 

exactly to 0. Values of q between 1 and 2 describe a mix between properties of lasso and ridge 

regression. Another approach to obtain a similar mix is known as elastic-net regression where a 

linear combination of lasso and ridge regression penalty terms is used.  

 
min
𝑤
 ||𝑋𝑤 − 𝑦||

2

2
+ C∑(𝛼𝑤2 + (1 − 𝛼)|𝑤|)

𝑑

𝑗=1

   (10) 

where, 𝛼 is a tuning parameter. Other extensions of Lasso include adaptive lasso [40] where the 

penalty term is a weighted summation where the weight depends on magnitude of the coefficient 

itself. Another for reducing the absolute value of regression coefficients uses a non-negative 

garrotte estimator [41]. This estimator is obtained by scaling coefficients of least squared 

regression. A penalty is associated with the scaling parameters and the problem is to find these 

scaling parameters. In this case, a closed form expression for these parameters is available as a 

function of coefficients obtained using ordinary least squares. 

2.1.2 Support vector regression 

The Support Vector Regression (SVR) surrogates are represented as the weighted sum of basis 

functions added to a constant term. A general form of SVR surrogate is given in Eq. (11). 

 
𝑓(𝑋) = 𝜇 +∑𝑤𝑖𝜓(𝑋, 𝑋𝑖)

𝑛

𝑖=1

  (11) 

Assuming a simple basis function 𝜓(. ) = 𝑋, the surrogate can be written as per Eq. (12). 

 𝑓(𝑥) = 𝜇 + 𝑤𝑇𝑋   (12) 

This form of the surrogate is similar to that of RBF as well as Kriging. However, the way to calculate 

unknown parameters for this surrogate differs significantly from that of RBF and Kriging 
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surrogates. The unknown parameters 𝜇 and 𝑤 in the model are obtained by formulating a 

mathematical optimization problem given by Eq. (13-16). 

 
min

1

2
|𝑤|2 + C

1

𝑛
∑(𝜉+(𝑖) + 𝜉−(𝑖))

𝑛

𝑖=1

   (13) 

           s. t.  

 𝑤. 𝑥𝑖 + 𝜇−𝑦𝑖 ≤ 𝜖 + 𝜉−(𝑖)   (14) 

 𝑦𝑖 −𝑤. 𝑥𝑖 − 𝜇 ≤ 𝜖 + 𝜉+(𝑖)   (15) 

 𝜉+(𝑖), 𝜉−(𝑖) ≥ 0    (16) 

Eq. (14) and Eq. (15) allow the sample points to lie within ± 𝜖 deviation from the value at sampled 

points without affecting the surrogate model. This band of allowed deviation is referred to as 𝜖 

insensitive tube. Slack variables 𝜉+(𝑖) and 𝜉−(𝑖) ensure feasibility of the problem by allowing 

outliers that do not fall within 𝜖 insensitive tube. Trade-off between model complexity and fit is 

achieved by penalizing outliers by a pre-defined constant C ≥ 0. Combined contribution of the 

model complexity and the penalty for outliers (Eq. (13)) is minimized. 

The above-mentioned formulation is obtained under the assumption of a linear basis function. 

Using a different basis function might require determining additional hyper-parameters 

associated with that specific basis function. Details and mathematical derivations related to SVR 

can be found in the work by Smola and Schölkopf [42].  

Finally, SVR is shown to achieve comparable accuracy with that of other surrogates [43]. SVR 

models are accurate as well as fast in prediction; however, the time required to build this model 

is high because finding the unknown parameters requires solving a quadratic programming 

problem. This added complexity hinders the popularity of SVR [44].   
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2.1.3 Radial basis functions 

Given 𝑛 distinct sample points, RBF surrogates can be represented as given in Eq. (17). 

 
𝑓(𝑥) =∑𝜆𝑖𝜙 (||𝑥 − 𝑥𝑖||2) + 𝑝(𝑥)

𝑛

𝑖=1

   (17) 

where 𝜆1, … , 𝜆𝑛𝜖𝑅 are the weights to be determined; ||. || is the Euclidean norm; 𝜙(. ) is the basis 

function. There are several options for choosing the basis function 𝜙(. ) as shown in Table 2-2. 

Table 2-2: Commonly used basis functions 

Type Function 𝜙(. ) 

Linear 𝜙(𝑟) = 𝑟 

Cubic 𝜙(𝑟) = 𝑟3 

Thin plate spline 𝜙(𝑟) = 𝑟2log (𝑟) 

Multi-quadratic 𝜙(𝑟) = √𝑟2 + 𝛾2 

Gaussian 𝜙(𝑟) = 𝑒−𝛾𝑟
2
 

In the case of multi-quadratic and Gaussian basis functions, 𝑟 ≥ 0, and 𝛾 is a positive constant. 

There is no solid conclusion in literature that decisively concludes one of these basis functions is 

better than others. However, use of cubic basis function with linear tail has been found to be 

successful [45]. It can be represented by Eq. (18).  

 
𝑓(𝑥) =∑𝜆𝑖𝜙 (||𝑥 − 𝑥𝑖||2) + 𝑎

𝑇𝑥 + 𝑏

𝑛

𝑖=1

   (18) 

The weights 𝜆, 𝑎 and 𝑏 in Eq. (18) can be determined uniquely by solving the system of equations 

given by Eq. (19). 
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(
ϕ 𝑃

𝑃𝑇 0
) (
𝜆
𝑐
) = (

𝐹
0
)   (19) 

where ϕ is an 𝑛 by 𝑛 matrix with ϕ𝑖𝑗 = 𝜙(||𝑥 − 𝑥𝑖||2);  

P = 

(

 

𝑥1
𝑇 1

𝑥2
𝑇 1
⋮ ⋮
𝑥𝑛
𝑇 1)

 ; 𝜆 =  (

𝜆1
𝜆2
⋮
𝜆𝑛

); 𝑐 =

(

 
 

𝑏1
𝑏2
⋮
𝑏𝑑
𝑎 )

 
 

; 𝐹 = (

𝑓(𝑥1)
𝑓(𝑥2)
⋮

𝑓(𝑥𝑛)

) 

An extension of RBF for the purposes of global optimization using a function called the bumpiness 

function (described in section 2.6.2) is proposed [46]. Several variations of this approach are 

discussed in section 2.6 [45], [47]. 

2.1.4 Kriging 

Kriging surrogate model, also known as Gaussian Process regression, represents the underlying 

simulation or unknown function as a realization of a stochastic process [10]. A Kriging surrogate 

can be formulated as given in Eq. (20). 

 
𝑓(𝑥) =∑𝛽𝑗

𝑚

𝑖=1

𝑓𝑗(𝑥) + 𝜖(𝑥)   (20) 

where 𝑓𝑗(𝑥) are 𝑚 known independent basis functions that define the trend of mean prediction 

at location 𝑥; 𝛽𝑗 are unknown parameters; 𝜖(𝑥) is a normally distributed random error at location 

𝑥. The Kriging predictor has the form shown in Eq. (21). 

 𝑓(𝑥) = 𝑓(𝑥)𝑇𝛽∗ + 𝑟(𝑥)𝑇𝛾∗   (21) 

where, 𝑓(𝑥) = [𝑓1(𝑥),… , 𝑓𝑚(𝑥)]
𝑇; 𝛽∗ is the vector of generalized least-square estimates of 𝛽 =

[𝛽1, … , 𝛽𝑚]
𝑇; 𝑟(𝑥) is the correlation vector of size 𝑛 x 1 between 𝜖(𝑥) and 𝜖(𝑥𝑖). 𝛽

∗ and 𝛾∗ are 

given in Eq. (22) and Eq. (23) respectively. 
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 𝛽∗ = (𝐹𝑇𝑅−1𝐹)−1𝐹𝑇𝑅−1𝑦   (22) 

 𝛾∗ = 𝑅−1(𝑦 − 𝐹𝛽∗)   (23) 

where, 𝑅 is the covariance matrix of size 𝑛 x 𝑛 where (𝑖, 𝑗) element is the correlation between 

𝜖(𝑥𝑖) and 𝜖(𝑥𝑗); 𝐹 = [𝑓(𝑥
(1)),… , 𝑓(𝑥(𝑛))]

𝑇
is 𝑛 x 𝑚  matrix; 𝑦 are observations at available data. 

Having a random error term allows Kriging surrogates to provide an estimate of uncertainty in 

addition to the predicted value at a specific location. Prediction variance can be computed with 

the help of Eq. (24). 

 𝑠2(𝑥) = 𝜎̂2[1 − 𝑟𝑇𝑅−1𝑟]   (24) 

where, 𝜎̂2 =
1

𝑛
(𝑦 − 𝐹𝑇𝛽∗)𝑇𝑅−1(𝑦 − 𝐹𝑇𝛽).  

Several correlation models can be used for obtaining 𝑅 and 𝑟 as shown in Table 2-3.The 

correlation models depend on a set of unknowns also known as hyper-parameters. The hyper-

parameters are estimated by maximizing the likelihood estimator (ML). For convenience, the log 

ML estimate (Eq. (25)) is often used. 

 
logML(θ) = −

1

2
[n ln(2πσ2) + ln det(R(θ)) + (y − Fβ∗)TR(θ)−1(y − Fβ∗)/σ2]   (25) 

Variants of Kriging 

Depending on the basis function (usually constant or polynomial of first or second degree) and 

the correlation model (Table 2-3) used, several structures of the Kriging model could be used.  

Table 2-3 Commonly used correlation models in Kriging surrogates 

Name Mathematical expression 

Exponential exp (−∑ 𝜃𝑗|𝑚𝑗|
𝑝𝑗  ),𝑑

𝑗=1 0 < 𝑝𝑗 < 2  
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Squared exponential exp (−∑ 𝜃𝑗|𝑚𝑗|
2
 )𝑑

𝑗=1   

Linear max {0,1 − ∑ 𝜃𝑗|𝑚𝑗| 
𝑑
𝑗=1 }  

Spherical 1 − 1.5𝜉𝑗 + 0.5𝜉𝑗
3, 𝜉𝑗 = min{1, ∑ 𝜃𝑗|𝑚𝑗| 

𝑑
𝑗=1 }  

Matern ∏
1

Γ(𝜈𝑗)2
𝜈𝑗−1

(𝜃𝑗|𝑚𝑗|)
𝜈𝑗
𝐾𝜈𝑗(𝜃𝑗|𝑚𝑗|

𝑑
𝑗=1  )  

Kriging surrogate shown in Eq. (20) consists of regression component given by ∑ 𝛽𝑗
𝑚
𝑖=1 𝑓𝑗(𝑥) and 

correlation component implied by 𝜖. Several choices for both of these components are proposed 

in literature combinations of which lead to multiple variants of Kriging.  

Correlation models 

The random variables 𝜖(𝑥) in a Kriging surrogate are assumed to be correlated according to a 

correlation model. For a deterministic and continuous function, if two samples are close to each 

other, their predicted values are close. As a result, the correlation between random variables is 

high. Correlation models consider the effect that the correlation decreases as the distance 

between two distinct samples increases. Commonly used correlation models are depicted in Table 

2-3 where 𝑚𝑗 is the distance between two points; 𝜃𝑗 and 𝑝𝑗  are hyper-parameters; d is the 

number of dimensions of the original problem. In case of Matern correlation model, Γ is the 

Gamma function, 𝐾𝜈𝑗 is the modified Bessel function of order 𝜈𝑗. The parameter 𝜈𝑗 > 0 provides 

control over the differentiability of correlation model with respect to input variable 𝑥𝑗 and 

therefore that of the Kriging predictor. Chen et al. [48] compare some of these correlation models 

and their results show that the squared exponential correlation performs worse than the 

exponential correlation. However, it is important to note that the generalized exponential 

correlation model has a higher number of hyper-parameters (2𝑑) as opposed to 𝑑 in case of 

squared exponential correlation. They also suggest choosing Matern correlation model (Table 2-3) 

as an alternative to exponential correlation model. Differentiability of this correlation model can 
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be controlled by choosing an appropriate value of 𝜈. For example, 𝜈𝑗 = 1 +
1

2
  or 𝜈𝑗 = 2 +

1

2
 make 

sure that there are 1 or 2 derivatives of the correlation model respectively. 

Regression models 

Based on the choice of the mean prediction model 𝑓(𝑥)𝑇𝛽 (given in Eq. (20)) there are several 

variants of Kriging such as simple Kriging, ordinary Kriging, and universal Kriging (also known as 

Kriging with a trend). Simple Kriging assumes the term 𝑓(𝑥)𝑇𝛽 to be a known constant, ordinary 

Kriging assumes it to be an unknown constant, and universal Kriging assumes 𝑓(𝑥) to be any other 

prespecified function of 𝑥. In universal Kriging, usually, 𝑓(𝑥) takes form of a lower order 

polynomial regression. However, specifying a trend or a value for the mean when the underlying 

function is unknown may lead to inaccuracy in prediction. To avoid this problem blind Kriging is 

used [49]. In blind Kriging, the unknown trend is identified using a Bayesian variable selection 

technique. From a given set of candidate models, Bayesian approach tries to select models that 

have maximum posterior probability (section 2.1.1). Several other approaches for variable 

selection exist in the literature for blind Kriging. For example, Huang and Chen [50] propose a 

metric known as generalized degrees of freedom which is an estimator of mean squared error. 

Variable selection is done by trying to minimize this estimator.  

There are a few strategies developed based on penalized likelihood function for variable selection 

in Kriging where the idea of adding a penalty term in regularization (discussed in section 2.1.1) is 

implemented in the context of likelihood functions [51]. Unlike penalized least squares 

approaches discussed in section 2.1.1, algorithms involving penalized likelihood functions involve 

operations with covariance matrix which is of a size of the order of size of sampled data set 

(discussed in section 2.1.4). As this problem occurs frequently in building Kriging surrogates, 

efficient optimization algorithms are developed specifically for this problem [52] [53][54] [55].  
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By having different combinations of mean prediction terms 𝑓(𝑥) and correlation models used for 

random error 𝜖(𝑥), multiple Kriging models can be obtained. One such comparison between 

Kriging models was made by Chen et al. [48]. For regression terms, their results reveal that adding 

complex regression terms to Kriging might not be of advantage over ordinary Kriging in terms of 

prediction accuracy. Moreover, adding these complex terms might result in multimodal ML 

function, thus adding an extra computational expense (section 2.1.4). 

Nugget effect 

Kriging by its fundamental problem formulation is an exact interpolation technique. This means 

that Kriging surrogate predicted value matches exactly with the underlying black-box function at 

the sample points used to build the Kriging model. This nature of Kriging might lead to highly 

oscillating behavior of the prediction. To suppress this, Kriging regression is an approach that 

attempts to add a regression component to Kriging.  

In this approach, the covariance matrix is augmented by a term known as the nugget. The effect 

of this added term on Kriging surrogates is known as nugget effect. Mathematically, the 

correlation matrix obtained after adding the nugget term 𝜖 is shown in Eq. (26). 

 𝑅mod = 𝑅 + 𝜖I   (26) 

Because of this modification, as distance between two points approaches zero, the correlation no 

longer equals 1. A singular or ill-conditioned covariance matrix occurs when two of the sample 

locations are very close to each other or hyper-parameters in the covariance model are near zero 

[56]. Incorporating nugget effect in such cases helps in maintaining conditioning of covariance 

matrix. The remainder of the procedure to obtain Kriging predictor remains the same as before. 

Computational aspects of Kriging 
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A few key computational aspects of Kriging need to be understood before choosing Kriging 

surrogate for the problem at hand. First, obtaining a Kriging surrogate involves inversion of a 

covariance matrix. The size of this matrix depends on the number of samples and thus its inversion 

may become computationally demanding as the number of samples grows. Second, to obtain 

hyper-parameters of the correlation model, Kriging maximum likelihood (ML) estimator is 

optimized. This ML estimator is highly non-convex and has a strong dependence on the inverse of 

the covariance matrix. The non-convex nature of this function demands multiple evaluations to 

search for global optima. Couple of approaches are proposed to tackle this problem with 

likelihood maximization [57, 58]. From the equations, one can observe that getting stuck at a local 

optimum affects Kriging surrogate prediction as well as quantified uncertainty at unsampled 

locations. However, with simple covariance functions, experience shows that getting stuck at local 

optimum is not a serious problem and often there is no point in finding the minimizer with great 

accuracy [59], [60].  

The non-convex and computationally intensive nature of ML estimator becomes a bigger problem 

as the dimensionality of the problem increases. It can be observed from Table 2-3, that 

irrespective of the correlation model chosen, the number of hyper-parameters, depends on the 

dimensionality of the problem. To reduce the number of hyper-parameters, Bouhlel et al. [61] use 

partial least squares. This way they address problems up to 100 dimensions more efficiently than 

other existing approaches. Another way to optimize hyper-parameters is to use cross validation 

instead of maximum likelihood. Use of cross-validation is found to be more robust with respect 

to correlation model misspecification compared to using maximum likelihood. However, the 

variance obtained by Kriging surrogates employing cross validation is larger [62]. 

For the problem with large number of data points, there are several successful applications of 

Kriging in the literature. One way to do this is by representing covariance matrix in terms of small 
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matrices of size 𝑟, where 𝑟 is the number of basis functions used [63]. Similar approach of reducing 

size of covariance matrix from number of sample points (n) to a smaller number 𝑟 is used by 

Nychka et al. [64], and Banerjee et al. [65]. Another approach is using covariance tapering, where 

a sparse covariance matrix is obtained by setting majority of the insignificant elements to zero. 

Sparse matrix inversion techniques are then used to achieve attractive computational complexity 

[54]. Another way is to choose only a subset of data for building Kriging model [66]. There exists 

a large amount of literature for using Kriging on large datasets by combination of the above-

mentioned approaches [67], [68] or by other frameworks [69]. 

Finally, even though inversion of covariance matrix is a computationally intensive task, positive 

definiteness of the covariance matrix helps current software implementations reduce the 

computational complexity by a significant factor. For obtaining maximum likelihood within a 

limited number of function evaluations, some software implementations make use of DFO 

algorithms. 

2.1.5 Mixture of surrogates 

Realizing the fact that no single type of surrogates outperforms all other types for all types of 

problems, choosing the best type of surrogate for the problem at hand is a challenging task. It is 

not always possible to try multiple choices of surrogate models and choose the surrogate model 

that shows the best performance. This motivates approaches utilizing a combination of 

surrogates. In general, prediction using a mixture of surrogates can be given by Eq. (27).  

 
𝑓(𝑥) =∑𝑤𝑖(𝑥)𝑓𝑖̂(𝑥)

𝑛

𝑖=1

   (27) 
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where, 𝑤𝑖(𝑥) is the weight associated with the 𝑖𝑡ℎ surrogate at design point 𝑥. Finally, summation 

of weights is set to one ∑ 𝑤𝑖
𝑁
𝑖=1 = 1. This implies that if all surrogate predictions 𝑓𝑖̂(𝑥) are equal, 

the weighted mixture will predict the same value. 

Different approaches to determine the weights 𝑤𝑖 are used in the literature. For example, Zerpa 

et al. [70] use a mixture of surrogates to optimize alkaline-surfactant-polymer flooding processes. 

They use a weighted combination of Kriging, RBF and polynomial regression where weights are 

determined based on the variance of individual surrogates. Weights can also be determined using 

a global cross validation metric called PRESS (discussed in section 2.7)[71]. Another approach for 

identifying weights is by weighing the surrogates with the help of an error metric proposed by 

Müller and Piché [72]. They assign probability to surrogates with the help of an error metric. These 

probability assignments are then used to determine weights. A variant of efficient global 

optimization utilizes mixture of surrogates [73]. They propose multiple surrogate efficient global 

optimization approach that is able add multiple candidate points for global optimization in a single 

iteration. Use of multiple surrogates, in general, provides a flexibility to emphasize more on good 

surrogates and put less emphasis on bad surrogates as per the need. 

2.2 Machine learning-based classification 

2.2.1 Support vector machines 

Support vectors machines (SVM) are motivated by the idea of finding a hyperplane that creates 

the biggest margin between two training classes. The theory of support vectors classifier was 

explored a long time ago for linearly separable data [74], [75]. Given 𝑛 pairs 

(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛) with 𝑥𝑖 ∈ ℝ
𝑝 𝑦𝑖 ∈ {−1, 1}, we define a hyperplane by 𝑓(𝑥) = 𝛾𝑇𝑥 +

𝛾0 where ||𝛾|| = 1. If the data is separable, we can find the values of 𝛾 and 𝛾0 such that: 

 𝛾𝑇𝑥 + 𝛾0 ≥ 1, ∀𝑥𝑚, 𝑦𝑚 = 1   (28) 
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𝛾𝑇𝑥 + 𝛾0 ≤ −1,∀𝑥𝑚, 𝑦𝑚 = −1 

It can be shown that the problem of finding such a separating hyperplane is solved by minimizing 

the squared norm of 𝛾 as shown by Eq. (29) 

 min
β,β0

||𝛾|| 

s. t. 𝑦𝑖(𝑥𝑖
𝑇𝛾 + 𝛾0) ≥ 1, ∀𝑖 ∈ {1,… , 𝑛} 

  (29) 

where, 𝑥𝑖  is the input data and 𝑦𝑖  are the classification labels in the input data; 𝑖 is a set of 𝑛 data 

points; 𝛾 and 𝛾0 are parameters of the linear support vector; 𝑛 is the number of samples. 

Suppose the data has some overlapping points or outliers that cannot be separated using a 

hyperplane, the problem is addressed by allowing some points to be on the wrong side of the 

margin with the help of slack variables. We define slack variables 𝜉𝑖  and modify the constraint 

given in Eq. (29) and reformulate as shown in Eq. (30) 

 min
β,β0

||𝛾|| 

s. t. 𝑦𝑖(𝑥𝑖
𝑇𝛾 + 𝛾0) ≥ 1 − 𝜉𝑖 , ∀𝑖 ∈ {1,… , 𝑛} 

𝜉𝑖 ≥ 0, ∑ 𝜉𝑖 ≤ constant

𝑖∈{1,…,𝑛}

 

  (30) 

where  𝜉𝑖  are slack variables for allowing misclassification and the second constraint in Eq. (30) 

puts a bound on the total number of misclassifications. From a computational point of view, we 

find it convenient to re-express the problem given by Eq. (31) 

 
min
β,β0

1

2
||𝛾||

2
+ 𝐶∑𝜉𝑖

𝑛

𝑖=1

 

s. t. 𝑦𝑖(𝑥𝑖
𝑇𝛾 + 𝛾0) ≥ 1 − 𝜉𝑖 , ∀𝑖 ∈ {1,… , 𝑛} 

𝜉𝑖 ≥ 0 

  (31) 

where, 𝐶 is the penalty for misclassification.  

By deriving the Lagrangean of this problem, we obtain the dual function. 
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max 
α
∑[𝛼𝑖 −

1

2
∑ 𝛼𝑖𝛼𝑖′𝑦𝑖𝑦𝑖′𝑥𝑖

𝑇𝑥𝑖′

𝑛

𝑖′=1

]

𝑛

𝑖=1

 

s. t.∑𝛼𝑖𝑦𝑖 = 0

𝑛

𝑖=1

 

0 ≤ αi ≤ C 

  (32) 

The solution of this problem leads to finding 𝛾 to obtain the separating hyperplane. The 

expressions for 𝛾 and 𝛾0 are shown by Eq. (33) and Eq. (34) 

 
γ =∑𝛼𝑖𝑦𝑖𝑥𝑖

𝑛

𝑖=1

    (33) 

 

γ0 =
1

𝑁𝑆𝑉
 ∑(𝑦𝑖 − 𝛾𝑥𝑖)

𝑁𝑆𝑉

𝑖=1

    (34) 

where, 𝑁𝑆𝑉  represents the number of support vectors, which is the same as the number of data 

points that lie on the separating hyperplane.  

However, most realistic process engineering problems will lead to data that is not linearly 

separable. In such a case, SVM can still be used by transforming the data into a higher dimensional 

space where it becomes linearly separable. The transformation functions, in this case, are referred 

to as nonlinear kernel functions. Commonly used kernel functions are displayed in Table 2-4. 

Table 2-4 Kernels used for separating data using SVM 

Kernel = 𝑲(𝒙, 𝒙′) expression 

dth degree polynomial (1+< 𝑥, 𝑥′ >)𝑑  

Radial basis exp (−𝜌||𝑥 − 𝑥′||
2
)  

sigmoid tanh (𝑘1 < 𝑥, 𝑥
′ > +𝑘2)  

Where, 𝜌, 𝑘1, and 𝑘2 are hyperparameters of the kernel function.  
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By using the values of 𝛾 and 𝛾0 from Eq. (33) and Eq. (34), and using the kernel functions, the final 

predictor 𝑓(𝑥) can be expressed as shown in Eq. (35) 

 

𝑓(𝑥) = sign(∑𝑦𝑖𝛼𝑖𝐾(𝑥, 𝑥𝑖) + 𝛾0

𝑛

𝑖=1

) 
  (35) 

where, 𝐾(. ) is the kernel function.  

The methodology can be extended to multiclass classification [76]. The implementation used in 

this work is from scikit-learn python toolbox [77], where the quadratic optimization problem given 

by Eq. (32) is solved. One algorithm to solve the optimization problem is given by Chang et al. [49]. 

The kernel function used in this work is the most popularly used radial basis kernel with the value 

of 𝛾 is chosen to be the inverse of the number of variables. In practice, the choice of a kernel 

function in SVM is usually made by the user based on her experience or by trying out multiple 

kernel functions. However, more rigorous approaches for this choice exist and the reader is 

referred to Jebara [78].  All inputs are standardized to have zero mean and unit variance before 

training the SVM model. 

2.3 Derivative-free optimization and surrogates 

The optimization problems for which function derivative information is not symbolically or 

numerically available are classified as DFO problems. There are two sub-categories in algorithms 

addressing DFO problems, one is local search (referred to as local DFO) algorithms and the other 

is global search algorithms (referred to as global DFO). Local search algorithms are effective in 

refining the solution or reaching a local optimum from an initial guess. Global search algorithms, 

on the other hand, have a component that allows escaping from a local minimum. For the 

purposes of this chapter, it is convenient to classify DFO algorithms as algorithms that do not use 

surrogate models and model-based algorithms. A major class of local DFO algorithms that do not 
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rely on surrogate models is direct search algorithms. Direct search algorithms sequentially 

examine candidate points generated by a certain strategy sometimes recognizing geometric 

patterns. Well known examples of the direct search are Hooke and Jeeve’s algorithm [79] and 

simplex method [80]. Model-based approaches, as the name suggests, rely on surrogate models 

to guide the search. For the case of global DFO algorithms, the majority of the algorithms that do 

not use surrogate models use an approach such as partitioning of the feasible space or a stochastic 

approach. An example of partitioning algorithm is DIviding RECTangles (DIRECT) algorithm [81]. 

Examples of stochastic algorithms include several approaches such as simulated annealing or 

genetic algorithms. For details on advances in DFO and an extensive comparative study on box-

bounded problems, the readers are referred to the review work by Rios and Sahinidis [82].  

As model-based search algorithms have been shown to display superior performance compared 

to these algorithms, it is important to discuss the role of surrogate models in the context of DFO. 

A major class of model-based local DFO methods known as trust-region methods is discussed 

followed by model-based global DFO methods.  

2.3.1 Model-based local DFO 

Trust-region methods are local search methods that rely on a surrogate model in a neighborhood 

of a given sample location. This neighborhood is called as trust region and the model is presumed 

to be accurate within trust region. The size of the trust region is defined with the help of radius 

which is adjusted based on a measure of the accuracy of the surrogate. The sufficiently small value 

of trust-region radius usually indicates termination. Because of the general nature of trust-region 

framework, several surrogates have been used in the literature to achieve local approximation. 

For example, Powell [83] use linear interpolation models to approximate objective and constraint 

functions in the algorithm COBYLA (Constrained Optimization BY Linear Approximation). Linear 
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Interpolating surrogates are easy to construct but these surrogates face difficulty in capturing 

curvature of the original problem. Use of quadratic models of the form given in Eq. (36) is 

proposed [84].  

 
𝑓(𝑥𝑘 + 𝑠) = 𝑓(𝑥𝑘) + 𝑠

𝑇𝑔𝑘 +
1

2
𝑠𝑇𝐻𝐾𝑠   (36) 

where, 𝑘 corresponds to iteration 𝑘, 𝑥𝑘 is the current iterate, 𝑔𝑘𝜖 R
d, H𝑘 is a matrix of of size d 

by d. Uniquely determining 𝑔𝑘 and H𝑘 requires 
(𝑑+1)(𝑑+2)

2
 sample points. This number becomes 

significantly high as the number of dimensions increase. For example, for a 30 dimensional 

problem, this number becomes nearly 500. To avoid this high sampling requirement, Powell [85] 

proposed underdetermined quadratic interpolation models. These models are proven to attain 

stationary local optimum and thus are called locally convergent. Futher, Oeuvray and Bierlaire 

[86] use RBF interpolation models with cubic basis functions and a linear tail. With modifications 

to the set of points used for building RBF models, Wild et al. [87] proposed Optimization by RBF 

Interpolation in Trust-regions (ORBIT) algorithm. This algorithm was later extended to handle 

constrained optimization problems [88]. RBF based trust region algorithms are proven to be 

globally convergent [89]. A similar strategy was used recently where Kriging based efficient global 

optimization (EGO) where Kriging surrogate was used inside trust-region framework [90].  

2.3.2 Model-based global DFO 

One of the reasons surrogates are promising in the context of global DFO is the progress made in 

the area of global optimization algorithms in the past decade [91], [92]. With the help of these 

algorithms, non-convex surrogates can be optimized and used to guide the search. For global DFO, 

a surrogate model is generated over the entire feasible space or multiple parts of the feasible 

space. For example, in the algorithm EGO [93], Kriging surrogate is built over the entire feasible 

space. With the help of expected improvement (EI) function (discussed in section 2.6.1), the 
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surrogate is updated. In this case, a balance between local search and global search is achieved 

by maximizing the EI function. A similar balance is achieved for RBF surrogates using a measure 

called bumpiness function (Eq. (42)) [46]. Minimizing the bumpiness function for a given target 

value can be used to focus on global and local search. This property of the bumpiness function is 

exploited for global DFO [94]. EI function, as well as bumpiness function, are discussed in more 

detail in section 2.6. Another approach using RBF surrogate relies on optimization and sequential 

updating of RBF surrogate over the feasible space [95]. Finally, global search is also achieved by 

conducting local search starting from multiple starting points obtained using a certain strategy. A 

complete restart strategy is proposed that suggests starting from a new sample design if algorithm 

gets stuck in a local minimum [47]. A more recent example of successful use of surrogates to 

address constrained global DFO problems is shown by Boukouvala and Floudas [96]. They 

developed a framework for constrained grey box optimization named Algorithms for Global 

Optimization of coNstrAined grey-box compUTational problems (ARGONAUT) that was shown to 

address a difficult class of problems successfully. In this framework, the surrogate is chosen from 

a set containing linear, general quadratic, sigmoidal, RBF and Kriging models based on the 

accuracy of prediction.  

2.4 Feasibility analysis 

A process is said to be feasible if all the relevant constraints are satisfied. Feasibility analysis 

relates to identifying conditions under which the process is feasible. Since identifying the optimal 

design requires the user to ensure that the design satisfies the constraints and meets the desired 

demand for products, feasibility analysis plays an important role in this work. A precise estimation 

of feasibility is crucial for conducting a systematic study of multiple design alternatives and 

achieve objectives such as maximizing profit. 
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Feasibility is quantified with the help of a measure known as the feasibility function 𝜓(𝑑, 𝜃) as 

given in Eq. (37). A positive value of the feasibility function implies that the design is infeasible[12]. 

 𝜓(𝑑, 𝜃) = min
𝑧
max
𝑗∈𝐽
{𝑓𝑗(𝑑, 𝑧, 𝜃)}   (37) 

where 𝑑 and 𝑧 represent design variables and control variables respectively, bounds on 𝑧 are 

written as 𝑧 ∈  𝑍 = {𝑧: 𝑧𝐿 ≤ 𝑧 ≤ 𝑧𝑈}; 𝜃 represents uncertain parameters 𝜃 ∈ 𝑇 = {𝜃: 𝜃𝐿 ≤ 𝜃 ≤

𝜃𝑈}; 𝑓𝑗(𝑑, 𝑧, 𝜃) represents constraints. The problem is to check if all constraints 𝑓𝑗 can be satisfied 

for a given design 𝑑 by adjusting the control variables 𝑧. Thus, 𝜓(𝑑, 𝜃) > 0 implies one or more 

constraints are violated and 𝜓(𝑑, 𝜃) = 0 implies the boundary of the feasible region. In the 

presence of analytical equations for the constraints 𝑓𝑗, the problem of feasibility analysis can be 

handled using an equation-oriented optimization solver. However, the feasibility analysis of 

simulation models often requires substantial computational efforts because of the unavailability 

of the closed form. In such a case, the literature relies on the black-box feasibility analysis. Several 

approaches for black-box feasibility analysis exist in the literature based on the type of data-driven 

approximation or a surrogate model used. Previous techniques have used Kriging [97][98], RBF 

[99], HDMR [100], and CRS for approximating the feasibility function 𝜓(𝑑, 𝜃) over the entire 

domain. 

As described in section 2.6, quality of surrogates has a strong dependence on the required 

quantity and quality of sampling set. Increasing sample size may lead to a better prediction but it 

will result in increased sampling cost. For feasibility analysis problems, sampling requirement is 

higher than that of single objective prediction due to the presence of constraints. To control the 

sampling cost, approaches employing adaptive sampling are used. Kriging surrogates and a 

modified version of EI function given in Eq. (38) for adaptive sampling is proposed [101]. 
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max
𝑥
EIfeas(𝑥) = 𝑠𝜙 (−

𝑦

𝑥
) = 𝑠 (

1

√2𝜋
𝑒
−0.5(

𝑦2

𝑠2
)
)   (38) 

where EIfeas(𝑥) is the modified EI function value at 𝑥; 𝑦 is the surrogate model predictor; s is the 

standard error of the predictor; 𝜙(. ) is the normal probability distribution function.  

There is a difference between a search for global optimization and that for feasibility analysis. For 

feasibility analysis, the problem is to find a surface defining the boundary of the feasible space 

within the box bounded design space as opposed to finding a single optimum in global 

optimization [97]. This problem is addressed with the help of Kriging variance as a metric to ensure 

exploration. To guide the search towards better defining the boundary of feasible space, the 

product of feasibility function values of nearby samples is used. Samples on the same side of 

feasible boundary result in a positive product. More recently, Wang and Ierapetritou [99] used an 

adaptive sampling strategy based on RBF surrogates. They used bumpiness measure (explained 

in section 2.6.2) to obtain prediction error. Substituting this prediction error in EIfeas function and 

maximizing EIfeas with respect to 𝑥, they chose new sample points for evaluation. Their results 

show that accuracy obtained from both Kriging and RBF is comparable. 

2.5 Flexibility analysis 

Uncertainty in process parameters can have a significant impact on the feasibility of a design. The 

ability of a process to remain feasible when subject to deviations of uncertain parameters is 

referred to as process flexibility. Process flexibility is quantified by solving the flexibility test 

problem which checks if feasibility function 𝜓(𝑑, 𝜃) is non-positive over the entire range of 

uncertain parameters 𝜃. The flexibility test problem is usually represented as a max-min-max 

problem, as represented by Eq. (39) [12].  
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 𝜒(𝑑) = max
𝜃∈𝑇

min
𝑧
max
𝑗∈𝐽
{𝑓𝑗(𝑑, 𝑧, 𝜃)}   (39) 

𝜒(𝑑) indicates if the design is feasible over the entire range of uncertain parameters. A negative 

value of 𝜒(𝑑) indicates that the design is feasible over the entire range of uncertain parameters, 

and a positive value indicates that the design is not feasible over the entire range. However, it is 

often important to quantify the actual range over which the design is feasible. For this reason, 

flexibility index [102]  is used as a quantitative measure. The problem for finding flexibility is 

formulated as shown by Eq. (40). 

 𝐹 = max𝛿 

s. t. 𝜒(𝑑) = max
𝜃∈𝑇

min
𝑧
max
𝑗∈𝐽
{𝑓𝑗(𝑑, 𝑧, 𝜃)} ≤ 0 

T(δ) = {𝜃: 𝜃𝑁 − 𝛿Δ𝜃− ≤ 𝜃 ≤ 𝜃𝑁 + 𝛿Δ𝜃+ 

𝛿 ≥ 0 

  (40) 

where, 𝜃𝑁, Δ𝜃−, Δ𝜃+ ∈ 𝑅𝑚 ; 𝛿 ∈ 𝑅+; 𝑚 is the number of uncertain parameters; 𝜃𝑁 are nominal 

values for uncertain parameters; Δ𝜃− and Δ𝜃+ represent the expected deviations in negative and 

positive directions respectively; 𝛿 quantifies the amount of uncertainty denoted by the parameter 

set 𝑇(𝛿); 𝐹 is the flexibility index. A value of 1 for 𝐹 indicates that the design has flexibility just 

enough to satisfy all the process constraints over the range of uncertain parameters. 

2.6 Sampling 

The process of generating data points to be able to build surrogates is referred to as sampling. 

The performance of surrogate models depends strongly on the quality as well as the number of 

samples. However, as generating data demands evaluation of the true function, sampling 

contributes towards significant computational cost. To maintain the quality of surrogates without 

incurring excessive sampling cost, studying sampling strategies is of immense importance.  
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Sampling strategies are broadly classified as adaptive sampling and stationary sampling. 

Stationary sampling consists of methods that rely on geometry or pattern such as grid sampling, 

full and half factorial designs, methods that were derived from the design of experiments 

literature such as orthogonal sampling, full and half factorial designs, Box-Behnken design. Some 

of the widely used stationary sampling strategies are Latin Hypercube Sampling (LHS) [103], Sobol 

[104] sampling and Halton sampling. LHS is a stratified sampling strategy where a sample is drawn 

from each stratum once. To provide better space-filling properties, LHS is done subject to 

projection filters. Sobol and Halton sampling are quasi-random strategies where samples are 

drawn from Sobol and Halton low-discrepancy sequences respectively. 

In adaptive sampling, starting from a limited number of samples that are generally obtained from 

stationary sampling, new sample locations are decided sequentially. This strategy aims to 

minimize sampling requirement by obtaining more samples that benefit the quality of the 

surrogate. Most of the new adaptive sampling strategies rely on some criteria to tackle the trade-

off between exploring the most unexplored region (exploration) and refining the region near 

existing samples for better understanding (exploitation). This approach is most common in the 

context of global optimization where exploration is required to escape local optima and 

exploitation is required to improve available optimum. For Kriging surrogates, a popular approach 

is making the use of EI function. For RBF surrogates, a similar quantitative measure is obtained 

using a function known as bumpiness function. Other approaches employing adaptive sampling 

make use of different strategies to address this trade-off. In general, these methods have been 

shown to achieve better accuracy with fewer samples [105].  
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2.6.1 Expected improvement function 

One commonly used approach to handling exploration and exploitation is by using EI function (Eq. 

(41)) as used by [93].  

 
EI(𝑥) = (𝑓min − 𝑓(𝑥))𝛟(

𝑓min − 𝑓(𝑥)

𝑠
) +  𝑠𝜙 (

𝑓min − 𝑓(𝑥)

𝑠
)   (41) 

where, 𝛟(. ) represents the standard normal density function; 𝜙(. ) represents the probability 

distribution function; 𝑓 is the surrogate model predictor; 𝑓min is the current minimum function 

value and 𝑠 is the standard deviation. EI(𝑥) represents the expected improvement at sample 

location 𝑥. The function increases with decreasing 𝑓(𝑥) that corresponds to the predicted value 

and increasing standard deviation 𝑠. Achieving low 𝑓(𝑥) and high 𝑠 correspond to exploration and 

exploitation, respectively. As both contribute positively towards EI function, the trade-off 

between exploration and exploitation is addressed by maximizing the EI function. The EI function 

exhibits multiple local optima that might cause numerical problems. 

2.6.2 Bumpiness function 

A similar approach of having a single function to balance exploration and exploitation was 

proposed by Gutmann [46] for RBF surrogates. This relies on the fact that the RBF surrogate that 

is obtained by solving the system of equations given by Eq. (19) is the one that minimizes 

bumpiness. A quantitative measure of bumpiness is given by bumpiness function (Eq. (42)).  

 min𝑔𝑛(𝑦) = (−1)
𝑚0+1𝜇𝑛(𝑦)[𝑓(𝑦) − 𝑓𝑛

∗]
2
, 𝑦 𝜖 𝐷\{𝑥1, 𝑥2, . . , 𝑥𝑛}   (42) 

where, 𝑦 is an unsampled point; 𝑓𝑛
∗ is the target value; 𝑚0 is a constant whose value depends on 

the basis function used (1 for cubic and thin plate splines, 0 for linear and multi-quadratic and -1 

for Gaussian); 𝜇𝑛(𝑦) is the coefficient of the new term 𝜙(||𝑥 − 𝑦||)2 in the surrogate 𝑓𝑛(𝑥) if an 
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unsampled point 𝑦 is added. It is calculated as the nth element of vector 𝑣, and 𝑣 is calulcated by 

solving the system of equations given by Eq. (43).   

 
(
ϕ𝑦 𝑃𝑦

𝑃𝑦
𝑇 0

)𝑣 = (
0𝑛
1

0𝑑+1 
)   (43) 

ϕ𝑦 = (
ϕ 𝜙𝑦

𝜙𝑦
𝑇 0

) ; 𝑃𝑦 = (
𝑃

𝑦𝑇 1
) ; (ϕ𝑦)𝑖

= 𝜙 (||𝑦 − 𝑥𝑖||2) ; 𝑖 = 1,… , 𝑛. 

 Minimizing the bumpiness function emphasizes exploration as well as exploitation depending on 

𝑓𝑛
∗. A large negative value of 𝑓𝑛

∗ makes the search global and focuses on exploration whereas, a 

value close to current optimal solution makes the search local and focuses on exploitation. 

Evaluation of bumpiness function is computationally expensive because obtaining 𝜇𝑛 by solving 

the system given by Eq. (43) is an 𝑂(𝑛3) operation. However, the cost of this step can be improved 

by exploiting the structure of ϕ after which the operation becomes 𝑂(𝑛2) [45].  

2.6.3 Other approaches 

The problem of adaptive sampling can be formulated as a DFO problem with the objective 

function being the difference between the true function and the surrogate [30]. The objective 

function is given in Eq. (44) 

 
max(

𝑓(𝑥) − 𝑓(𝑥)

𝑓(𝑥)
)

2

, 𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈   (44) 

where,  𝑓(𝑥) is the surrogate, 𝑓(𝑥) is the true function, and 𝑥𝐿 and 𝑥𝑈 are the bounds within 

which error is to be maximized. 

Some approaches rely on ranking the exploration and exploitation and weighing both as per need. 

One such approach was recently proposed by Garud et al. [106]. They propose a metric consisting 

of two separate measures for exploration and exploitation. For exploration, they use the sum of 
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squares of the distance a new sample from all the previous samples. For exploitation, the impact 

of new sample added near an already sampled location is quantified with the help of a departure 

function. 

 Δ𝑗(𝑥) = 𝑓(𝑥) − 𝑓𝑗̂(𝑥), 𝑗𝜖𝑆   (45) 

where, 𝑓(𝑥) is the surrogate built using all points in the sampled set 𝑆, 𝑓𝑗(𝑥) is the surrogate built 

using all points except point 𝑗. Estimating the prediction variance of surrogate model using a 

technique called jackknifing, Eason and Cremaschi [107] propose an adaptive sampling strategy. 

They use this strategy with a surrogate model built using ANN and choose samples locations that 

have high prediction variance.  Advantage of this type of adaptive sampling is that it is not specific 

to the choice of surrogate model. A study of space filling sequential design methods is conducted 

by Crombecq et al. [108]. They propose a set of sequential sampling methods that shows 

comparable performance with stationary or one-shot experimental design.    

2.7 Validation methods 

2.7.1 Surrogate models 

Assessing the reliability of surrogate model is one of the major concerns because having an 

inaccurate surrogate model can lead to waste of resources and have a bad effect on optimization, 

prediction or feasibility analysis. Surrogate model validation is the process of assessing the 

reliability of the surrogate model.  In addition to assessing accuracy, validation techniques can be 

used to select a surrogate model from a set of candidate models and to tune hyper-parameters 

(such as correlation model parameters in Kriging).  For problems of lower dimensions, a visual 

comparison between predictions and true value is possible. However, the difficulty in having 

enough data for visual comparison and inability to visualize predictions for problems over two 

dimensions necessitates more sophisticated approaches. As surrogate models cannot be 
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validated on the same data with which those were built, surrogate models are built with the help 

of only a part of the available data. The remaining part of the data is used for testing the accuracy. 

The data set on which the model is built is referred to as training set and the set on which the 

model is tested is referred to as test set. The metrics used for quantifying the error on test set are 

referred to as validation metrics. 

One possible approach to tackling this is using resampling strategies such as cross validation and 

bootstrapping. In cross-validation, available data is divided into k blocks containing an equal 

number of data points. Data from (k-1) blocks are used as training set and data from the remaining 

block are used as a test set. The process is repeated for all possible combinations of (k-1) blocks. 

Finally, an appropriate metric to quantify the error on test set such as the sum of squared errors 

is evaluated based on the accuracy of the model on test data that can act as an indicator of model 

adequacy. However, with limited data available, using part of the data for building the surrogate 

is not always possible. One such approach known as leave one out cross validation was used by 

Jones et al. [93]. In this approach, the number of subsets k equals the number of data points or 

observations, thus leaving only one data point each time a surrogate is built. A sampling set is 

considered inadequate to build a quality surrogate if removal of one data point significantly 

affects the new model. A similar approach, but with allowing repeated samples in the training set 

is known as bootstrapping. By allowing repeated samples in the set used to build models, one can 

have a training set of the size equal to the size of actual data. Usually, number of subsets k chosen 

for bootstrapping is much higher than that for cross validation. Details on resampling methods for 

validation of surrogates are provided by Bischl et al. [109]. 

Validation metrics that are commonly used to quantify the error using the above-mentioned 

resampling strategies are the explained variance score, the mean absolute error, the mean 

squared error, the median absolute error, the 𝑅2 score, the relative absolute error, and the 
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relative maximum absolute error. These metrics with their respective mathematical equations are 

shown in Table 2-5 where 𝑦, 𝑦̂, 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠, and 𝑦̅ denote true value, surrogate predicted value, 

number of samples and mean predicted value, respectively. Relative maximum absolute error 

indicates error in one part of feasible space. However, it is not a good indicator of the overall 

performance. Explained variance score equals 𝑅2 score if mean of prediction error is zero. 

Kersting  et al. [110] use normalized mean squared error as well as average Negative Log 

estimated Predictive Density (NLPD) for heteroscedastic Gaussian process regression that 

penalizes over-confident as well as underconfident predictions. In the same area, Boukouvalas 

and Cornford [111] use Mahalanobis error that utilizes full predictive covariance avoiding the 

assumption of uncorrelated errors. Yin et al. [112] use mean absolute error as well as maximum 

absolute error for validation. For  the case of multiple  surrogates, Viana et al. [113] used 

prediction sum of squares (PRESS) as an estimator of root mean square error (RMSE) to pick the 

best surrogate. Their computational results reveal that PRESS becomes more and more useful for 

identifying the best surrogate as the number of sample points increases. PRESS vector 𝑒̃ is the 

vector of errors obtained from carrying leave one out cross validation. RMSE is predicted using 

Eq. (46).    

 
PRESSRMS = √

1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 𝑒̃𝑇𝑒̃     (46) 

Table 2-5: Commonly used surrogate validation metrics 

Validation metric Formula 

Explained variance score 
1 −

𝑉𝑎𝑟{𝑦 − 𝑦}̂

𝑉𝑎𝑟{𝑦}
 

Mean absolute error 
1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∑ |𝑦𝑖 − 𝑦̂|

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0
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Mean squared error 
1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∑ (𝑦𝑖 − 𝑦̂)

2

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0

 

Median absolute error median(|𝑦1 − 𝑦1̂|, … , |𝑦𝑛 − 𝑦𝑛̂|) 

R2 score 
1 −

∑ (𝑦𝑖 − 𝑦𝑖̂)
2𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0

∑ (𝑦𝑖 − 𝑦̅)
2𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0

 

Relative average absolute error ∑ |𝑦𝑖 − 𝑦𝑖̂|
𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
𝑖=1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ∗ STD
 

Relative maximum absolute error max (|𝑦1 − 𝑦1̂|, |𝑦2 − 𝑦2̂|, … , |𝑦𝑛 − 𝑦𝑛̂|)  

STD
 

 

2.7.2 Machine learning-based classification models 

Before incorporating the classifier into an optimization problem, it is important to verify the 

quality of the classifier. The metrics explained here are previously used by Dias and Ierapetritou 

[114]. The goal is having a comprehensive quantitative measure of the prediction of the feasible 

region, the infeasible region as well as the prediction accuracy. This is achieved by dividing the 

dataset into four parts named CF (correct feasible), CIF (correct infeasible), ICF (incorrect feasible), 

and ICIF (incorrect infeasible). Correct or incorrect refers to the prediction by the model whereas 

feasible or infeasible is based on the true data. For example, correct feasible refers to points that 

are feasible and that are correctly identified as feasible. Based on this division of model 

predictions, four metrics are proposed that are CF%, CIF%, NC%, and Total Error. Expressions for 

calculating these metrics are shown in Eq. (47). 

 
CF% =

CF

CF + ICIF
× 100 

CIF% =
CIF

ICF + CIF
× 100 

NC% =
ICF

ICF + CF
× 100 

  (47) 
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Total Error =
ICF + ICIF

CF + ICF + CIF + ICIF
× 100 

Of these metrics, CF% and CIF% represent how well the model represents the feasible region as 

well as the infeasible region. The metric NC% represents the overprediction of the feasible region. 

Total Error quantifies the percentage of total misclassifications. Validation in this way provides a 

true picture of the model quality because all metrics combined can detect special cases such as 

imbalanced data where the Total Error will be low, but one of the CIF% or CF% will also be low 

indicating inadequacy of the model. A good quality model has high values of CF% and CIF% and 

low values for NC% and Total Error. For validating models in this work, the data is randomly 

divided into training and test data sets with a split of 80% and 20%, respectively. The training data 

set is used for building the model, whereas the test dataset was used to assess the performance.
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3 Supply chain optimization 

Abstract 

Supply chain simulation models are widely used for assessing supply chain performance and 

analyzing supply chain decisions. In combination with derivative-free optimization algorithms, 

simulation models have shown great potential in effective decision-making. Most of the 

derivative-free optimization algorithms, however, assume continuity of the response, which may 

not be true in some practical applications. In this work, a supply chain inventory optimization 

problem is addressed that results in a discontinuous objective function. A derivative-free 

optimization framework is proposed that addresses the discontinuities in the objective function. 

The framework employs a sparse grid sampling and support vector machines for identification of 

discontinuities. Computational comparisons presented show that addressing discontinuity leads 

to more cost-effective decisions over existing approaches. 

3.1 Introduction 

Globalization and the sudden increase in the exchange of information, trade, and capital all 

around the world, driven by technological innovation, has given rise to complex global supply 

chain networks. Under such networks, the problem of optimal inventory allocation is known to 

have a significant impact on the service level and the total cost of the supply chain and thereby 

impacting the profit that an individual enterprise would make [2]. This work considers the optimal 

inventory allocation problem for multienterprise supply chain networks. The methodology 

proposed in this work is motivated by three factors. First, the ability of simulation models to 

represent a complex system accurately. Second, recent advancements in the use of derivative-

free optimization for decision-making based on the simulations. Third, the observation that the 

objective function of such a system, when modeled as a derivative-free optimization problem, 
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may lead to a discontinuous response. Relevant literature from supply chain optimization, 

derivative-free optimization, and discontinuous optimization that motivates the framework 

presented in this work are presented in the remainder of this section followed by a brief 

description of the problem addressed.  

Modern supply chain networks consist of entities that usually belong to different enterprises and 

operate based on their individual goals leading to a decentralized network. Since earlier strategies 

in the supply chain optimization literature focused mainly on the centralized networks, there is a 

growing interest towards developing new optimization frameworks that take into account 

different goals and operating policies of different entities in a supply chain [1]. Competition 

between buyers and sellers, conflicting interests between different entities, and game theoretic 

models that describe these interactions are some of the considerations in modeling such 

frameworks based on the supply chain network under consideration. The optimization 

approaches for decentralized networks can be broadly classified as analytical approaches and 

simulation-based approaches. Analytical approaches formulate the supply chain model as an 

equation-based mixed integer linear or nonlinear programming problem. Ryu et al. [115] present 

a bilevel programming framework to capture conflicting interests as well as imbalances in the 

available information at different levels such as distribution network planning and production 

planning. Zamarripa et al. [116] propose a multi-objective optimization formulation for 

cooperative or competitive supply chains. Yeh et al. [117] use bilevel optimization for supply 

allocation using a Stackelberg game which are two player turn based games with a leader and a 

follower. Both have separate objectives and have a complete understanding of each other’s 

information. More recently, Yue & You [118] discuss the optimization of noncooperative supply 

chains under stackelberg game using mixed integer bilevel programing. Florensa et al. [119] 

address capacity planning problem by formulating it as a trilevel optimization problem to capture 
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the dynamics of a duopolistic market. Even though these approaches benefit from efficient 

optimization techniques, modeling complex interactions in a network with the help of equation-

based models is not always possible. As a result, the assumptions necessary for analytical models 

lead to solutions that are not applicable for real world scenarios [120][121]. Moreover, even the 

simplified models used in the analytical approaches are computationally expensive for large 

networks [122]. 

To overcome these shortcomings, another approach towards addressing the problem of multi-

enterprise supply chain optimization is using a simulation model that captures details of the 

supply chain network. Techniques such as agent-based modeling allow a bottom-up approach 

towards building a simulation [3], [4] and have been found useful in supply chain networks in 

various areas. Swaminathan et al. [123] describe a framework for developing supply chain models 

using a modular approach. Lee & Kim [124] review modeling techniques for multi-agent systems. 

For supply chains in the process industry, García-Flores & Wang [125] study information flow with 

the help of agent-based simulation. Using an agent-based framework, Julka et al. [126] show an 

application where the framework works as a decision support system in a refinery application 

[127]. Even though agent-based modeling is popular for building accurate simulations, its utility 

is not limited to analyzing a complex system. Agent-based simulations have also been used for 

optimization using derivative-free or simulation-based optimization. Singh et al. [128] study a 

biorefinery supply chain network with agent-based modeling and use genetic algorithms to 

identify the location and capacity of each biorefinery in the network. Sahay & Ierapetritou [129] 

consider a supply chain network consisting of entities from multiple enterprises. They consider an 

auction mechanism where enterprises adapt their strategy based on the outcome of the auction. 

As opposed to a small network consisting of a single enterprise, a centralized decision cannot be 

imposed on these type of multi-enterprise networks. Ye & You [121] propose an optimization 
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framework for reducing the total cost of the supply chain under demand uncertainty where an 

agent-based simulation model is used to represent the inventory system. Because of their 

flexibility to adapt to different networks structures and demonstrated success in the existing 

literature, this work uses an agent-based simulation model details of which are provided in section 

3.2.  

With the increased complexity of simulation models, obtaining a closed form expression or a 

mathematical model becomes difficult which limits the use of conventional algorithms. For this 

purpose, derivative-free optimization algorithms are used [10]. Even though a vast amount of 

literature exists on derivative-free optimization, a majority of the available algorithms and 

software packages rely on the assumption of continuity of the response. This may not be the case 

in some applications, especially for the case of supply chain networks where the objective 

function is dependent on several discrete decisions. For this reason, optimization of problems 

with discontinuous response needs special attention. Previous works on addressing 

discontinuities majorly focus on modeling a discontinuous response. The problem of identifying 

discontinuities using a Bayesian modeling approach is thoroughly analysed by Anderson [130]. 

Gorodetsky & Marzouk [131] propose an approach for identifying discontinuities and refining 

them in an adaptive manner. They make use of support vector machines and uncertainty sampling 

to adaptively sample new points near discontinuity. Jakeman et al. [132] use an adaptive sparse 

grid approach where new samples are generated at the locations where a discontinuity is 

suspected using polynomial annihilation, a technique for estimating the size of discontinuities. 

This approach is later used for multi-element collocation [133]. Archibald et al. [134] discuss 

polynomial annihilation method for detecting discontinuities and extend it to higher dimensional 

problems such as stochastic partial differential equations. Caiado & Goldstein [135] use a Bayesian 

approach to address discontinuities. They use a separate surrogate model for each continuous 
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region for modeling purposes. For optimization, Moreau & Aeyels [136] propose the use of 

semigradient for optimization of discontinuous functions. Vicente & Custódio [137] analyse the 

properties of direct search methods for optimizing piecewise continuous functions in the 

presence of constraints. Recently, a framework for optimizing in the presence of discontinuities 

to address a structural optimization problem is proposed [138]. They propose a framework where 

continuous regions are clustered together after identification using polynomial annihilation. 

These regions are then classified using support vector machines. The discontinuity identification 

framework proposed in this work is inspired by adaptive sparse-grid algorithm by Jakeman et al. 

[132]. Although the framework follows a similar flow to that of previous work where discontinuity 

identification step is followed by classification, there are several differences between. First, the 

objective of the previous work is modeling discontinuities accurately whereas this work considers 

an optimization problem where discontinuity identification is a subproblem. Secondly, 

discontinuity identification in the previous works encompasses the entire feasible or search space 

whereas in this work it is confined to several local searches. A global surrogate model is used in 

this work instead which guides the search towards promising local search regions. Finally, a sparse 

grid is used even for the refinement step whereas the previous work [132] uses 4.3𝑑−1 samples 

for refinement. 

This work addresses the problem of optimal inventory allocation using a derivative-free 

optimization framework. An agent-based model is considered that consists of a supply chain 

network where entities belong to multiple-enterprises. Enterprises interact with each other 

through an auction mechanism. The problem of deciding optimal warehouse inventory is found 

to display a discontinuous behavior. To that end, the optimization framework proposed in this 

work can handle discontinuous objective functions. The framework iteratively uses a Kriging 

model for the global search followed by a local search followed that includes discontinuity 
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detection. It uses sparse grid sampling and support vectors classification for identifying 

discontinuities. 

The remainder of this chapter is organized as follows. Section 3.2 describes the details of the 

simulation model. Section 3.3 describes the optimization framework in detail. Section 3.4 

compares the performance of the proposed framework on test problems as well as on the supply 

chain simulation. Finally, summary and future directions are discussed in section 3.5.  

3.2 Supply chain simulation and the problem definition 

For modeling a system where each component has an autonomous behavior, a natural choice is 

a bottom-up approach. This being one of the central ideas behind agent-based simulation, it is a 

suitable approach for modeling a supply chain network. Broad categories of agents considered in 

the supply chain simulation in this work are raw material suppliers, production sites, warehouses, 

retailers, and auctioneer. Each agent has a set of rules according to which it behaves or modifies 

its behavior. Based on the tasks performed, each agent has a cost associated with it. This cost 

could be transportation cost, inventory cost, production cost or a combination of these costs. 

Additionally, for retailer agents, a penalty for unmet demand is considered. The total cost for an 

enterprise is the combined cost of all entities that belong to that enterprise. There can be multiple 

agents of the same category (for example, warehouses) and each agent may belong to a different 

enterprise. Java programming language is used to build an agent-based simulation. A typical 

schematic of such a supply chain is depicted in Fig. 3-1. The simulation model used in this work is 

an extension of the model proposed by Sahay & Ierapetritou [139] where more details are 

provided regarding the simulation model. A brief description of each agent is provided below. 
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Fig. 3-1 An example of a supply chain network 

Retailer 

Demand originates at the retailer agent. Tasks associated with this agent are conveying 

information regarding demands to the auctioneer and submitting the bid to buy products from 

the warehouse. A bid consists of maximum price that the retailer is willing to pay and the 

maximum quantity that the retailer is willing to buy. Retailers from different enterprises compete 

in the form of auctions to receive product from a warehouse. New demand is incurred at the 

beginning of each period. Based on the results of the auction in the previous period, the retailer 

may satisfy the demand fully or partially. Unfulfilled demand is considered lost and a penalty cost 

is enforced. Costs associated with this agent are a penalty for unmet demand and transportation 

cost from warehouse to retailer. 

Warehouse 

Warehouse agent is responsible for storing inventory, submitting its asks to the auctioneer, 

sending material to the retailer, and ordering material from the production sites for replenishing 

inventory. Ask from a warehouse includes the minimum price at which it is willing to sell a product 

and the maximum quantity of that product it can deliver. Warehouse receives a response from 

the auctioneer agent with the amount of product that is to be delivered to a retailer. It updates 
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the inventory based on reorder-level reorder-amount policy with continuous review. After 

sending the product to a retailer, it requests product from production sites and updates its 

inventory. Costs associated with this agent are inventory cost and transportation cost. Inventory 

cost may be different for each product. 

Production site 

Production site agent stores product and raw material inventory. It receives an order from 

warehouses and sends shipment accordingly. As production sites and warehouses are assumed 

to belong to the same enterprise, production sites aim to satisfy maximum demand from a 

warehouse. It produces a product using its own replenishment policy for maintaining a product 

inventory. Similarly, it maintains a raw material inventory by ordering raw materials from the raw 

material supplier. A bill of material relationship is used to express the conversion of raw materials 

to products. Costs associated with this agent are production cost, transportation cost, and storage 

cost.  

Raw material supplier 

Raw material supplier supplies raw materials to the production sites according to demand. There 

are no costs associated with this agent. It is assumed that the inventory of raw material supplier 

has no limits. 

Auctioneer 

Multiple enterprises communicate with each other through an auction mechanism. Auctioneer 

agent is responsible for conducting auctions. It receives bids and asks from retailers and 

warehouses respectively. Using this information about asks and bids, auctioneer performs the 
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matching and communicates the final trade quantities and prices to warehouses and retailers 

respectively. It is assumed that there is no cost associated with this agent. 

Auction mechanism 

In each planning period, multiple rounds of auctions take place. In each round of auction, a 

warehouse enters as a seller and multiple retailers enter as buyers. The auction mechanism 

considered in this work consists of two steps that are matching and arbitration [140]. The 

matching step starts with the warehouse submitting its ask and retailers submitting their bids. An 

ask or a bid consists of price and quantity. Warehouse asks and retailer bids depend on a certain 

bidding strategy adapted from Steiglitz et al. [141]. This strategy allows the warehouse and 

retailers to adapt their asks to learn from their previous experience. Minimum acceptable price 

for a warehouse depends on available product amount and its bid in the previous planning period. 

This relation is given by Eq. (48).  

 bid(𝑡) = 𝑃(𝑡 − 1)B(f)̅   (48) 

where, 

 𝐵(𝑓̅) = 1.21−𝑓̅   (49) 

 
𝑓̅ =

inv(𝑡)

target inventory
   (50) 

where inv(𝑡) is the product inventory that each warehouse has at the start of planning period 𝑡; 

bid(𝑡) is the price that warehouse bids in the planning period 𝑡; 𝑃(𝑡 − 1) is the bid price by the 

warehouse in the previous planning period.  

Finally, warehouse bid cannot be lower than a product value to make a profit. The product value 

is determined by including all costs for transportation, production, and holding costs before 

making the product available at the warehouse. Retailers adjust their bid based on the trading 
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price in the previous planning period. The extent to which retailers adjust their bids depends on 

the learning factor. Value 1.0 of the learning factor means that the bid will be equal to the trading 

price of the previous period. The maximum acceptable quantity for retailers is the demand, 

whereas, for the warehouses, it is the maximum quantity that it can deliver equals the available 

inventory. 

After receiving bids and asks from retailers and the warehouse respectively, the auctioneer 

matches the warehouse to one retailer by calculating the maximum possible payoff that can be 

achieved by trading with a retailer. The payoff for a warehouse (Eq. (51)) is the revenue that it 

receives by selling a product. For retailers, the payoff is the profit gained by selling a product (Eq. 

(52)).   

 𝜋wh = (Ptrade − TCr,wh)Qtrade   (51) 

where, 𝜋wh represents payoff of a warehouse wh by trading with the retailer 𝑟; Ptrade is the 

trading price; Qtrade is the quantity of product supplied to the retailer; TCr,wh is the 

transportation cost for delivery of product from warehouse wh to retailer r. Maximum possible 

payoff for the warehouse is when Ptrade is the maximum acceptable price by the retailer and 

Qtrade is the maximum possible shipment quantity which could be maximum quantity that 

warehouse can supply or the maximum quantity that a retailer needs. 

 𝜋𝑟 = (Psell − Ptrade)Qtrade   (52) 

where, 𝜋𝑟 is the payoff of a retailer by trading with a warehouse; Psell is the selling price and 

Ptrade is the trading price; Qtrade is the trading quantity. 

Matching step is followed by the arbitration step. In the arbitration step, the actual price and 

quantity at which the trade will take place are decided. With the help of Nash bargaining 
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mechanism, a fair-trade price and quantity are decided. Status quo point for the warehouse is the 

maximum payoff that it can achieve by trading with any other retailer. Status quo point for the 

retailer is zero. It is natural to assume here that the minimum acceptable price for a warehouse is 

less than the maximum acceptable price for the retailer. If this does not hold, the retailer is 

eliminated in the matching step. The problem is formulated using equations (53-57). 

 min(πwh − πwhmin)(πr − 0)   (53) 

                                                 s. t.  πwh ≥ πminwh   (54) 

 πr ≥ 0   (55) 

 Pmin ≤ Ptrade ≤ Pmax   (56) 

 0 ≤ Qtrade ≤ Qmax   (57) 

where, Pmin is the minimum acceptable price for the warehouse; Pmax is the maximum acceptable 

price for the retailer; Qmax is the maximum trade quantity. As payoff of warehouse and retailer 

depend on trade price and trade quantity from Eq. 51 and Eq. 52 respectively, solving the problem 

Eq.(53-57) gives the trade quantity and price based at which the trade takes place.   

 A simple demonstration of this mechanism is provided in Fig. 3-2 where a round of auction 

between two buyers and one seller is displayed. The horizontal axis represents prices and the 

vertical axis represents price. For each buyer and seller, a rectangular region marked by price and 

quantity represents the region in which the buyer or seller is willing to trade. Thus, trade can 

happen only in overlapping regions between a buyer and a seller. In Fig. 3-2, buyer 1 and seller 

can trade within regions A and C whereas buyer 2 and seller can trade within region B and C. Since 

there is only one seller, auctioneer calculates the maximum payoff that the seller can achieve by 

trading with each buyer. The buyer for which the payoff is maximum wins the trade. 
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Fig. 3-2 Auction mechanism demonstration 

Problem definition 

The problem of minimizing the total cost of a supply chain network is considered. The total cost 

is obtained from the simulation. For the simulation, demand is assumed to be deterministic. 

Information about warehouse and production site inventories are externally provided to the 

simulation. Inventory of warehouses as well as production sites are determined by formulating a 

problem as described in Eq. (58) where Bound constraints on warehouse and production site 

inventories are considered. 

                                   min total cost    (58) 

s. t.   lbwh,p  ≤ invwh,p ≤ ubwh,p   ∀pϵP, ∀whϵWH 

lbps,p  ≤ invps,p ≤ ubps,p   ∀pϵP, ∀psϵPS 

where the total cost is given by Eq. (59) 

 

 total cost =∑∑(𝛼𝑇𝐶𝑄𝑎,𝑡 + 𝛼𝑃𝐶𝑄𝑎,𝑡 + 𝛼𝐼𝐶𝑄𝑎,𝑡 + 𝛼𝑈𝐶𝑄𝑎,𝑡)

𝑎𝜖𝐴𝑡𝜖𝐻

   (59) 
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The total cost in Eq. (59) is obtained from the simulation and it is the summation of individual 

costs associated with each agent over the planning horizon 𝐻; 𝛼𝑇𝐶𝑄𝑎,𝑡, 𝛼𝑃𝐶𝑄𝑎,𝑡, 𝛼𝐼𝐶𝑄𝑎,𝑡, and 

𝛼𝑈𝐶𝑄𝑎,𝑡 represent transportation cost, production cost, inventory cost, and unmet demand 

penalty cost respectively for an agent 𝑎 and planning period 𝑡.  lbi ,p  and ub𝑖,𝑝  are the lower and 

upper bounds on the inventory of product 𝑝 at the warehouse or production site 𝑖; inv𝑖,𝑝 is the 

capacity to store product p at the warehouse or production site 𝑖 and total cost depends on it; 

WH is the set of all warehouses; PS is the set of all production sites; 𝐴 is the set of all agents; P is 

the set of all products; 𝛼 is cost per unit of product, Q is the quantity of the product. Inventories 

at production sites as well as warehouses for each product are the decision variables in the 

problem given by Eq. (58) and Eq. (59). Given that different values are allowed for product 

inventories at each warehouse and production site, number of decision variables in the the 

problem are (𝑁𝑤ℎ + 𝑁𝑝𝑠)𝑁𝑃 where, 𝑁𝑤ℎ is the number of warehouses, 𝑁𝑝𝑠 is the number of 

production sites, and 𝑁𝑝 is the number of products. In the context of analytical approaches, it is 

important to note that the problem defined by Eq. (58) and Eq. (59) does not include any integer 

variables since simulation handles such decisions internally. 

Characteristics of the problem 

In the supply chain network considered in this work, discrete decisions are involved at every stage. 

These decisions include the choice of a production site for delivering product to a warehouse, 

choice within a production site on the product to produce with priority, and the matching step in 

the auction. As warehouse inventory plays a significant role in auctions, changing warehouse 

inventory results in different decisions. To illustrate how auction results could change with a 

change in warehouse inventory, the matching step in a single round of auctions with one 

warehouse and two retailers is considered as shown in Fig. 3-2. It is assumed that the 
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transportation cost to both retailers is the same. The maximum possible payoff for the seller by 

trading with both warehouses is observed as the seller inventory increases. The dotted line in Fig. 

3-3(a) illustrates the new bid by the seller after increasing seller inventory. It is assumed that in 

the current state, buyer 2 wins the auction. Since in the current state, buyer 1 is willing to buy 

more amount than that offered by the seller, increasing seller inventory will increase the 

maximum potential payoff for the seller can achieve by trading with buyer 1. However, since the 

seller is satisfied to fulfill the demand for buyer 2 in the existing scenario, increasing seller 

inventory will not affect the maximum possible payoff the seller can achieve by trading with buyer 

2. Therefore, there could be a point where payoff by trading with buyer 1 will surpass that of 

buyer 2. As a result, buyer 1 will be matched with the seller. On the other hand, the bid after 

decreasing the seller inventory is illustrated in Fig. 3-3(b). It is assumed that in the current state, 

buyer 1 wins the auction. As the inventory decreases, buyer 1 cannot enter auctions because it is 

eliminated in the matching step. As a result, buyer 2 will be matched with the seller. As 

transportation cost, inventory holding cost is different from all warehouses and similarly, 

production costs are different at production sites, it is reasonable to expect a discontinuity in the 

total cost. Moreover, from Eq. (59) one can observe that individual components of the total cost 

such as transportation cost, inventory cost, production cost and penalty cost for unmet demand 

depend linearly on the quantity of product. Since, warehouse bids (Eq. (48), Eq. (49), and Eq. (50)) 

and reorder amount are continuous functions of warehouse inventory, whenever total cost is 

continuous, it is safe to assume that it will also be linearly dependent on the warehouse inventory. 

Therefore, if the discrete decisions mentioned above do not change, the objective function is 

continuous and linear. Finally, because of the need to solve optimization subproblems such as the 

one given by Eq. (53) – Eq. (57) multiple times in each simulation run, the simulation is 

computationally expensive. Fig. 3-4 is obtained from a problem containing two warehouses and 
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two products where the inventory of only one warehouse for one product is varied. It is a 

demonstration of the typical behavior of the objective function considered where discontinuities 

can be observed. However, in the continuous parts of the objective function, linear behavior can 

be observed. Because of these two properties, it is usually observed that the optimum lies at the 

boundary of the feasible region or at the boundary of the continuous region near the 

discontinuity. The framework proposed in section 3 is developed to address these important 

problem characteristics. 

 

 

(a) 

 

 

(b) 

Fig. 3-3 Auction mechanism decision change demonstration (a) increasing seller inventory (b) 
decreasing seller inventory 
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Fig. 3-4 Dependence of total cost on warehouse inventory 

3.3 Optimization framework and algorithmic details 

The framework presented in this section consists of three phases. The first phase involves a global 

search where promising regions for local optimization are identified. The second phase consists 

of discontinuity identification. In this phase, information about discontinuities is obtained. The 

third phase consists of a local search where discontinuity information from the second phase is 

utilized to guide the search toward a local optimum. These phases are iteratively carried out as 

shown in Fig. 3-5 until a budget of maximum function evaluations is reached or maximizing 

prediction variance fails to obtain an unsampled point. In this section, each phase in the 

framework is presented in detail followed by methodological details that include Kriging surrogate 

model, sparse grids, and support vector machines. 
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Fig. 3-5: Iterative optimization framework flowchart 

Phase 1 (global search): Global search relies on a Kriging surrogate model built using a set 𝑆 of 

points that is initialized using Latin Hypercube Design (LHD) with maximizing minimum distance 

criterion in the initial sampling phase [142] and iteratively updated. A squared exponential 

correlation model with a constant regression term is used for building the model. Details 

regarding the Kriging model are provided in section 2.1.4. Since the problem is nonconvex in 

nature, the resulting Kriging model is nonconvex as well. Local optima of the Kriging model decide 

promising regions for further exploration. To obtain more than one local optima, a multistart local 

search is used. In this work, MATLAB function ‘fmincon’ is used with ‘Sequential Quadratic 

Programming’ (SQP) solver option. After identifying local optima, the following phases are carried 

out on a box centered at each of the optima and having a size smaller than the feasible region of 
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the whole problem. After completion of phase 2 and phase 3 in an iteration, an exploratory 

sample is collected by maximizing the Kriging prediction variance. This helps the framework in 

identifying new local optima that are discovered as the framework progresses and more samples 

are collected. With improving the Kriging model in every iteration, the local minima that were 

initially missed because of initial guesses in the optimization subproblem can be found in the 

subsequent iterations making sure that the solution quality is not affected. It is important to note 

that as opposed to traditional expected improvement maximization, not all points are used for 

building the Kriging model. As described in section 2.1.4, Kriging predictor depends on the 

correlation matrix 𝑅 and elements of 𝑅 depend on the correlation models described in Table 2-3. 

Since all the correlation models are distance based, two samples close to each other are highly 

correlated. In the presence of discontinuities, this correlation can be misleading. As a result, 

quality of the Kriging model after the optimization of hyperparameters may not be reliable. To 

avoid this issue, the set 𝑆 of points used to build the model is maintained separately. Only the 

points that are farther away by a certain distance from all the existing points in  𝑆 are included to 

the set 𝑆. Moreover, the set 𝑆 is updated at two steps in the algorithm. First, the local optima of 

the Kriging model and second, exploratory samples. 

Algorithm 1: global search 

Initialize parameters: m, 𝛿, 𝜖, 𝑆 

Build a Kriging surrogate model using the available data in set 𝑆. 

Create a set D using LHD of size m in the search space. 

Conduct a local search on Kriging surrogate model starting from points in the set D. 

Obtain set P of the local optima. 

Filter set P to contain points away from each other at least by the distance of 𝜖. 
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Create a set B of boxes with bounds [ 𝐩 − 𝜹, 𝒑 + 𝜹] for all points p in the set P where 𝒑, 𝜹 ∈ 𝑅𝑑 

If any box is partly outside the search space, adjust the bounds of the box to make it feasible 

Use Algorithm 2 to conduct a local search 

Maximize prediction variance of the Kriging model to obtain an exploratory sample 

 

 Phase 2 (discontinuity identification): In the second phase, discontinuity identification is carried 

out in each local region starting from a region that has the lowest prediction in Phase 1. For 

discontinuity identification, an adaptive sparse grid (section 3.3.1) of the user-specified level is 

generated. For all the samples and their neighbors, discontinuity detection is carried out to assess 

the possible presence of a discontinuity. This is done in a heuristic way as follows. A simplex of 

points is sampled in a small neighborhood at two different locations in the feasible space. Slopes 

between the points in the simplex are calculated. It is assumed that the maximum value from the 

calculated slopes provides a reliable estimate of the slope in continuous regions and hence, it is 

used as a threshold. Given two points, if the absolute value of the slope of the line joining those 

points exceeds the threshold, a discontinuity is considered to exist. If a discontinuity is present, 

the space is further divided by creating another sparse grid in a hyper-rectangle centered at the 

midpoint of two samples that need refinement. This procedure is repeated until no pair of 

neighboring points exists that has points separated by a distance greater than a predefined 

tolerance and have a discontinuity between them. Available samples are then labeled based on 

the continuous region they belong to. For labeling, each sample and its neighboring samples are 

assessed for discontinuity. Neighboring samples with no discontinuity between them are labeled 

the same whereas samples with a discontinuity between them are labeled differently. If there is 

no pair of neighboring points with a possible discontinuity, a line search based local search is 

triggered according to Algorithm 3. Support vector machines (SVM) is trained using the labels for 
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available data (section 2.2.1). This classifier is used to represent the boundaries of a continuous 

region. Details of Phase 2 are described in Algorithm 2. 

Algorithm 2: Discontinuity identification 

Initialize parameters: box B, 𝜖𝑡𝑜𝑙 

Create a sparse grid of level 2 inside box B. 

Evaluate the objective function at the grid points. 

Identify the set N of pairs of neighboring points. 

Initialize 𝜖 to be the minimum distance between all the pairs in N. 

while 𝜖 > 𝜖𝑡𝑜𝑙 and 𝑁 ≠ 𝜙 

    For each pair p in set N containing points 𝑝1 and 𝑝2, conduct discontinuity identification test. 

    If discontinuity is not present, remove p from N. 

    If discontinuity is present 

         Let 𝑑𝑟𝑒𝑓𝑖𝑛𝑒 be the dimension along which the points are neighbors. 

         Let 𝑧 be the midpoint of two points in p. 

         Create a hyper-rectangle H centered at 𝑧. 

         Let 𝛿𝑑1, 𝛿𝑑2 as the maximum distance to neighbor along dimension d from 𝑝1 and 𝑝2 

respectively. 

         Define 𝛿𝑑 = max(𝛿𝑑1, 𝛿𝑑2) 

         For 𝑑 ≠ 𝑑refine the bounds for H are set to be [𝑧𝑑 − 𝛿𝑑, 𝑧𝑑 + 𝛿𝑑]. 

         Create a sparse grid of level 2 in H. 

         Evaluate the objective function at the grid points. 

         Remove pair p from the set N. 

         Identify the neighboring points in H and add to the set N. 
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    End 

End 

Label all points such that any given pair of neighboring points should have same labels if 

discontinuity is not present. It should have different labels, if discontinuity is present. 

Let the best sampled point belong to label a. Label all points that do not have label a to label b. 

Train SVM using obtained labels.      

  

 

A demonstration of the steps mentioned in Algorithm 2 is provided in Fig. 3-6 and Fig. 3-7. The 

problem considered in this demonstration is taken from Jakeman et al. [132] and given by Eq. 

(60). 

 

𝑓(𝑥) = {
0, ∑𝑥𝑖

2 < 𝑟2
2

𝑖=1

1, otherwise

   (60) 

 

 (a) 

 

(b) 

 

(c) 

 Fig. 3-6: Demonstration of sparse grid adaptive sampling (a) shows initial grid (b) shows 
refinement between a pair of points (c) shows all samples at the end of the adaptive sampling 
step 
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 (a) 

 

(b) 

Fig. 3-7: Sample (a) labeling and (b)prediction using classifier in phase 2 of the framework 

Threshold slope of 0 is assumed to be known a priori. Each sample is displayed in the Fig. 3-6 with 

a cross. The algorithm starts with sampling a level 2 grid in the local region. Two points are called 

neighbors if they differ only in one dimension and have no point sampled between them. All such 

pairs of neighboring points are collected. The slope is evaluated, and it is checked if the slope is 

higher than the known threshold of zero.  Each pair is refined by creating another sparse grid of 

level 2 and evaluating the function at grid points. Refinement of one of the pairs (0,0) and (0, -1) 

is shown in the second figure. Neighboring points along the dimension 𝑥1 of the point (0, 0) are (-

1, 0) and (1, 0) which sets the hyper-rectangle width to 1. Similarly, Neighboring points along the 

dimension 𝑥2 are (0, 1) which sets the hyper-rectangle length to 1. This refinement is iteratively 

carried out until no such pair of neighboring points exists that has discontinuity between the 

points in it or the distance between two points in the pair is larger than a predefined tolerance. 

The final set of sampled points are shown in Fig. 3-6 (c). As one can see, the framework samples 

more points near the boundary of discontinuity. Following this step, labeling is carried out by 

checking all pairs of neighboring points. If the points have a discontinuity between them, they are 

given separate labels. Whereas, when no discontinuity is detected, they are labelled the same. 

Since there are two continuous regions in the problem, two separate labels are obtained which 

are shown in Fig. 3-7 (a). Finally, SVM model is trained using these samples and used for future 

prediction. SVM predictions for this problem are shown in Fig. 3-7(b). 
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Phase 3 (local search): In the third phase, starting from the sample having the lowest objective 

function value, a line search is employed. To determine the direction of descent for line search, a 

simplex gradient is used that generates (d + 1) samples in a d dimensional space and determines 

the descent direction. Support vectors classifier developed in phase 2 is used to make sure that 

the line search stays in the same continuous region. Finally, the best objective function value 

among all available samples is reported. These steps are schematically shown in Algorithm 3. Line 

search stops when either small step sizes are reached, or a maximum number of failed evaluations 

is reached or if the search is stuck at the boundary of the continuous region. 

Algorithm 3: local search 

Initialize parameters: 𝛿,ℎ0,ℎ𝑡𝑜𝑙   

Starting from the best available sample 𝑥0, create a simplex within distance 𝛿 from 𝑥0  

Evaluate the objective function at the simplex 

Evaluate simplex gradient ∇. 

Initialize a step size ℎ = ℎ0. 

While ℎ < ℎ𝑡𝑜𝑙 

      𝑥1 = 𝑥0 − ∇. ℎ 

      if SVM(𝑥1)  ≠ SVM(𝑥0) 

          reduce ℎ. 

      else 

           evaluate the objective function 𝑓 at 𝑥1. 

           If 𝑓(𝑥1) < 𝑓(𝑥0) 

               Increase ℎ. 

                𝑥0 = 𝑥1 
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           Else 

                Reduce ℎ. 

            End 

       End 

 End     

 

Details regarding specific details of the proposed approach including the kriging model, sparse 

grid, and support vectors classification are provided in Sections 2.1.4, 3.3.1, and 2.2.1, 

respectively.  

3.3.1 Sparse grids 

Sparse grids is a discretization method often used in the literature as part of solving differential 

and integral equations [143] due to their ability to scale well with a number of dimensions and 

reduce the curse of dimensionality. For interpolation purposes, sparse grids have been shown to 

provide a good approximation. Detailed analysis of error bounds using interpolation models built 

from sparse grids has been studied in the literature [144]. With their ability to form a grid 

structure without exponentially increasing the sampling requirement, it has been applied in 

multiple other application areas. Recently, sparse grids were used for black-box optimization 

[145]. Since the objective function is computationally expensive in the black-box optimization, full 

grids where the sampling requirement grows exponentially with the dimensionality of the 

problem are impractical. This makes the use of sparse grids more attractive. The typical sampling 

requirements for forming sparse grids for a given dimension of input space and for a given level 

of user-specified discretization level are shown in Table 3-1.  
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Table 3-1 Number of samples with respect to the dimensionality of the problem and level of 
discretization 

No. of 

variables 

Level 1 Level 2 Level 3 Level 4 Level 5 

2 1 5 17 49 129 

4 1 9 49 209 769 

6 1 13 97 545 2561 

8 1 17 161 1121 6401 

 

In this work, sparse grid sampling is used for identification of discontinuities and for adaptive 

sampling to better approximate discontinuities in the feasible space. Several types of sparse grids 

exist in the literature. However, since achieving a good interpolation is not the goal of this work, 

equidistant or trapezoidal sparse grids are used. The samples collected by adaptively sampling 

inside the local region, are used for training support vector machines.  

3.4 Results 

In this section, the proposed algorithm is applied to various supply chain optimization problems. 

The aim is to demonstrate that cost-effective solutions can be achieved with the proposed 

approach. A comparative study with the existing derivative-free optimization algorithms is 

provided for the optimal warehouse inventory allocation for three supply chain networks. The 

application is further extended to find the optimal inventory allocation for the combined 

warehouse and production site inventory. 

For the first comparison, a supply chain network with two warehouses, two products, two 

markets, and three warehouses is considered as shown in Fig. 3-8. It is assumed that the inventory 

at production sites has been decided a priori and inventory allocated for both products at the 
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warehouses is the same. For three different sets of values of parameters such as transport cost, 

inventory cost, and the penalty for unmet demand, three scenarios are generated, and the results 

are compared. Three other derivative-free optimization solvers are chosen for the comparison. 

The solvers and their underlying algorithms are presented in Table 3-2.  

Table 3-2 Description of solvers used for comparison against the proposed framework 

Solver name Algorithm  Reference 

NOMAD Nonlinear mesh-adaptive search (direct 

pattern search or model-based) 

[146]  [147], ‘opti-toolbox’ [148] 

ISRES Stochastic ranking evolution strategy [149], ‘nlopt’ [150] 

EGO Efficient global optimization ‘surrogates toolbox’ [151] [93] 

 

The algorithms depicted in Table 5 were selected to represent a variety of different approaches 

that can be used for simulation-based optimization. Existing derivative-free optimization 

algorithms can be classified as deterministic algorithms which include model-based and direct 

algorithms and stochastic algorithms. Choice of the solvers under comparison was based on 

choosing one solver from each category. Out of the solvers presented in Table 3-2, EGO is a model-

based algorithm that makes use of a global Kriging model, NOMAD is a direct search algorithm, 

and ISRES is an evolutionary algorithm. Solvers that need a starting point were initiated starting 

from the center of the box-bounded feasible region. A Latin Hypercube design was provided for 

EGO algorithm. 
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Fig. 3-8 Supply chain considered for comparison 

A limit of 1500 function evaluations was given to all the solvers. In case of early termination by a 

solver, the best value found until the termination is reported. Bounds of 400 units and 600 units 

are imposed on the warehouse capacities. For the proposed framework, the median value is 

reported starting from 5 different initial sampling designs. Table 3-3 displays the optimal total 

cost value reported by solvers under comparison for all scenarios in 500 function evaluations. 

Respective values for 1000 and 1500 evaluations are shown in Table 3-4 and Table 3-5.  The results 

demonstrate that the proposed algorithm provides the best objective function value for all three 

scenarios and under varied computational budget. 

Table 3-3 Comparison of the objective function value provided by DFO solvers for different 
scenarios in 500 evaluations 

Solver Total Cost (million $) 
scenario A scenario B scenario C 

NOMAD 
4.8233 4.7222 4.8336 

ISRES 
4.8826 4.6250 4.8617 

EGO 
4.8261 4.6014 4.8698 

Proposed 
framework 

4.7892 4.5821 4.7988 

 

Table 3-4: Comparison of the objective function value provided by DFO solvers for different 
scenarios in 1000 evaluations 

Solver Total Cost (million $) 
scenario A scenario B scenario C 
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NOMAD 
4.8233 4.7222 4.8336 

ISRES 
4.8826 4.6024 4.8583 

EGO 
4.8261 4.6014 4.8575 

Proposed 
framework 

4.7802 4.5821 4.7988 

 

Table 3-5: Comparison of the objective function value provided by DFO solvers for different 
scenarios in 1500 evaluations 

Solver Total Cost (million $) 
scenario A scenario B scenario C 

NOMAD 
4.8233 4.7222 4.8336 

ISRES 
4.8375 4.6024 4.8407 

EGO 
4.8105 4.6014 4.8575 

Proposed 
framework 

4.7802 4.5821 4.7913 

In addition to the objective function value, it is also essential to assess the suggested solution to 

make sure that the superiority in the objective function value is not because of local refinement. 

To ensure that, suggested warehouse inventories by the proposed framework as well as ISRES, 

EGO, and NOMAD are reported in Fig. 3-9, Fig. 3-10, and Fig. 3-11. For all scenarios A, B, and C as 

shown in Fig. 3-9, Fig. 3-10, and Fig. 3-11 the solution suggested by the proposed framework is 

different from that suggested by the other algorithms. For scenario B as shown in Fig. 3-10, the 

solution is different for 500 evaluations. For higher computational budget, EGO is finding a 

solution close to the one suggested by the proposed framework. However, from Table 3-4 and 

Table 3-5, it can be concluded that the better solution is because of the better refinement 

achieved by the proposed framework. For scenario C as shown in Fig. 3-11, For 500 evaluations, 

the solution is different for all algorithms for 500 evaluations. Given a budget of 1000 evaluations, 

ISRES converges to the same solution as EGO. The solution is different from that of the proposed 
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framework but very close. Here, the difference could be attributed to the local refinement 

achieved by the proposed framework based on the lower objective function value obtained as 

shown in Table 3-5. Finally, the proposed framework suggests a better optimal objective function 

value for all the cases under consideration. This highlights the success achieved by the 

discontinuity identification step in the local search. The computations are carried out on a PC with 

Intel® Xeon® CPU E5-1620 v2 @ 3.70GHz and 16.0 GB RAM, running a Windows 7 Professional, 

64-bit operating system. The computational time for one simulation run for the network shown 

in Fig. 3-8 is 26.71 seconds. The computational time for a bigger network consisting of 10 

warehouses, 10 retailers, 7 production sites, and 10 products is found to be 282.76 seconds. These 

computational times are significantly large for an optimization problem. Since the simulation run 

is the most computationally expensive part of the algorithm, the number of simulation runs is 

usually considered to be a direct indicator of computational expense. 

 

(a) 

  

(b) 

 

(c) 

Fig. 3-9: Solution reported by the algorithms under comparison for scenario A (a) 500 evaluations 
(b) 1000 evaluations (c) 1500 evaluations 
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(a) 

 

(b) 

 

(c) 

Fig. 3-10: Solution reported by the algorithms under comparison for scenario B (a) 500 evaluations 
(b) 1000 evaluations (c) 1500 evaluations 

 

(a) 

 

(b) 

 

(c) 

Fig. 3-11:Solution reported by the algorithms under comparison for scenario C (a) 500 evaluations 
(b) 1000 evaluations (c) 1500 evaluations 

An example of improvement in the objective function values achieved with the number of 

simulation runs using the proposed framework is shown in Fig. 3-12. The simulation finds the best 

objective function value and continues exploring the unexplored regions until the computational 

budget of 1500 simulation runs is exhausted which explains the plateau after a certain number of 

simulation runs. For the same example, number of discontinuities were studied. The algorithm 

carried out phase 2 and phase 3 27 number of times and the combined number of continuous 

regions in the local search regions explored is 109 which is also the same as the number of 

discontinuities. 
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Fig. 3-12: Best objective function vs number of simulation calls for Scenario B 

In the next comparison, the same network is considered. However, more decisions are made with 

varying production site capacities in addition to warehouses and allowing each warehouse and 

production site to hold a different amount of inventory for each product. The lower and upper 

bound on the production site capacities is 180 units and 220 units, respectively. Since the problem 

has two production sites, three warehouses, and two products, it results in a ten-dimensional 

problem. The problem is solved for scenario A. The optimal total cost reported is $4,743,655 with 

a computational budget of 1500 evaluations. Suggested warehouse and production site 

inventories are reported in Table 3-6. Comparing it with the previously obtained total cost for 

scenario A, including more decision variables leads to a more cost-efficient supply chain network. 

Table 3-6 Optimal solution returned by the proposed framework 

Unit Production 
site 1 

Production 
site 2 

Production 
site 3 

Warehouse 
1 

Warehouse 
2 

Product 1 210 204 187 573 503 
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Product 2 212  204 210 425 501 

3.5 Summary 

In this work, a multi-enterprise supply chain inventory optimization problem is considered. An 

agent-based simulation is used to model complex cooperative and competitive interactions 

between different enterprises. An auction mechanism is presented through which different 

enterprises interact with each other. It is observed that the problem of minimizing total cost with 

respect to inventory, has a discontinuous objective function. Since many existing approaches 

assume continuity of the response, a novel derivative-free optimization framework is proposed 

that can address discontinuous objective function by identifying and modeling discontinuities. The 

framework broadly consists of three phases that are global search, discontinuity identification, 

and local search. To save computational cost and to be able to handle problems of larger size, the 

framework makes use of adaptive sparse grid refinement. For discontinuity identification and 

local search, the framework makes use of certain problem characteristics such as linearity of the 

objective function in continuous regions to save computational cost. A comparison with three 

other existing derivative-free optimization solvers is made for supply chain networks. Results 

show that the proposed framework outperforms other existing algorithms in terms of the 

objective value and offers a solution that may be different from and superior to that obtained 

from other solvers. Finally, the framework is successfully applied to a higher dimensional problem 

where production site inventory is considered in as a decision variable in addition to warehouse 

inventory. The performance of the proposed framework is demonstrated on the resulting ten-

dimensional problem. This work highlights the need to assess possible discontinuities prior to 

choosing a derivative-free method. Even though in this work discontinuities are identified for the 

purposes of optimization, the approach used in this work for approximating continuous regions 

with a classifier is more general. It is trivial to generalize this for use in modeling a discontinuous 
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response in other applications. Finally, a more general discontinuity identification technique 

based on the data and with theoretical guarantees will be a valuable contribution to the literature 

on derivative-free optimization.
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4 Modular design optimization 

Abstract 
Recent studies on modular and distributed manufacturing have introduced a new angle to the 

traditional economies of scale that claim that large plants exhibit better efficiencies and lower 

costs. A modular design has several advantages, including higher flexibility of decisions, lower 

investment costs, shorter time-to-market, and adaptability to market conditions. While design 

flexibility is a widely studied concept in the process design, modular design provides an interesting 

new opportunity to the design optimization problem under demand variability. In this work, a 

framework for modular design under demand variability is proposed. The framework consists of 

two steps. First, the feasible region for each module is represented analytically with the help of 

the historical data or the data from a simulation using a classification technique. In the second 

step, the optimal design choice is obtained by integrating the classifier models built in the first 

step as constraints in the design optimization problem. The design optimization problem is first 

solved considering a single objective, i.e., minimizing the total cost or maximizing the flexibility. 

These two objectives are then addressed simultaneously using a multiobjective optimization 

framework that considers the tradeoff between maximizing the flexibility of design and 

minimizing the cost. Computational studies conducted using a case study of an air separation 

plant, demonstrate the efficacy of the proposed framework. Several advantages of using a 

modular design, as well as data-driven methods in the decision-making process in the design step, 

are discussed.    

4.1 Introduction 

For years, the design of chemical process facilities has followed a traditional cost reduction 

paradigm relying on the economy of scale [8]. The 2/3 power law implies that as chemical plants 

grow bigger (scale-up), the capital cost increases following a 2/3 power low. However, large plants 
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may exhibit better efficiencies and lower costs due to more efficient process integration. Recent 

studies on modular and distributed manufacturing have introduced a new angle to the economy 

of scale [11]. While large plants have better efficiency, due to their centralized nature, all raw 

materials have to be transported to the plant and similarly, all products have to be distributed 

from the plant. In the usual case where the source of raw materials, as well as the demand, is not 

geographically close to the large plant, there are significant transportation costs involved. With 

smaller scale modular plants, one can effectively distribute manufacturing which leads to reduced 

transportation costs. While large plants demand a large investment at the beginning, small plants 

require a relatively smaller investment and this significantly reduces the risk for the investors 

[152]. Finally, construction times for large plants are longer than those for a small plant and 

therefore, time-to-market is less for a small plant, again, reducing the risk.  

Modular design involves the use of small and standardized modules of fixed size in a production 

process. Multiple identical devices may be assembled to achieve the desired production. Modular 

and distributed processes may not only contribute to decreases in distribution costs but also 

provide an alternative to overcome several manufacturing challenges. Small devices offer 

inherent safety and can be used for on-demand and on-site production of hazardous materials 

[9]. They provide a fast path to commercialization since challenges related to the scaling up of 

chemical processes are not substantial. Moreover, the time for construction of manufacturing 

facilities may be reduced, since modules can be preassembled in a shop and are not subject to 

delays related to weather and on-site inspections. Because of standardized units, the process of 

numbering up as a part of plant expansion becomes faster. Economically, as the standardized 

units or small modular plants are numbered up, vendors, as well as process engineers, gain 

experience. As a result of the learning curve, the vendors may be able to sell the equipment for a 

cheaper price and process engineers can reduce the time-to-market. All these factors contribute 
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to a relatively lower risk of investment related to small modular designs. Recent work on modular 

design quantitatively demonstrates some of these advantages. Arora et al. [17] study the 

economy of numbers and equipment standardization for capital cost reduction. Yang and You 

[153] compare modular methanol manufacturing with and without module relocation, and large-

scale methanol manufacturing based on the economic as well as the environmental impact.  

Sánchez and Martín [154] assess the modularization of ammonia plants as the production capacity 

is varied. Modular processes can also provide additional flexibility to production processes when 

compared to large-scale plants. With small and flexible modules, business units can carry out 

production plans and introduce new products independent of each other. The flexibility of 

modular plants has been investigated by Lier et al. [152], who demonstrated how to adapt 

capacity by starting up or shutting down the operation of certain modules according to different 

market developments. While large plants require high-investment decisions, modular plants 

provide managers with alternatives that are lower in investment costs and can adapt according 

to better forecasts. While a centralized plant can make use of customized designs, modular plants 

rely on available standardized modules. Therefore, the key-question in modular design then 

becomes to define a process based on a limited number of different modules [155]. In the context 

of this work, modular designs refer to the design and construction of smaller chemical process 

units or even entire processes of fixed production capacities [14]. It is important to note that this 

definition includes the possibility of process intensification [15], transportable processing units 

[16], standardization of equipment modules [17], and even integrated or customized unit 

operations [8]. Finally, the modularization of a process depends on the process knowledge and 

expertise of the engineer. 

In addition to flexibility with respect to management decisions and market conditions, it is also 

important to have flexibility with respect to uncertainties. During conceptual design, there are 
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often process parameters that are not well known, such as kinetic rate constants, demand, or 

product and feedstock prices. Understanding the operability characteristics of a process is 

therefore crucial at the design stage. It is addressed in the literature under the name of feasibility 

analysis, flexibility analysis, and operability analysis [156][157]. Analyzing the flexibility of a design 

is a fundamental concept in process design and it refers to quantifying the ability of a process to 

maintain feasible operation under variability due to uncertain parameters [13]. Ensuring flexible 

designs allows one to systematically hedge against exceptional realizations of process parameters 

[11]. The work on flexibility analysis started over three decades ago and it is still an active area of 

research [12][13]. This work can be broadly classified in static flexibility analysis and resiliency 

which deals with dynamic flexibility analysis. Some of the theoretical advances in flexibility 

analysis started with proposing a quantitative measure of flexibility known as the flexibility index 

[102]. Initial formulations for obtaining the flexibility index involved solving the problem as a 

multilevel optimization problem. Later research focused on reducing the computational 

complexity of this problem with the help of methods such as vertex enumeration [158], active 

constraint strategy [159], parametric programming [160], and as a global optimization problem 

[161] for nonconvex cases. More recently, Zhao et al. [13] presented a method of space projection 

for quantification of flexibility. Goyal and Ierapetritou [162] propose a simplicial approximation 

approach for obtaining operating envelopes within which a design is feasible. Pulsipher and Zavala 

[163] propose a mixed integer conic formulation for computing the flexibility index when the 

uncertainty is characterized using multivariate Gaussian random variables. Ochoa and Grossmann 

distinguish uncertain parameters as measured and unmeasured uncertain parameters. They 

propose MINLP reformulations for the resulting multilevel optimization problems [164]. Instead 

of representing the uncertainty by a hyperrectangle, there are approaches for obtaining flexibility 

by considering probability distribution functions. Relevant work in this area proposes the 
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stochastic flexibility index [165] or expected stochastic flexibility [166]. Flexibility analysis also has 

a wide range of applications ranging from product design [167], process design and synthesis 

[168][169]  to supply chain design [170]. For the dynamic systems, Dimitriadis and Pistikopoulos 

[171] propose a dynamic flexibility index. They extended the flexibility analysis to consider time-

varying uncertain parameters and, thus, the feasible region. Moreover, since the dynamic 

behavior of a system is greatly influenced by the installed control system, resilient designs are 

proposed to simultaneously consider operational aspects as well as the steady state or economic 

aspects [172]. Palazaoglu and Arkun [173] address this problem by formulating it as a 

multiobjective optimization problem. Luyben and Floudas [174] translate this problem as an 

MINLP problem where alternatives for the process also vary in the control system, thus also 

addressing controllability. Later approaches for integration of design and control utilized 

computational advances and proposed dynamic optimization frameworks. These frameworks 

broadly consist of an iterative procedure implementing dynamic flexibility and feasibility analysis. 

Sanchez-Sanchez and Ricardez-Sandoval [175] propose an MINLP framework that simultaneously 

considers dynamic flexibility and feasibility in a single optimization formulation. Swartz and 

Kawajiri [176] review the applications of dynamic optimization for analyzing the interaction 

between design and dynamic performance. For a more detailed review on integration of process 

design and control, the readers are referred to relevant texts [177][178][179] [180]. Even though 

integration of design and process control is an interesting problem, the scope of this work is 

restricted to steady-state processes. A review of flexibility analysis and resiliency is provided by 

Grossmann et al. [181]. While flexibility analysis tries to determine the maximum disturbance 

from the nominal point in uncertain parameters that can be handled by a design, a similar but not 

identical concept known as operability aims at finding if the desired output ranges can be achieved 

by the controller in the presence of disturbances within the available input space [157]. 
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Operability is quantified with the help of operability index and dynamic operability index. In the 

dynamic operability index, the assessment is done by solving an optimal control problem to find 

the shortest time for a process to respond to a disturbance and move to a new operating point. 

However, the optimal control problem has a solution only when there is at least one feasible 

solution to the final time constraints at steady state [182]. As a result, the feasibility and flexibility 

methodologies presented in this work also play an important role in considering further 

extensions to the problem of operability index or dynamic operability index. For more details on 

dynamic operability, an interested reader is referred to the relevant review paper [182]. Finally, 

Mohideen et al. [183] propose a way to simultaneously consider flexibility analysis and 

controllability as well as operability [184].  

These research works rely on the closed form expression of the simulation model. A common 

problem arises when the process information is not available in a closed form, but it is available 

in the form of data or a computationally expensive simulation. In such cases, the literature is 

limited to feasibility analysis where the aim is to identify the feasible region where all the relevant 

constraints are satisfied. Feasibility analysis when a closed form expression of the problem is not 

available is referred to as black-box feasibility analysis. These methods rely on building a data-

driven approximation or a surrogate model using the data generated from the complex simulation 

[10]. Banerjee and Ierapetritou [167] use high dimensional model representation (HDMR) 

surrogate model to determine the feasible region. Using a Kriging surrogate model based 

approach, Boukouvala and Ierapetritou [97] approximate the feasibility function, a metric for 

feasibility. Zhang et al. [185] propose a convex region surrogate for representing a nonlinear and 

nonconvex feasible region by a combination of convex regions. They approximate the cost 

function for each region by a linear approximation. Adi et al. [186] use a random line search for 

detecting boundary points of the feasible region. With their ability to utilize process data coupled 
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with recent developments in machine learning software, data-driven methods are continually 

finding new applications for various problems in process systems engineering [187][188].  

The problem of process synthesis and design optimization has been widely studied in the process 

systems engineering literature. The process synthesis problem refers to synthesizing processing 

systems via simultaneous structural and parameter optimization. In the structural optimization 

part, the aim is to select a configuration or a topology from available alternatives. In the 

parameter optimization part, the aim is to choose equipment sizes and operating conditions 

[189]. Conceptually, this problem leads to an MINLP problem where binary variables refer to the 

potential existence of units, and continuous variables refer to process operating conditions, flows, 

pressures, and equipment sizes [190]. For the structural optimization, process synthesis problem 

may consider different technologies and different connections in the possible set of alternatives. 

In the design optimization, however, the problem usually refers to optimizing a design after the 

technology is chosen. In this work, the optimization problem considered addresses the problem 

of selection between several available designs, and the problem is referred to as a design 

optimization problem. Even though this problem achieves simultaneous optimization of the 

structure and operating conditions, mathematical complexity of the resulting optimization model 

imposes a limitation on its applicability on a large-scale problem. In an attempt to reduce 

computational complexity, data-driven models were used for addressing these problems. Henao 

and Maravelias [191] propose a superstructure optimization framework where instead of a 

detailed process model, a surrogate model is utilized. Wang et al. [192] replace first principle 

models in a refinery hydrogen network with surrogate models and solve the problem of finding 

an optimal hydrogen network. Rafiei and Ricardez-Sandoval [193] highlight the potential of novel 

artificial intelligence (AI) and ML-based techniques such as artificial neural networks (ANN) for 

utilizing big data in the process of decision-making. For the feasibility analysis of a process flow 
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sheet, the current literature relies on building approximations considering the entire flow sheet 

as a single unit [194]. A limitation of this approach is that since the majority of the state-of-the-

art surrogate models handle continuous input and output variables. As a result, when the problem 

involves discrete decisions, one needs to build a separate surrogate model for each combination 

of discrete variables. This is computationally impractical and difficult to utilize in an optimization 

framework. Another common aspect in the above-mentioned approaches is that the analysis is 

done after the process or product design is available and the design decision is not directly 

dependent on the flexibility. In other words, other considerations in the design optimization step 

such as cost minimization or profit maximization are addressed separately from the flexibility 

analysis problem. As correctly highlighted in a recent study [193], there is a growing need to 

address multiple interconnected objectives at the design stage. Modular design provides an 

interesting new opportunity in the design optimization problem under demand variability in this 

context since the feasibility analysis for each module can be conducted beforehand, and a 

simultaneous design optimization and flexibility evaluation can be performed.  

In this work, a framework for modular design under demand variability is presented. It is assumed 

that several module options for different equipment are available, that equipment are arranged 

in a sequential process, and that the sequence of equipment is known and fixed. Then, given a 

certain demand space, the goal is to determine the optimal selection of module options that 

minimize investment costs, maximize flexibility, or both while ensuring that the desired demand 

space can be covered. The framework consists of two basic steps: first, the feasible region of 

different module options is determined using a data-driven approach. Then, the simultaneous 

design optimization and flexibility evaluation problem is formulated as a multiobjective 

optimization problem and solved to optimality. With the help of traditional process synthesis 

literature, the design optimization problem considered in this work can be easily extended to 
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handle the problem of several process alternatives or the cases where the sequence of the 

process modules is not unique. This extension also encompasses the possibility of having a module 

obtained using process intensification. In the comparisons presented in this work, however, the 

scope is not limited to process synthesis. Therefore, for clarity, the applications demonstrated in 

this work do not include factors such as process alternatives and process intensification. 

Moreover, a single series of modular processing equipment is considered since the possibility of 

numbering up of equipment exists to meet the product demand, and this will not affect the 

process feasibility or flexibility. Modular designs that rely on process intensification may pose 

challenges due to the loss of degrees of freedom for control [9]. Some of the key operational 

challenges in this context arise due to coordination between modules and, therefore, cooperative 

control strategies, discrete decisions in numbering up or numbering down of equipment, a sudden 

change in operating conditions requiring coordination between scheduling and control. These 

interesting problems motivate further research in the area of process control for modular designs. 

This work proposes a novel approach for the flexibility analysis problem with the help of classifier 

models and provides an extension to the feasibility analysis approach proposed by Dias and 

Ierapetritou [195]. The multiobjective design optimization framework, as well as the flexibility 

analysis, take advantage of the modular design of the process by analyzing the feasibility of each 

module separately. In doing so, this work proposes a novel way to combine classifiers for the 

feasibility of individual modules such that process constraints such as mass and energy balances 

are implicitly handled. The design optimization framework is generic and can be easily adapted to 

new classification techniques and different definitions of flexibility. The framework can take 

advantage of the large amounts of historical data collected by an enterprise and use it to build 

better models and address the problem of large size.  
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The chapter is organized as follows. In section 4.2, a detailed description of each component of 

the proposed framework is provided. The problem addressed in this work is defined along with 

the specific steps of the proposed framework in Section 4.4. Section 4.5 provides an illustrative 

example of the framework and demonstrates the results on a small problem of a process 

containing a reactor and a separator. Section 4.6 presents a case study of an air separation unit 

(ASU) and resulting optimal design choices using the proposed framework. Finally, the conclusions 

are provided in section 4.7.  

4.2 Background 

In this section, a background is provided on some of the key steps in the proposed framework. 

More specifically, a state-of-the-art literature review is provided on the concepts of feasibility and 

flexibility analysis, machine learning classification-based feasibility analysis and on quality 

assessment of the classifier for feasibility analysis. This review is not meant to be exhaustive but 

intends to highlight some of the key differences between existing methods and the proposed 

framework. In doing so, detailed mathematical formulations for the relevant subproblems are 

provided. 

4.2.1 Feasibility Analysis 

This work deviates from the previous works mentioned in section 2.4 and extends a relatively new 

approach for the feasibility problem recently proposed by Dias and Ierapetritou [195] to the 

problem of design optimization. In this approach, the feasibility problem is treated as a 

classification problem. This way, machine learning algorithms for classification can be used to 

identify the feasible region of a system. Key advantages of this interpretation are the ability to 

handle large amounts of process data both in size (number of data points) and dimensions 

(number of features), and the availability of the sophisticated machine learning software tools. 
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In the design optimization problem considered, feasibility analysis for each module is conducted 

using the historical data that contains information about flow rates, temperatures, product 

demands, and quality requirements as input variables and feasibility labels of the process as the 

output. The classifier built from the historical data aims to accurately represent the region in the 

design space for which the module is feasible. It is important to note that historical data naturally 

contains a larger number of feasible data points and a small number of infeasible data points. This 

problem is known as the problem of imbalanced classes and has been widely studied in the field 

of machine learning  [196][197]. However, since one of the ways to tackle this problem is by having 

more samples from the minority or, in this case, infeasible class, simulation models may be used. 

Moreover, one can increase the number of infeasible data points using process knowledge. The 

feasibility of the entire process is ensured by assessing the feasibility of classifiers for all the 

individual modules. 

4.2.2 Flexibility analysis 

Several approaches for solving the flexibility index problem are available in the literature as shown 

in section 2.5. In this work, vertex solution method [158] is used where it is assumed that critical 

points correspond to vertices of extreme values of the parameter set 𝑇(𝐹). In a general case, the 

problem is solved by first obtaining flexibility index in the direction of each vertex and then 

representing flexibility index as the minimum of all indices. This procedure is shown below: 

Step 1: For each vertex direction 𝑘, solve the problem given by Eq.(61) and obtain 𝐹𝑘. 

 𝐹𝑘 = max𝛿 

s. t. 𝑓𝑗(𝑑, 𝑧, 𝜃
𝑘) ≤ 0 

𝜃𝑘 = θ𝑁 + 𝛿Δ𝜃𝑘 

  (61) 
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Where, Δ𝜃𝑘 represents the expected deviation in the direction of vertex 𝑘  

Step 2: Flexibility index 𝐹 is calculated as the minimum of all 𝛿𝑘. 

 𝐹 = min {𝐹𝑘}   (62) 

However, such an iterative procedure cannot be incorporated into a single optimization problem. 

This problem is addressed by including a separate constraint for each vertex. This way, the 

optimization problem naturally selects the minimum value of 𝐹𝑘 as the flexibility index. The 

constraints for flexibility index are shown by Eq.(63) and Eq. (64) 

  𝑓𝑗(𝑑, 𝑧, 𝜃
𝑘) ≤ 0 ∀𝑘 ∈ 𝑉    (63) 

 𝜃𝑘 = θ𝑁 + 𝛿Δ𝜃𝑘∀𝑘 ∈ 𝑉    (64) 

where, V is the set of all vertices. 

4.2.3 Feasibility analysis using support vector machine 

The output of Eq. (35) is binary where in the context of this work, a value of -1 corresponds to 

infeasible points whereas a value of +1 corresponds to the feasible points. However, since the 

output of Eq. (35) is not smooth and the sign operator may lead to computational difficulties in 

the optimization step, the expression given by Eq. (65) is used instead while modeling SVM models 

as constraints in the optimization problem. The only difference between Eq. (35) and Eq. (65) is 

the absence of sign(. ) operator. Since a value of +1 for 𝑓(𝑥) in Eq. (35) corresponds to a feasible 

point, a positive value of 𝑓̅(𝑥) in Eq.(65) represents a feasible point. Similarly, since a value of -1 

for 𝑓(𝑥) in Eq. (35) corresponds to an infeasible point, a negative value of 𝑓̅(𝑥) in Eq.(65) 

represents an infeasible point. 

 

𝑓̅(𝑥) =∑𝑦𝑖𝛼𝑖𝐾(𝑥, 𝑥𝑖) + 𝛽0

𝑛

𝑖=1

 
  (65) 
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4.3 Process design optimization 

4.3.1 Single objective optimization 

In general, the deterministic process design optimization problem involving the selection of 

process units and their interconnection, as well as the evaluation of the design and operating 

variables, results in a mixed integer nonlinear programming (MINLP) problem [189]. The problem 

is formulated as shown by Eq. (66) 

 min𝐶(𝑦, 𝑥) 

s. t. h(y, x) = 0 

g(y, x) ≤ 0 

y ∈ {0,1}m, x ∈ Rn 

  (66) 

where, 𝑦 are binary variables that represent inclusion or exclusion of units with values 1 and 0 

respectively; 𝑥 are continuous variables which corresponds to process variables such as flow rate, 

composition, and temperature; 𝐶(𝑦, 𝑥) is the objective function; ℎ(𝑦, 𝑥) represent equality 

constraints and 𝑔(𝑦, 𝑥) represent inequality constraints. Usually, for the design optimization 

problem, the objective function considered is the total cost of the process. 

Often, at the design stage, a number of data, external to or within the process, may not be fully 

determined or known with certainty. For example, external conditions such as product demands, 

economic data, and environmental parameters could typically only be forecasted, given by a 

range of possible values or some probability distributional form. Therefore, it is clear that some 

degree of flexibility must be introduced at the design stage to ensure that the plant will be able 

to handle uncertain parameters during operation. There are several approaches to address this 

problem based on the description of uncertainty. One of the proposed procedures is the 

deterministic approach, where the description of uncertainty is provided by specific bounds or via 
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a finite number of fixed parameter values. An alternative approach is a stochastic approach where 

uncertainty is described by probability distribution functions. 

Since the uncertainty considered in this work mainly arises from the product demand for which 

the range of demand variability is known, a deterministic approach is used. Uncertain range of 

parameters is bounded by box constraints, i.e., the lower and upper bounds for each demand 

define the demand variability. Stochastic uncertainty can be addressed using stochastic flexibility 

analysis, which requires modified cost objective and data sampling. However, it is worth noting 

that for the cases when the uncertainty is present in the process parameters, considering a 

deterministic uncertainty may lead to a conservative design [198]. This motivates an interesting 

extension of the present work for incorporating stochastic flexibility index, and it will be 

considered in future work.  

4.3.2  Multiobjective optimization 

In addition to achieving an objective such as minimizing the total cost, it is often of interest to 

assess other aspects of the optimal design, such as robustness or flexibility. One way to address 

this tradeoff is to penalize the objective function with the other objectives [199]. However, such 

optimization leads to only one solution, and the solution is dependent on the penalty function. 

Therefore, such an approach does not explore the tradeoff between several objectives 

systematically. To achieve that, a multiobjective optimization problem should be solved. A vast 

amount of literature is available on multiobjective optimization, and a review can be found in  

Marler and Arora [200]. This work uses the 𝜖- constraint method, and the problem formulation is 

represented by Eq. (67) 

 min𝑓1(𝑥) 

s. t. f2(x) ≤ ϵ 
  (67) 
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h(x) = 0 

g(y, x) ≤ 0 

where, 𝑥 ∈ 𝑅𝑝; 𝑦 ∈ {0,1}𝑞 where 𝑝 is the number of continuous variables and 𝑞 is the number of 

binary variables; 𝑓1 and 𝑓2 are the two objectives to be minimized in the problem; ℎ(𝑦, 𝑥) 

represent equality constraints, and 𝑔(𝑦, 𝑥) represent inequality constraints. In this work, the 

objectives considered are the total annualized cost and the flexibility index. Since bigger units are 

feasible over a wider range, they exhibit higher flexibility. On the downside, these units are more 

expensive. Therefore, a multiobjective formulation is used to handle the trade-off between cost 

and flexibility. 

4.4 Problem definition and the proposed framework 

4.4.1 Problem definition 

The motivation for the problem considered in this work stems from the general concept that the 

development of standardized designs considering the customer demand space can lead to 

significant economic savings. The relevance of the work can be appreciated from the fact that 

developing modular designs would be substantially cheaper for a manufacturer than developing 

customized designs, and beneficial for the customer because various design alternatives would 

be available to choose from.  

This work aims to find the optimal design for a modular process where several standardized 

options for the process module are available. It is assumed that several module options for 

different equipment are available, that equipment are arranged in a sequential process, and that 

the sequence of equipment is known and fixed. For each module, the options are different from 

each other based on the definition. As an example, if the reactor module is defined based on the 

reactor volume, the options for the reactor module will include reactors of different volumes. 
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Moreover, based on the variables associated with options, each option has a feasible range of 

operation. If an option is selected, it is important to make sure that the solution is feasible for that 

option. It is assumed that the historical information of the process feasibility data is available in 

the form of process variables and their corresponding feasibility labels. To write it formally, 𝑛 

instances in the space of process variables 𝑥 ∈ 𝑅𝑝 and corresponding labels 𝑦 ∈ {−1,1} (-1 for 

infeasible and 1 for feasible) are available as 𝑋 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛] and 𝑌 = [𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑛] 

where, 𝑝 is the dimension of the problem, and 𝑛 is the number of labeled instances.  

Based on the objective considered, three different problem formulations can be used. First, the 

optimal design is obtained for a given demand for products in order to minimize the total cost of 

the process. In the second case, given the nominal demand and the variability from the nominal 

values, the objective is to find the design that maximizes flexibility with respect to the demand 

variability. In most cases, however, both of these objectives of minimizing cost and maximizing 

flexibility will be of interest. The third problem considers both the objectives and aims to find a 

number of solutions (pareto) that balance those two objectives. Moreover, since quantitative 

information is available regarding the feasibility and flexibility of the chosen optimal designs, it 

will facilitate steady-state and dynamic operability analysis. 

4.4.2 Framework for optimization 

The framework for modular design under demand variability consists of five steps, as shown in 

Figure 4-1. First, the historical process data for feasibility is obtained. The data is split between 

training data 𝑆𝑡𝑟𝑎𝑖𝑛 = [(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑇1, 𝑦𝑇1)] and testing data 𝑆𝑡𝑒𝑠𝑡 =

[(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑇2, 𝑦𝑇2)] where 𝑇1 and 𝑇2 are the number of instances in the training set 

and the testing set, respectively. Using the training dataset, a classifier is built that will attempt 

to act as an accurate representation of the unlabeled data. The performance of the classifier is 
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tested on the testing data, and the predicted labels are compared against the true labels in the 

data. For comparison, four metrics are used. A detailed explanation of the validation metrics is 

provided in section 2.7.2. The process is repeated for evaluating the feasible regions for each 

module option is evaluated. Finally, algebraic expression for the classifier is obtained, and the 

equation is incorporated in the process design optimization problem. A typical way to add the 

classifier as a constraint is shown below 

 CFom(x) ≥ −M(1 − yom)    (68) 

where 𝐶𝐹𝑜𝑚 is the classifier for option 𝑜 of module 𝑚; 𝑦𝑜𝑚 is a binary variable for the selection of 

option 𝑜 for module 𝑚; 𝑀 is a positive constant for the big-M type of constraint. Since the positive 

value of the classifier indicates feasibility, the constraint makes sure that if 𝑦𝑜𝑚 is 1, 𝐶𝐹𝑜𝑚(𝑥) ≥

0. 

The feasibility analysis approach used here is proposed by Dias and Ierapetritou [114] for the 

integration of planning and scheduling problems. Such an approach helps in obtaining an algebraic 

equation of the feasible production region without the use of detailed dynamic models. The 

combination of modules and respective feasible regions generates the overall feasible production 

space of a set of module options. It should be noted that the purpose of this work is not to provide 

a comparative study between several classifiers from the machine learning literature but to 

provide a framework for optimization. As SVM has shown a good predictive ability from the 

analysis of Dias and Ierapetritou [114], SVM is the classifier used in the rest of this work. For the 

flexibility analysis, this work limits itself to vertex enumeration strategies. However, as the 

number of uncertain parameters increases, a more computationally efficient active-constraint 

strategy can be utilized. 
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Figure 4-1: Summary of the proposed framework for design optimization 

4.5 Illustrative Example 

To better illustrate the idea, an example of a process consisting of a continuously stirred tank 

reactor in series with an ideal separator is chosen. It is assumed that the feasibility of the ideal 

separator depends only on the inlet flow rate range.  The aim is to convert raw material A into 

two finished products B and E as shown in Figure 4-2. An isothermal liquid-phase reaction is 

considered following the kinetic mechanism as described in the previous studies of Rooney and 

Biegler [198] and Goyal and Ierapetritou [169]. The model equations for the process are shown 

by Eq. (69). 

 𝐹𝐴0 − 𝑥𝐴𝐹(1 − 𝛼) − 𝑉𝐶𝐴0(𝑘1 + 𝑘2)𝑥𝐴 = 0 

−𝐹𝑥𝐵(1 − 𝛼) + 𝑉𝐶𝐴0𝑘1𝑥𝐴 = 0 

−𝐹𝑥𝐶 + 𝑉𝐶𝐴0(𝑘2𝑥𝐴 − (𝑘3 + 𝑘4)𝑥𝐶 + 𝑘5𝑥𝐸) = 0 

−𝐹𝑥𝐷(1 − 𝛽) + 𝑉𝐶𝐴0𝑘3𝑥𝐶 = 0 

−𝐹𝑥𝐸(1 − 𝛽) + 𝑉𝐶𝐴0(𝑘4𝑥𝐶 − 𝑘5𝑥𝐷) = 0 

𝑥𝐴 + 𝑥𝐵 + 𝑥𝐶 + 𝑥𝐷 + 𝑥𝐸 − 1 = 0 

  (69) 
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where, 𝑥𝐴, 𝑥𝐵, 𝑥𝐶, 𝑥𝐷, and 𝑥𝐸 represent the mole fraction of components A, B, C, D, and E, 

respectively; 𝑘𝑖 are the rate constants; 𝑉 is the volume of the reactor; 𝐶𝐴0 is the inlet 

concentration of A; 𝛼 is the recycle fraction of stream A and B; 𝛽 is the recycle fraction of D and 

E; 𝐹 is the molar flow rate at the outlet of the reactor; 𝐹𝐴0 is the molar flow rate at the inlet of the 

reactor. The nominal values of the kinetic constants are 𝑘1 = 0.0374, 𝑘2  =  0.0195, 𝑘3 =

 0.0165, 𝑘4 =  0.2701, and 𝑘5  =  0.0261.  

 

 

(a) 

 

 

(b) 

Figure 4-2: Reactor separator illustrative example (a) process flow diagram (b) reaction 
mechanism 

The overall annualized cost of the process consists of the capital cost of the reactor as well as the 

capital cost of the separator. It is assumed that four reactor design options are available based on 

their volume. Different separator design options are based on the inlet flow rate. The available 

options and the respective costs for the reactor and the separator are shown in Table 4-1. 

Table 4-1: Design options for reactor and separator 

Options Reactor (m3) 𝑪𝒓 (k$) Separator 

(𝑭𝑨𝟎mol/h) 

𝑪𝒔 (k$) 

Option 1 20 400 40-60 100 

Option 2 25 550 50-70 150 

Option 3 30 700 60-80 200 
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Option 4 35 850 80-100 250 

Three scenarios for the nominal demand are considered in this work as shown in Table 4-2. The 

deviations from the nominal demand are 30 mol/h for the product B and 13 mol/h for the product 

E.  

Table 4-2: Three scenarios based on the nominal demands for the products B and E 

Scenario Nominal Demand B  

(mol/h) 

Nominal Demand E  

(mol/h) 

Scenario A 50 35 

Scenario B 55 30 

Scenario C 45 35 

There are three problems considered in this work. In the first problem, the aim is to identify a 

reactor design and a separator design that can satisfy the known product demand and minimizes 

the annualized total cost. The second problem differs from the first problem in the objective which 

is to maximize the flexibility index for the second problem. Finally, both objectives are 

simultaneously considered in the third problem. A design is considered feasible if certain nominal 

product demand is satisfied by the design. The flexibility of a design quantifies the deviations in 

the product demand from the nominal demand for which the chosen design is feasible. The design 

optimization problem intends to find a set of optimal module designs based on the respective 

objectives of the three problems. Since the first four steps of the framework presented in Figure 

4-1 are the same for all three problems, the steps of the framework are explained next. 
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Step 1: The first step is to collect the historic feasibility data or data from process simulation. In 

this example, the data is obtained by running the simulation of the reactor, as shown in Eq. (69). 

The simulation is developed in GAMS 28.2.0 and solved as a nonlinear program using Baron global 

optimization solver version 19.7.13. Inputs for the simulation includes four variables that are 

reactor volume, 𝐹𝐴0, 𝐹𝐵, and 𝐹𝐸. The output includes labels (-1 for infeasible and 1 for feasible) 

that indicate if the set of inputs leads to a feasible process. For each option of the reactor a grid-

based sampling approach is used and 1000 data points (10 samples in each 𝐹𝐴0, 𝐹𝐵, 𝐹𝐸) are 

generated, and the output labels are collected.  

Step 2: In this step, we train a classifier for each option using the data generated in step 1. In this 

work, SVM is the chosen classifier and SVM models are trained for the reactor as described in 

section 4.2.3. Scikit-learn python toolbox is used with default options for training the SVM models. 

Please note that since the separator is ideal and its feasibility depends only on the flow rate, there 

is no need to build a classifier for the separator. 

Step 3: In this step, the model quality is assessed using the test dataset.  

Table 4-3: SVM model validation for the reactor using RBF kernel 

Option  CF% CIF% NC% Total Error 

Option 1 100 98.27 0.7 0.5 

Option 2 100 93.94 1.18 1 

Option 3 99.45 94.44 0.55 1 

Option 4 98.89 95 0.56 1.5 

Table 4-4: Confusion matrix for the reactor using RBF kernel 

Option  tn fp fn tp 
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Option 1 57 1 0 142 

Option 2 31 2 0 167 

Option 3 17 1 1 181 

Option 4 19 1 2 178 

The SVM performance results in Table 4-3 show that all SVM models have CF% and CIF% greater 

than 90%, and NC% and Total Error are less than 5%. This indicates that the models have 

acceptable quality for prediction of the feasible region, and we can move to step 4. In the machine 

learning literature, confusion matrix is a more commonly used metric that quantifies the number 

of true negatives (tn), false positives (fp), false negatives (fn), and true positives (tp). These metrics 

are shown in Table 4-4, Table 4-6, and Table 4-8. It is highlighted that the metrics shown in section 

2.7.2 quantify the quality of classifiers better in the context of feasibility analysis, where metrics 

such as NC% are useful. 

Table 4-5: SVM model validation for the reactor using a linear kernel 

Option  CF% CIF% NC% Total Error 

Option 1 98.59 89.65 4.11 4 

Option 2 100 100 0 0 

Option 3 100 100 0 0 

Option 4 100 100 0 0 

Table 4-6: Confusion matrix for the reactor using a linear kernel 

Option  tn fp fn tp 

Option 1 52 6 2 140 

Option 2 33 0 0 167 

Option 3 18 0 0 182 
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Option 4 20 0 0 180 

Table 4-7: SVM model validation for the reactor using a sigmoid kernel 

Option  CF% CIF% NC% Total Error 

Option 1 94.36 77.59 8.84 10.5 

Option 2 96.41 60.61 7.47 9.5 

Option 3 95.42 52 6.70 10 

Option 4 95.55 45 6.01 9.5 

Table 4-8: Confusion matrix for the reactor using a sigmoid kernel 

Option  tn fp fn tp 

Option 1 45 13 8 134 

Option 2 20 13 6 161 

Option 3 13 12 8 167 

Option 4 9 11 8 172 

For understanding the effect of classifier parameters such as the choice of kernel functions, we 

train SVM models using linear and sigmoid kernel functions. It can be seen from Table 4-5 and 

Table 4-7 that SVM model with the sigmoid kernel function demonstrates the worst performance 

for all the options. Moreover, as seen from Table 4-4 and Table 4-6, SVM models using linear 

kernel function show a comparable performance for options 2, 3, and 4. Whereas, for option 1, 

RBF kernel function shows superior performance. Because of this performance and because of 

the general practice that RBF kernels are better at classifying nonlinear data, this work 

implements RBF kernel in solving the optimization problem using steps 4 and 5. It should be noted 

that if the models in this step do not meet the desired quality, the model performance should be 

improved by going back to step 1, choosing different SVM choices such as the choice of kernel 
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function, choice of the penalty for misclassification, or choosing a different classification 

technique such as ANN or decision trees. 

Step 4: In this step, we obtain an algebraic equation for the SVM model. This is done by obtaining 

the intercept and support vectors from the trained classifier from step 3. Since this is the only 

information required for Eq. (65), algebraic expression for the classifier can be obtained. 

Step 5: This is the final step of the framework where the classifier is incorporated into the 

optimization problem. 

The problem formulation for cost minimization is shown by Eq.(70) 

 min𝐶𝑟
𝑇𝑦𝑟 + 𝐶𝑠

𝑇𝑦𝑠 

s. t. 𝑆𝑉𝑀𝑟(𝒙) ≥ −𝑀1(1 − 𝑦𝑟)∀𝑟 ∈ 𝑅; ∀𝑘 ∈ 𝐾 

𝑉 − 𝑉𝑟 ≤ 𝑀(1 − 𝑦𝑟) ∀𝑟 ∈ 𝑅 

𝑉𝑟 − 𝑉 ≤ 𝑀(1 − 𝑦𝑟) ∀𝑟 ∈ 𝑅 

𝐹𝐴0 − 𝑢𝑏𝑠 ≤ 𝑀(1 − 𝑦𝑠)∀𝑠 ∈ 𝑆 

𝑙𝑏𝑠 − 𝐹𝐴0 ≤ 𝑀(1 − 𝑦𝑠)∀𝑠 ∈ 𝑆 

∑𝑦𝑟 = 1

𝑟∈𝑅

 

∑𝑦𝑠 = 1

𝑠∈𝑆

 

  (70) 

 
where, 𝐶𝑟 and 𝐶𝑠 are the vectors of the cost coefficients for the reactor and the separator, 

respectively; 𝑦𝑟 and 𝑦𝑠 are the binary variables for the selection of reactor 𝑟 and the separator 𝑠 

respectively; 𝑆𝑉𝑀𝑟(. ) represents the SVM model for the option 𝑟 for the reactor; 𝑀1 and 𝑀 are 

the big constants; 𝑉𝑟 is the volume of the reactor option 𝑟;  𝑅 and 𝑆 are the sets of all reactor and 
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separator options respectively; 𝑙𝑏𝑠 and 𝑢𝑏𝑠 are the upper and lower bounds on 𝐹𝐴0 for the option 

𝑠 of the separator. 

For the problem of minimizing the total cost, 3600 scenarios are considered by varying the 

product demands. The MINLP problem is solved using in GAMS 28.2.0 and solved using Baron 

version 19.7.13 with the time limit of 1000 seconds on a PC with Intel® Xeon® CPU E-2174G @ 

3.80GHz and 32.0 GB RAM, running a Windows 10 Enterprise, 64-bit operating system. The results 

are shown in Figure 4-3. Since the problem only considers capital cost, the total cost for an option 

is the same for all demand scenarios. The total costs, therefore, are shown in Table 4-9. Each data 

point in Figure 4-3 corresponds to a demand scenario for product B and the product E. The optimal 

choice of the option is abbreviated using the following convention. If the first option for the 

reactor is chosen and the first option for the separator is chosen, the optimal choice will represent 

option 11. The region shaded in the red color corresponds to all scenarios for which the option 11 

was optimal. Similarly, the region shaded in the blue color represents the demand scenarios for 

which option 24 was optimal. Since the problem is solved to optimality, it can be concluded that 

the options that are not chosen are either infeasible or more cost-intensive than the ones selected 

by the optimization framework. The results shown in Figure 4-3 are as expected since the 

framework chooses option 11 for the lower demands, and as the demand increases, it chooses 

more expensive options. From Table 4-9, it can be observed that the cost for the option 11 is the 

least and that of option 24 is the highest. The results demonstrate the proposed formulation 

favors the cheapest feasible option.  

Table 4-9: Total costs for the optimal options for minimizing the total cost for the reactor 
separator system 

Option 11 12 13 14 23 24 

Cost (k$) 500 550 600 650 750 800 
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Figure 4-3: Feasible regions of the optimal design choices proposed by the framework for 
minimizing the total cost of the reactor separator system  

The second problem we consider aims to find a design that has maximum flexibility given the 

nominal demand and the deviation from the nominal demand. The problem formulation for 

maximizing the flexibility index is shown by Eq. (71). 

 max𝛿 

𝑠. 𝑡.  𝑆𝑉𝑀𝑟(𝒙 + 𝛿Δ𝚯
𝐤) ≥ −𝑀1(1 − 𝑦𝑟)∀𝑟 ∈ 𝑅; ∀𝑘 ∈ 𝐾 

𝑉 − 𝑉𝑟 ≤ 𝑀(1 − 𝑦𝑟) ∀𝑟 ∈ 𝑅 

𝑉𝑟 − 𝑉 ≤ 𝑀(1 − 𝑦𝑟) ∀𝑟 ∈ 𝑅 

𝐹𝐴0 − 𝑢𝑏𝑠 ≤ 𝑀(1 − 𝑦𝑠)∀𝑠 ∈ 𝑆 

𝑙𝑏𝑠 − 𝐹𝐴0 ≤ 𝑀(1 − 𝑦𝑠)∀𝑠 ∈ 𝑆 

∑𝑦𝑟 = 1

𝑟∈𝑅

 

  (71) 
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∑𝑦𝑠 = 1

𝑠∈𝑆

 

𝒙 + 𝛿Δ𝚯𝐤 ≥ 𝐥𝐛 ∀k ∈ K 

𝒙 + 𝛿Δ𝚯𝐤 ≤ 𝐮𝐛 ∀k ∈ K 

where 𝛿 is the flexibility index; Θk is the vector of deviation of product demand from the nominal 

values in the direction of vertex 𝑘 of the inscribed hyper-rectangle; 𝐾 is the set of all vertices of 

the inscribed hyper-rectangle for the feasibility; 𝒙 is a vector containing variables 𝑉, 𝐹𝐴0, 𝐹𝐵, and 

𝐹𝐸  where 𝐹𝐵 and 𝐹𝐸  are flow rates of the products 𝐵 and 𝐸 respectively; 𝐥𝐛 and 𝐮𝐛 are the vectors 

of lower and upper bounds for the variables in 𝒙; All the remaining variables follow the same 

convention as that of the previous problem for cost minimization.  

Three scenarios for the nominal demand as shown in Table 4-2 are considered for addressing the 

problem of maximum flexibility. The MINLP problem is solved using GAMS/Baron with a time limit 

of 1000 seconds. For each demand scenario, the optimal choice proposed by the framework is 

shown along with the flexibility index obtained for the optimal choice are displayed in Table 4-10.  

Table 4-10: Results for maximizing flexibility for three demand scenarios 

Scenario Demand B  

(mol/h) 

Demand E  

(mol/h) 

Flexibility Index Optimal Choice 

Scenario A 50 35 1.15 44 

Scenario B 55 30 1.5 44 

Scenario C 45 35 1.15 44 
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It can be observed from Table 4-10 that for all the scenarios, the framework finds a solution that 

has a flexibility index greater than one, indicating that the optimal design is able to satisfy the 

expected deviations from the nominal demand. It is important to note that when there are 

multiple designs with the same flexibility index, this formulation for maximizing the flexibility does 

not use any other criteria to prefer one design option over the other design options. To 

demonstrate this, the maximum flexibility indices are shown in Figure 4-4 for all the feasible 

options. Two important observations can be derived from Figure 4-4. First, it can be observed that 

option 24, 34, 44, and 43 all have the same flexibility index that is greater than one. Moreover, 

option 33 also has a flexibility index greater than one. Second, option 12 is the cheapest feasible 

option and it has the least value of the flexibility index. These two observations motivate the need 

for a framework to address these two objectives together.  

 

Figure 4-4: Flexibility Indices for all design options for demand scenario A 

This trade-off can be better visualized using Figure 4-5, where both the objectives are plotted 

against each other for each design option. Since we want to minimize the total cost and maximize 

the flexibility index, options 12, 13, 14, and 24 are the Pareto optimal designs. 
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Figure 4-5: Cost vs Flexibility Pareto plot for scenario A 

The third problem is a multiobjective problem where the problem of minimizing the total cost as 

well as maximizing the flexibility is addressed. The problem formulation for multiobjective 

optimization is shown by Eqs. (72). 

 min𝐶𝑟
𝑇𝑦𝑟 + 𝐶𝑠

𝑇𝑦𝑠  (72a) 

 s. t.  𝛿 ≥ 𝜖  (24b) 

 𝑆𝑉𝑀𝑟(𝒙 + 𝛿Δ𝚯
𝐤) ≥ −𝑀1(1 − 𝑦𝑟)∀𝑟 ∈ 𝑅; ∀𝑘 ∈ 𝐾  (24c) 

 𝑥1 − 𝑉𝑟 ≤ 𝑀(1 − 𝑦𝑟) ∀𝑟 ∈ 𝑅  (24d) 

 𝑉𝑟 − 𝑥1 ≤ 𝑀(1 − 𝑦𝑟) ∀𝑟 ∈ 𝑅  (24e) 

 𝑥2 − 𝑢𝑏𝑠 ≤ 𝑀(1 − 𝑦𝑠)∀𝑠 ∈ 𝑆  (24f) 

 𝑙𝑏𝑠 − 𝑥2 ≤ 𝑀(1 − 𝑦𝑠)∀𝑠 ∈ 𝑆  (24g) 

 ∑𝑦𝑟 = 1

𝑟∈𝑅

  (24h) 

 ∑𝑦𝑠 = 1

𝑠∈𝑆

  (24i) 
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 𝒙 + 𝛿Δ𝚯𝐤 ≥ 𝐥𝐛 ∀k ∈ K  (24j) 

 𝒙 + 𝛿Δ𝚯𝐤 ≤ 𝐮𝐛 ∀k ∈ K  (24k) 

 
The 𝜖-constraint method is used for multiobjective optimization where one of the objectives is 

expressed as a constraint, as shown by Eq. (24b). Additionally, if an option is selected for the 

reactor or separator, the SVM prediction should ensure feasibility. This is imposed with the help 

of constraints given by Eq. (24c). The solution obtained by solving the optimization problem 

should satisfy the operability ranges for the options selected for the reactor and separator. Since 

the option for the reactor is based on the volume, it is given by Eq. (24d) and Eq. (24e). The options 

for the separator are based on the flow rate ranges and it is ensured by the constraints given by 

Eq. (24f) and Eq. (24g)). Finally, only one option must be selected for the reactor as well as the 

separator, as given by Eq. (24h) and Eq. (24i) and the flexibility of the demand should be within 

the known bounds for the demand for products B and E as given by Eq. (24j) and Eq.(24k). 

For the multiobjective optimization problem, the nominal demand of 50 mol/h for product B and 

35 mol/h for the product E, as shown in scenario A in Table 4-10. Flexibility is modeled in the 

optimization problem with the help of 𝜖-constraint method as shown by Eq. (24b). When the value 

of 𝜖 is 0, the framework leads to minimization of the cost. However, as the value of 𝜖 is increased, 

flexibility constraint becomes strict, and as a result, the framework selects options that are more 

flexible. The MINLP problem is solved using GAMS/Baron with a time limit of 1000 seconds. The 

results for the cost and the optimal design choice are shown in Table 4-11. It can be verified from 

Figure 4-5 that the optimal choices proposed by the multiobjective optimization framework 

correspond belong to the designs on the Pareto optimal curve. 
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Table 4-11: Optimal choices for the system of reactor and separator using multiobjective 
optimization 

𝝐 Cost (k$) Reactor Separator 

0 550 1 2 

0.5 650 1 4 

1 800 2 4 

1.1 800 2 4 

1.15 800 2 4 

4.6 Air separation unit case study 

4.6.1 Process and model description 

In this section, the problem of process design optimization and flexibility evaluation of an air 

separation unit (ASU) is considered. The process shown in Figure 4-6 consists of separating the 

feed air into oxygen, nitrogen, and argon [201]. This is achieved through liquefaction with the help 

of products and waste streams in the main heat exchanger. Part of the compressed air stream is 

withdrawn from the heat exchanger at an intermediate location and passed through the turbine, 

followed by a low-pressure distillation column. The rest of the compressed air traverses the entire 

length of the heat exchanger and is fed to the high-pressure column. The columns operate at a 

pressure that enables heat integration with a common system of a reboiler and a condenser. The 

ASU model used in this work is based on the previous work of Dias et al. [195] and Sirdeshpande 

et al. [202]. The reader is referred to previous works in the literature for more details on the 

simulation model [203][204][205][206][207]. More recently, Caspari et al. [208] worked on the 

design and optimization of a flexible ASU as well as on optimal operation using economic model 

predictive control [209]. The models considered in this work are steady-state models, and a stand-



106 
 

alone simulation is developed for each unit operation. A brief description of the mathematical 

models describing the behavior of unit operations of the ASU process is provided below. 

 

Figure 4-6: Air separation unit case study 

Distillation column model. A double column system is considered for the distillation of which high 

pressure column (HPC) operates at a pressure of 6.5 bar whereas the low pressure column (LPC) 

operates at a pressure of 1.5 bar. The compressed and cooled air streams are passed to the 

distillation columns. These columns share a common condenser/reboiler system, and the 

operating pressures of the columns are chosen accordingly. The main air (MA) enters the bottom 

of the HPC as a saturated vapor whereas the turbine air is expanded to the pressure of the LPC 

and is fed to the LPC. 

Integrated reboiler/condenser model: The steady-state model for the integrated reboiler/ 

condenser is adapted from the work of Dias and Ierapetritou [195]. This model consists of two 

parts, one of which is for the condenser side and one for the reboiler side. The oxygen-rich stream 

at the bottom of the distillation column is expanded through a valve to 2.5 bar to provide cooling 

(via Joule-Thomson effect) to the condenser. The reboiler is modeled as an additional equilibrium 
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stage. The equivalent of condenser heat duty is added as an additional input to the energy balance 

for the reboiler.  

Heat exchanger model. The air streams MA and EA are cooled in a brazed plate-fin multistream 

heat exchanger. The main air traverses the entire length of the heat exchanger, whereas the TA 

is partially cooled and withdrawn at an intermediate location. Based on the location at which TA 

is withdrawn, the heat exchanger model is divided into two zones. The remainder of the air, which 

is MA, is taken out at the outlet of zone 2. As a result, zone 1 corresponds to sensible heat removal 

from the air stream, whereas zone 2 corresponds to the latent heat removal. The first zone is 

discretized into 50 segments, while the energy balance is carried out over the second zone as a 

single unit to simplify the phase transformation calculations. The geometry of the channels within 

each segment is accounted for when calculating the energy accumulation of each stream in each 

finite volume. 

Compressor/turbine model. Feed air is compressed to a pressure of 6-7 bar using the compressor 

followed by which the air is split and passed to the heat exchanger. Part of the air that is 

withdrawn at an intermediate location from the heat exchanger is expanded in the turbine 

expander to produce a cold exhaust and mechanical work.  

4.6.2 Process modularization 

Based on the unit operations mentioned, this process may be modularized into the four basic 

operations of heat exchange, expansion, distillation, and compression [202]. Given different 

module options for each equipment, varying in size and process specification (e.g., number of 

columns, pressure, etc.), the goal is to define a set of options that can achieve product 

specifications at a minimum investment cost while ensuring that the operation remains flexible 

and the desired demand is met. The options for the heat exchanger and the distillation column 
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are based on the same parameters. The set of available options for each module, together with 

the capital cost of distillation and heat exchanger options, are shown in Table 4-12 and Table 4-13, 

respectively. The options for compressor and turbine modules depend on the input flow rates, as 

shown in Table 4-14 and Table 4-15, respectively. It is important to note that the costs for the 

compressor module and the turbine module includes the compressor and turbine as well as their 

respective auxiliary units. From Table 4-12, Table 4-13, Table 4-14, and Table 4-15, it can be 

observed that a convention is followed that the lower option number represents a smaller unit 

and lower capital cost. It is important to note that, however, a smaller unit need not have a lower 

capital cost because of several process intensification strategies [210][15][211]. The proposed 

framework for multiobjective optimization can readily handle such an alternative in the design 

optimization stage. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4-7: ASU modules (a) heat exchanger (b) distillation column (c) compressor (d) turbine 
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Table 4-12: Distillation module options and the capital cost 

Options MA 

(mol/s) 

EA 

(mol/s) 

NI 

(mol/s) 

OX 

(mol/s) 

Capital 

cost(k$) 

Option 1 30-40 0-6 30-45 8-12.2 2382 

Option 2 35-45 3-9 34-50 9-13.5 3119 

Option 3 40-50 6-12 38-50 10-13.5 3388 

Option 4 45-60 10-14 30-50 8-13.5 3768 

Table 4-13: Heat exchanger module options and the capital cost 

Options MA 

(mol/s) 

EA 

(mol/s) 

NI 

(mol/s) 

OX 

(mol/s) 

Capital 

cost(k$) 

Option 1 30-40 0-6 30-45 8-12.2 1966 

Option 2 35-45 3-9 34-50 9-13.5 2164 

Option 3 40-50 6-12 38-50 10-13.5 2351 

Option 4 45-60 10-14 30-50 8-13.5 2615 

Table 4-14: Compressor options 

Options Compressor options - Air flow rate 

(mol/s) 

Capital cost 

(k$) 

Option 1 30-46 667 

Option 2 38-54 734 

Option 3 46-62 798 

Option 4 51-74 887 
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Table 4-15: Turbine options 

Options turbine options - Air flow rate 

(mol/s) 

Capital cost(k$) 

Option 1 0-6 1966 

Option 2 3-9 2164 

Option 3 6-12 2351 

Option 4 10-14 2614 

 

4.6.3 Application of the optimization framework 

For the compressor and turbine, it is assumed that given the flow rates in the operable range, 

sufficient head is produced. As this only requires the operable range and the flow rate, the SVM 

model need not be built for the compressor and the turbine options. The efficiency and power 

consumption due to these modules is included in the calculation of the total cost. Moreover, some 

of the connecting variables, such as the composition of the oxygen and nitrogen streams, are 

omitted in the analysis because of numerical issues due to a narrow feasible region. Ranges for 

these variables are provided instead to ensure that feasibility information is preserved. Finally, 

this work does not consider the storage of the products, and the feasibility is defined accordingly. 

This means that a bigger design for a particular module may not necessarily be feasible for smaller 

product demands. 

To achieve the goal of choosing an optimal design that minimizes the total cost as well as provides 

maximum flexibility with respect to the demand variability, the first step is to understand the 

feasibility of each option related to each module. For this, historical data for the feasibility of each 

module is obtained. Based on the process considerations, the inputs or features for the classifier 

include two types of variables. The first type contains the variables inherent to the model, and 
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the other type includes variables that connect two modules. By defining the connecting variables 

as the inputs to the classifier ensures that the mass and energy balances are implicitly handled. 

As an example, for the distillation module, the temperature and flow rates of inlet streams and 

the required purity are inherent variables, whereas the flow rates and temperatures of the outlet 

streams are connecting variables. Since the same connecting variables will also be included in the 

classifier for the heat exchanger and because both classifiers are used as constraints to define the 

feasibility of the process, the framework forces connecting variables to have the same value. 

Having the same value of connecting variables for the heat exchanger ensures that the mass 

balance and the energy balance is satisfied. By handling mass and energy balances implicitly, the 

feasibility of all modules is sufficient to ensure the feasibility of the process. The input variables 

for the SVM models for the heat exchanger and distillation column are shown in Table 4-16. 

Table 4-16: ASU modules feasibility analysis inputs 

Module Input variables 

Heat exchanger Flow rates of Nitrogen, Oxygen, Air, 

Temperature of turbine air 

Distillation column Flow rates of Nitrogen, Oxygen, temperature 

and flow rate of turbine air and main air, 

impurities of nitrogen and oxygen 

For each option of the distillation column, 1000 samples are generated using the simulation, and 

the SVM model is built for 7 variables. For the heat exchanger options, 1000 samples are 

generated for each option, and the SVM model is built for 5 variables. The models are tested on 

the test data, and the validation results are provided in Table 4-17-Table 4-22, respectively. The 

tables show a comparison between different kernel functions for analyzing the feasibility of the 



112 
 

heat exchanger and distillation column. From Table 4-17-Table 4-19, it can be observed that the 

SVM models built using a sigmoid kernel show the worst performance. From Table 4-17 and Table 

4-18, SVM models built using the RBF kernel are shown to be superior for options 1 and 2 whereas, 

those built using linear kernel are shown to be better for options 3 and 4. For SVM models built 

using RBF kernel, it can be observed that all heat exchanger models have less than 5% values of 

NC% as well as the Total Error, whereas over 95% values for CF% and over 90% values for CIF% 

except for the option 1.  

Table 4-17: Validation results for the heat exchanger SVM models using RBF kernel 

Option  CF% CIF% NC% Total Error 

Option 1 99.52 89.85 3.27 2.89 

Option 2 100 91.30 2.91 2.23 

Option 3 100 92.31 4.37 2.87 

Option 4 97.66 95.86 2.05 2.93 

Table 4-18: Validation results for the heat exchanger SVM models using linear kernel 

Option  CF% CIF% NC% Total Error 

Option 1 97.11 82.61 5.61 6.5 

Option 2 99 86.95 4.35 4.09 

Option 3 100 97.80 1.29 0.82 

Option 4 97.67 98.22 0.89 2.14 

Table 4-19: Validation results for the heat exchanger SVM models using sigmoid kernel 

Option  CF% CIF% NC% Total Error 

Option 1 88.94 69.56 10.19 15.88 

Option 2 95 73.91 8.65 10.41 
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Option 3 96.08 81.32 10.36 9.43 

Option 4 90.96 82.84 8.50 11.71 

A similar comparison is carried out between SVM models built using different kernel functions for 

the distillation module. For all the options, SVM models built using a sigmoid kernel function 

performed the worst as it can be observed from Table 4-20-Table 4-22. Those built using RBF 

kernel demonstrated the lowest CIF%, NC%, and Total Error. Moreover, CF% values are higher for 

the SVM models built using RBF kernels for options 1, 3, and 4. As a result, RBF models are chosen 

for representing the feasible region. In absolute terms, the SVM models built using RBF kernel for 

a distillation column, the CF% is above 95% for all options, CIF% is above 90% for all options, and 

NC% and Total Error values are less than 1%. As a result, it can be concluded that the models 

provide a good representation of the feasible region for all options for all modules. 

Table 4-20: Validation results for the distillation SVM models using RBF kernel 

Option  CF% CIF% NC% Total Error 

Option 1 97.39 99.51 1.97 0.92 

Option 2 99.43 99.80 0.14 0.40 

Option 3 99.23 98.48 0.39 0.92 

Option 4 99.89 90.32 0.43 0.52 

Table 4-21: Validation results for the distillation SVM models using linear kernel 

Option  CF% CIF% NC% Total Error 

Option 1 99.02 98.76 4.72 1.18 

Option 2 99.29 98.05 1.4 1.23 

Option 3 99.32 95.83 10.56 1.38 
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Option 4 99.89 72.58 1.23 1.23 

Table 4-22: Validation results for the distillation SVM models using sigmoid kernel 

Option  CF% CIF% NC% Total Error 

Option 1 62.74 90.81 36.63 14.79 

Option 2 93.35 88.11 8.46 8.85 

Option 3 92.87 71.59 7.22 11.44 

Option 4 97.55 18.55 3.64 5.86 

All the models are built-in GAMS 28.2.0 and solved using Baron Version 19.7.13 on a PC with Intel® 

Xeon® CPU E-2174G @ 3.80GHz and 32.0 GB RAM, running a Windows 10 Enterprise, 64-bit 

operating system. All computations in this work are carried out with the same specifications. For 

building SVM models, scikit-learn python toolbox [77] is used with default settings, and the inputs 

are scaled to have zero mean and unit variance before building the SVM models. 

One of the two objectives of this work is minimizing the annualized cost of the process. For this, 

we consider capital cost and the operating cost, as shown in the objective function of Eq. (73). 

The values for capital cost are obtained from the recent work of Tesch et al. [212] and scaled 

following the 0.6 power rule. Moreover, it is assumed that the annualized capital cost is 10 percent 

of the total capital cost. The operating cost is calculated based on the work of Sirdeshpande and 

Ierapetritou [202], and the electricity price used the average electricity price for the US energy 

information administration website [213]. Another objective is the maximization of the flexibility 

index. In this work, it is assumed that the nominal demand is known, and the variation ΔΘ is 

centered on the nominal demand. The multiobjective formulation can then be written by Eq. (73) 

 min total cost =Capital cost + Operating cost   (73) 
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s. t.  𝛿 ≥ 𝜖 

𝑆𝑉𝑀𝑑(𝒙 + 𝛿Δ𝚯) ≥ −𝑀1(1 − 𝑦𝑑)∀𝑑 ∈ 𝐷 

𝑆𝑉𝑀ℎ(𝒙 − 𝛿Δ𝚯) ≤ −𝑀1(1 − 𝑦ℎ)∀ℎ ∈ 𝐻 

𝑥𝑑 − 𝑢𝑏𝑑 ≤ 𝑀(1 − 𝑦𝑑))∀𝑑 ∈ 𝐷 

𝑙𝑏𝑑 − 𝑥𝑑 ≤ 𝑀(1 − 𝑦𝑑))∀𝑑 ∈ 𝐷 

𝑥ℎ − 𝑢𝑏ℎ ≤ 𝑀(1 − 𝑦ℎ))∀ℎ ∈ 𝐻 

𝑙𝑏ℎ − 𝑥ℎ ≤ 𝑀(1 − 𝑦ℎ))∀ℎ ∈ 𝐻 

𝑥𝑐 − 𝑢𝑏𝑐 ≤ 𝑀(1 − 𝑦𝑐))∀𝑐 ∈ 𝐶 

𝑙𝑏𝑐 − 𝑥𝑐 ≤ 𝑀(1 − 𝑦𝑐))∀𝑐 ∈ 𝐶 

𝑥𝑡 − 𝑢𝑏𝑡 ≤ 𝑀(1 − 𝑦𝑡))∀𝑡 ∈ 𝑇 

𝑙𝑏𝑡 − 𝑥𝑡 ≤ 𝑀(1 − 𝑦𝑡))∀𝑡 ∈ 𝑇 

∑𝑦𝑑 = 1

𝑑∈𝐷

 

∑𝑦ℎ = 1

ℎ∈𝐻

 

∑𝑦𝑐 = 1

𝑐∈𝐶

 

∑𝑦𝑡 = 1

𝑡∈𝑇

 

𝒙 − 𝛿Δ𝚯 ≥ 𝐥𝐛 

𝒙 + 𝛿Δ𝚯 ≤ 𝐮𝐛 

where, the capital cost refers to the total annualized capital cost of the chosen options and 

operating cost depends on the quantity of products produced, air flow rate, and compressor and 

turbine efficiency among the other factors; 𝑦𝑑, 𝑦ℎ, 𝑦𝑐 and 𝑦𝑡 are the binary variables for the 

selection of the distillation column 𝑑, heat exchanger ℎ, compressor 𝑐, and the turbine 𝑡; 𝛿 is the 

flexibility index; Θ is the scaling factor; 𝑆𝑉𝑀𝑑(. ) represents the SVM model for the option 𝑑 for 
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the distillation column; 𝑆𝑉𝑀ℎ represents the SVM model for the option ℎ for the heat exchanger; 

𝑀1 and 𝑀 are the big-M constants; 𝒙 is the decision variable vector that contains flow rates of 

main air, turbine air, nitrogen and oxygen, the temperature of turbine air, and purity of Nitrogen 

and oxygen in that order; 𝐷, 𝐻, C and 𝑇 are the sets of all distillation column, heat exchanger, 

compressor and turbine respectively; 𝐮𝐛 and 𝐥𝐛 are upper and lower bounds for the variable 𝒙. 

The variable 𝒙𝒊 represents continuous variables corresponding to module 𝑖. 

In multiobjective optimization, both the objectives of cost and flexibility are considered where 

flexibility is modeled using the 𝜖-constraint method. The nominal demand is 40 mol/s for nitrogen 

and 10 mol/s for oxygen. Results are obtained by varying 𝜖 from a value of 0 to 1. This range is 

obtained from the definition of flexibility index which is at least 0 for all the feasible designs, and 

the desired value of flexibility index is 1.0, where the design is flexible enough to address the 

expected variability in demand. The expected deviation is 5 mol/s and 1.6 mol/s, from nitrogen 

and oxygen flowrates, respectively. The problem is solved using GAMS/Baron with a time limit of 

1000 seconds. This way, one can obtain designs on the Pareto optimal curve by varying the values 

of  𝜖 as shown in Table 4-23. For 𝜖 equal to 0, 0.2, and 0.5 the optimal design choice was option 

2211 with a total annualized costs of $815,370, $827,159, and $838,949, respectively. For values 

of 𝜖 greater than 0.5, the framework suggests the optimal design choice option 4433. The 

annualized costs when the values of 𝜖 are 0.7, 0.9, and 1.0 are $983,731, $985,120, and $990,086, 

respectively. It can be observed that as 𝜖 increases, the cost increases, indicating that more 

flexible designs tend to be more cost intensive. The difference in costs for the same choice of 

optimal design is mainly due to the operating costs. Moreover, feasibility of the multiobjective 

optimization problem for a value of 𝜖 equal to 1 indicates that there are feasible designs in the 

available options that can satisfy the expected deviation in the product demand. For a problem 

where one expects that there are no designs available with flexibility index value of 1, the value 
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of 𝜖 can be varied between 0 and the value obtained by maximizing the flexibility index. It should 

also be noted that even though the framework suggests only two optimal designs, there are other 

designs that are feasible as well. Since this work does not consider the option for holding the 

products in a storage tank, the only options considered by the framework are the options that are 

feasible for the nominal demand of 40 mol/s for nitrogen and 10 mol/s for oxygen.  

Table 4-23: Optimal choices of modules for ASU using multiobjective optimization 

𝝐 cost (k$) distillation heat 

exchanger 

compressor turbine 

0 815.370 2 2 1 1 

0.2 834.070 2 2 1 2 

0.5 871.189 2 2 2 2 

0.7 983.731 4 4 3 3 

0.9 985.120 4 4 3 3 

1.0 990.086 4 4 3 3 

4.7 Conclusions 

In this work, a framework for modular design under variability is presented. The framework 

consists of two steps: a data-driven feasibility analysis, followed by simultaneous design 

optimization and flexibility evaluation. The concept behind the framework is illustrated first on an 

example of a reactor and separator system. Further, the performance of the framework is 

demonstrated in the study of the modular design of ASUs. The problem of choosing between 

several module options is addressed for the objectives of choosing a design that minimizes cost 

as well as has the maximum flexibility with respect to the product demand. A data-driven 

approach is used with the help of support vector machines to represent the feasible region for 
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each module option. In doing so, a quantitative comparison is provided for choosing the kernel 

function for the SVM model. 

The approach presented in this work has several advantages over the methods existing in the 

current literature. Since the framework does not rely on analytical equations of the process, 

historical data can be directly used for the analysis. In the absence of analytical equations for the 

process, the problem of handling discrete choices is known to be extremely difficult. An intuitive 

approach to building a data-driven model for each combination of discrete choice requires a huge 

number of data-driven models, which leads to a computationally intractable optimization 

problem. The proposed framework takes advantage of the modularity of the process, requiring a 

significantly low number of data-driven models for obtaining an optimal design. In doing so, it 

maintains the feasibility of the process as a whole by implicitly handling inherent constraints such 

as the mass and energy balances. In the optimization framework, two different objectives are 

simultaneously achieved to obtain a set of Pareto optimal designs leading to a more informed 

decision. For analyzing the feasibility of a design, the examples showed in this work use SVM. 

However, due to the generic nature of the framework, other classification techniques can be used 

as well. Ease access to software that supports such techniques makes this framework an attractive 

choice for industrial use. Moreover, the design optimization considered in this work can be 

generalized to process synthesis problems where different technologies or even different 

connections in a flow sheet can be compared. This approach opens new and exciting possibilities 

for process design in many other chemical engineering processes, considering comprehensive 

objectives such as the environmental impact and in assessing the applicability of modular design 

with a more detailed cost estimate in a broader supply chain context.
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5 Supply chain optimization with modular processing 

Abstract 

Modular manufacturing is gaining popularity in a variety of industrial applications due to potential 

cost-savings as well as process flexibility that can be achieved with the use of small and 

standardized modules. In this work, a framework for supply chain optimization is proposed that 

ensures production feasibility with the help of historical process data for individual process 

modules and machine learning-based feasibility analysis. A supply chain optimization problem is 

formulated where the binary variables represent facility locations, and the integer variables 

correspond to the number of modular equipment installed. Results demonstrate that the tradeoff 

between centralized and distributed manufacturing and the effect of economies of numbers on 

the cost of the supply chain can be studied by solving the problem. 

5.1 Introduction 

Globalization and increasing market competition have been a significant impetus for changing the 

pace and nature of businesses and innovation around the world. More and more customer-

orientated products are driving change in many industries, and product cycles are becoming 

shorter [5]. Modularization, process intensification, and design standardization are increasingly 

being recognized as critical factors to reduce the time to market for a product [6]. With a wide 

range of applications in the areas of gas conversion, solid conversion ammonia synthesis, CO2 

conversion, water purification, renewable energy, power generation, and chemical processing 

along with growing industrial interest, modular manufacturing provides a promising way forward 

for the process engineering [7][8]. 

Recent studies on modular and distributed manufacturing have challenged the traditional cost 

reduction paradigm relying on the economy of scale[11]. The traditionally used 2/3rd power law 
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indicates that the capital cost increases with plant capacity following a 2/3rd power law. This leads 

to the conclusion that having large plants is more cost efficient. Modular design involves the use 

of small and standardized modules of fixed size in a production plant that can provide several 

strategic, manufacturing, as well as economic advantages. Modular designs reduce time-to-

market for a product because of preassembled modules, lower construction times due to 

standardization, and the possibility of numbering up identical devices to achieve the desired 

production. Shorter time-to-market, combined with the safety of operation[9], reduces the 

financial risk for the investors[152]. Moreover, centralized large-scale manufacturing, often 

means high transportation costs for the delivery of raw materials as well as the products whereas 

small scale, modular manufacturing provides a way to distribute manufacturing effectively to 

reduce transportation costs. Finally, with repeated production of standardized units, engineers as 

well as the vendors, gain experience which results in lowering the capital cost and improving 

production lead time.  

However, quantifying the economic viability of such modular processes is a relatively 

underexplored problem. Recent work on modular design focuses on creating quantitative 

measures for understanding the benefits of modular manufacturing. Shao and Zavala model a 

manufacturing system as a graph composed of nodes as equipment units and edges and propose 

a measure for modularity that considers connectivity, number of modules, and dimensions that 

can be computed by solving a mixed integer quadratic program[214]. One crucial advantage of 

standardized units is the cost-savings achieved from mass production, which is studied under the 

topics of the economy of numbers, the economy of mass production, and experiential learning 

economics. Arora et al. [17] study the economy of numbers and equipment standardization for 

capital cost reduction. Patience and Boffito [215] note that the effect of the experience curve 

should be accounted for while conducting economic analysis. They investigate the effect of scaling 
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down and numbering-up on the cost. Leiberman [216] discusses learning-based cost advantages 

in processing plants using experiential learning economics.  

In addition to analyzing the effect of modular units on the capital cost, it is essential to analyze 

their overall effect on the cost of the supply chain. Palys et al. [14] study the effect of mass 

production exponent for a supply chain consisting of modular units. Allman and Zhang propose a 

framework for determining optimal location and relocation of mobile production modules under 

time-varying demands [217]. They propose a metric to assess the economic benefits of module 

mobility. They refer to this problem as dynamic modular and mobile facility location problem. 

Becker et al. [218] propose a mixed integer linear programming model for the tactical planning of 

modular production networks with consideration of volume, location, and process flexibility. Lier 

et al. [219] review transformable production concepts with modular composition. They review 

challenges on the equipment level, network level, and logistics level. Palys et al. [14] address the 

problem of a supply chain network consisting of renewable-powered ammonia production where 

the renewable production units are modular, and the number of modules installed at each 

production facility needs to be determined. They compare the cost of traditional centralized 

production with a modular design by varying the mass production exponent that describes the 

rate of experiential learning. Allen et al. [16] consider the problem of shale gas production 

planning where, as the resources deplete, there may not be enough throughput for a large plant 

to operate. In such a case, it is beneficial to have modular designs that can handle lower 

throughputs. These modules can be moved to a new site when the need arises. They solve a 

multistage stochastic programming problem. Yang and You [153] provide a model-based study for 

understanding the effects of plant relocation, centralized manufacturing, and distributed 

manufacturing for methanol manufacturing. They consider the environmental impact and analyze 

shale gas case study as well as a methanol production example.  



122 
 

Another common problem in modular and distributed manufacturing at the supply chain level is 

the problem of facility location. Lara et al. [220] propose an algorithm for finding optimal locations 

for the distribution centers for centralized and distributed manufacturing networks. While doing 

this, they also solve the problem of choosing a centralized network of distribution centers or a 

distributed network. Bowling et al. [221] propose a superstructure-based optimization problem 

for deciding the facility location for the biomass problem. Their problem is to determine flow rates 

through each link given a superstructure for maximizing profit. A location is selected if the flow 

rate is nonzero and not selected otherwise. They approximate the exponential behavior of the 

capital cost (2/3rd law) using piecewise linear approximation and model the capital cost of using 

disjunctions where each disjunction approximates each piece of linear approximation. Elia and 

Floudas [222] provide a comprehensive study of facility location and life cycle analysis of biomass. 

They consider sources of biomass in the United States and find optimal facility location by 

discretizing states into octants. Using a modular production, they choose from three different 

processing capacities for each facility and allow for multiple facilities at each site. Tan and Barton 

[223] note that mobile, modular plants are possible attractive routes for gas monetization and 

propose a multi-period optimization framework for solving dynamic plant allocation problem. 

Bramsiepe et al. [224] discuss distributed manufacturing for biomass processing. They note that 

biomass processing should be divided in small-scale water separation followed by large-scale 

processing. They review various economic as well as practical aspects of small-scale 

manufacturing. It is important to note that, most of the aforementioned work treats the whole 

process as modular and does not incorporate production level details at the supply chain level by 

making a usual assumption that the capacity of a modular process is known and fixed.  

The key details at the production level relate to defining a process based on a limited number of 

different modules [155]. In this work, modular designs involve the design and construction of 
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smaller process units or processes of fixed production capacities [14]. This definition allows for 

possible extensions for process intensification [15], mobile processing units [16], standardized 

equipment [17], and customized unit operations [8]. In the previous work[225], it has been shown 

that modular designs have an added advantage of providing a quantitative estimate of the 

flexibility of process design. One reason for flexibility is the increased degrees of freedom since 

individual module can be designed instead of designing the process as a whole. The flexibility of 

a process design can be quantified by obtaining an algebraic approximation of the process 

feasibility. The approach presented in our previous work uses historical information related to the 

feasible region of operation for each module in a data-driven feasibility analysis. Process feasibility 

can then be defined using the feasibility of individual modules. At the supply chain design level, 

the utilization of modules provides great benefits including the choice of the production facility 

location, deciding between a centralized or distributed production, quantifying the benefits of 

design standardization, and assessing flexibility of the supply chain in the presence of demand 

variability.  

In this work, supply chain network design problem is addressed using modular production to 

determine the optimal process design, and the facility location to minimize the total cost of the 

supply chain over the desired planning horizon. The economies of numbers are modeled by scaling 

the capital cost of all installed modules with a coefficient of mass production that reduces the 

cost per-module as more modules are installed. The approach provided in this work provides a 

way to integrate production level details in the supply chain optimization problem. The 

formulation presented in this work uses support vector machine (SVM) models trained using 

historical process data as an approximation of the feasible region for each process module. The 

resulting problem is a mixed integer nonlinear programming (MINLP) problem where binary 

variables represent facility locations, and integer variables represent the number of modular 
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equipment installed. Since the module options vary in cost and the processing capacity, the 

tradeoff between centralized and distributed manufacturing is implicitly addressed by solving the 

problem to optimality. It is noted that the coefficient of mass production may vary based on the 

specific process and the modules under consideration. The results demonstrate the effect of the 

coefficient of mass production on the optimal network design.  

This chapter is organized as follows. Section 5.2 provides the details of the supply chain 

optimization formulation. Section 5.3 covers the background information on the methods used in 

the proposed work. Section 5.4 presents the application of the proposed approach in two case 

studies, whereas section 5.5 provides some concluding remarks. 

5.2 Supply chain model 

The supply chain network considered in this work is generic and is motivated from our previous 

work [188]. The network consists of suppliers, production facilities, warehouses, and retailers. 

The demand is realized at each retailer in each time period. The product or raw material flow is 

allowed using all possible pathways i.e. all suppliers can send material to all production facilities, 

all production facilities can send material to all warehouses, and all warehouses can send material 

to all retailers. It is important to note that the production details are taken into account, and the 

production is carried out using modular processes.  This results in a key difference between 

traditional supply chain optimization formulations and the formulation presented in this work. 

Since the problem aims to find the number of modules used at each production facility, integer 

variables are introduced as opposed to binary variables which limit the information to a yes or no 

decisions. A typical supply chain network is shown in Figure 5-1.  



125 
 

 

Figure 5-1 A typical supply chain network 

The decisions to be made by optimizing this network include the choice of production facility for 

production in each time period, the number and the type of modules to be installed at each 

production site, the amount of material transported between suppliers, production facilities, 

warehouses, and retailers.  

5.2.1 Optimization problem formulation 

Based on the notations described in Appendix B, we formulate the following MINLP model.  

Objective. Minimizing the total cost is the primary objective of this formulation. The total cost 

consists of transportation cost, inventory cost, capital cost, and operating cost as shown by Eq. 

(74) 
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minimize cost =∑(∑ ∑ ∑𝑄𝑓𝑤𝑝𝑡
𝑝∈𝑃

𝑐𝑓𝑝
𝑤∈𝒲𝑓∈ℱ𝑡∈𝒯

+ ∑ ∑ ∑𝑄𝑓𝑤𝑝𝑡
𝑝∈𝑃

ℎ𝑓𝑤𝑝
𝑤∈𝒲𝑓∈ℱ

+∑∑∑ 𝑄𝑠𝑓𝑎𝑡
𝑎∈𝒜

ℎ𝑠𝑓𝑎
𝑓∈ℱ𝑠∈𝒮

+ ∑ ∑∑𝑄𝑤𝑟𝑝𝑡
𝑝∈𝑃

ℎ𝑤𝑟𝑝
𝑟∈ℛ𝑤∈𝒲

+ ∑ ∑ 𝐼𝑤𝑝𝑡𝑔𝑤𝑝
𝑝∈𝒫𝑤∈𝒲

) + ∑ ∑ 𝜁𝑓𝑚𝑜 (
𝑧𝑚𝑜
𝑧̃𝑚𝑜

)
𝛽

𝑜∈𝒪𝑚𝑚∈ℳ

 

  (74) 

where, 𝑄𝑓𝑤𝑝𝑡 is the quantity of the product 𝑝 delivered from production facility 𝑓 to warehouse 

𝑤 in time period 𝑡; , 𝑄𝑠𝑓𝑎𝑡 is the quantity of the raw material 𝑎 delivered from supplier 𝑠 to 

production facility 𝑓 in time period 𝑡; 𝑄𝑤𝑟𝑝𝑡 is the quantity of product 𝑝 delivered from warehouse 

𝑤 to retailer 𝑟 in time period 𝑡; 𝑐𝑓𝑝 operating cost per unit of product 𝑝 at production facility 𝑓; 

ℎ𝑓𝑤𝑝 is transportation cost per unit of product 𝑝 from production facility 𝑓 to warehouse 𝑤; ℎ𝑠𝑓𝑎 

transportation cost per unit of raw material 𝑎 from supplier 𝑠 to production facility 𝑓; ℎ𝑤𝑟𝑝 is 

transportation cost per unit of product 𝑝 from warehouse 𝑤 to retailer 𝑟; 𝑔𝑤𝑝 is inventory cost 

for storing a unit of product 𝑝 for one time period at warehouse 𝑤; 𝜁𝑓𝑚𝑜 is capital cost for 

installing one unit of option 𝑜 for module 𝑚 at a production facility 𝑓; 𝑧𝑚𝑜 is the number of units 

of option 𝑜 ∈ 𝒪𝑚 for module 𝑚 ∈ ℳ installed across all production facilities; 𝑧̃𝑚𝑜 base number 

of units for option 𝑜 for module 𝑚; 𝛽 coefficient of mass production.  

The objective function is nonlinear when the economies of numbers are considered, i.e., when 𝛽 

is not equal to 1. To avoid nonlinearity, the capital cost is linearized. It is assumed that 𝑍 

represents the maximum number of units of option 𝑜 ∈ 𝒪𝑚 for module 𝑚 ∈ ℳ installed across 

all production facilities. The integer variables 𝑧𝑚𝑜 are re-expressed as a set of binary variables 

𝑒𝑚𝑜𝑘 as shown by Eq.(75) and Eq.(78). 
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∑𝑒𝑚𝑜𝑘
𝑘∈𝐾

= 1   𝐾 ∈ {0,… , 𝑍}   (75) 

For each integer value in the set {0, …, 𝑍}, a binary variable 𝑒𝑚𝑜𝑘  is defined. Eq.(76) states that 

only one of the binary variables can be 1. Finally, the integer variables and the binary variables 

are related through Eq. (77) which ensures that if 𝑒𝑚𝑜𝑘 is 1, 𝑧𝑚𝑜 is 𝑘. 

 

∑𝑘𝑒𝑚𝑜𝑘
𝑘∈𝐾

= 𝑧𝑚𝑜  𝐾 ∈ {0,… , 𝑍}   (78) 

Using the binary variables 𝑒𝑚𝑜𝑘, we express the capital cost as shown by Eq.(79) 

 

∑ ∑ 𝜁𝑓𝑚𝑜 (
𝑧𝑚𝑜
𝑧̃𝑚𝑜

)
𝛽

𝑜∈𝒪𝑚𝑚∈ℳ

= ∑ ∑ ∑𝑒𝑚𝑜𝑘𝜁𝑓𝑚𝑜 (
𝑘

𝑧̃𝑚𝑜
)
𝛽

𝑘∈𝐾

  

𝑜∈𝒪𝑚𝑚∈ℳ

  𝐾 ∈ {0,… , 𝑍}   (79) 

where variable 𝜁𝑓̅𝑚𝑜𝑘 is defined using Eq. (80). 

 

𝜁𝑓̅𝑚𝑜𝑘 = 𝜁𝑓𝑚𝑜 (
𝑘

𝑧̃𝑚𝑜
)
𝛽

  𝐾 ∈ {0,… , 𝑍} 
  (80) 

The key advantage of this reformulation is that the term 𝜁  ̅can be pre-computed for each value of 

𝑘  thus leading to a linear objective function. 

Inventory balance 

Inventory balance must be satisfied at each warehouse at each time period. Warehouse inventory 

at each time period is the difference between the amount of product they ship out and the 

amount of product they receive added to the warehouse inventory at the end of the previous 

planning period as shown by Eq. (81). At the beginning of first time period, the initial inventory 

𝐼𝑤𝑝0 is known and introduced as a model parameter. 
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𝐼𝑤𝑝𝑡 = 𝐼𝑤𝑝(𝑡−1) +∑ ∑ 𝑄𝑓𝑤𝑝𝑡
𝑤∈𝒲𝑓∈ℱ

− ∑ ∑𝑄𝑤𝑟𝑝𝑡
𝑟∈ℛ𝑤∈𝒲

           ∀𝑤 ∈ 𝒲,∀𝑝

∈ 𝒫, ∀𝑡 ∈ 𝒯 

  (81) 

where 𝐼𝑤𝑝𝑡 is the inventory of product 𝑝 ∈ 𝒫 stored at warehouse 𝑤 during time period 𝑡. It is 

assumed that there is no inventory at the production facilities. As a result, no reorder policy is 

incorporated at the warehouses. 

Demand satisfaction 

The product demand must be satisfied at each planning period for each product. This is enforced 

by Eq.(82) 

 

∑ 𝑄𝑤𝑟𝑝𝑡
𝑤∈𝒲

≥ 𝛿𝑟𝑝𝑡               ∀𝑟 ∈ ℛ, ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯   (82) 

where, 𝛿𝑟𝑝𝑡  is the demand for product 𝑝 at retailer 𝑟 in time period 𝑡. A strict demand constraint 

is imposed and the design is considered to be infeasible if the demand is not met. 

Feasibility constraints 

The production feasibility should be ensured at each production facility during each time period. 

This is accomplished with the help of machine learning-based feasibility models as shown in Eq. 

(83).  

 
𝑆𝑉𝑀𝑜𝑓(𝒙𝒕𝒇) ≥ −𝐾(1 − 𝑦𝑡𝑓𝑜)                         ∀𝑜 ∈ 𝒪𝑚; ∀𝑚 ∈ ℳ;∀𝑡 ∈ 𝒯; ∀𝑓

∈ ℱ 

  (83) 

where, 𝑆𝑉𝑀𝑜𝑓(𝒙𝒕𝒇) represents SVM models for option 𝑜 at production facility 𝑓; 𝐾 is the big-M 

constant for the feasibility constraints; 𝑦𝑡𝑓𝑜 are binary variable indicating if option 𝑜 ∈ 𝒪𝑚 for 
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module 𝑚 ∈ ℳ during time period 𝑡 is installed at production facility 𝑓; 𝒙𝒕𝒇 is material flow per 

production line during time period 𝑡 at production facility 𝑓. The value of 𝐾 is obtained empirically 

for each SVM model, since the upper and lower bounds on the variables are known over which a 

particular SVM model is applicable. A large number of samples are generated and the value of 

𝑆𝑉𝑀𝑜𝑓(𝒙𝒕𝒇) is calculated and 𝐾 is chosen to be larger than the maximum of all values. The 

constraint indicates that when 𝑦𝑡𝑓𝑜 is 1, 𝑆𝑉𝑀𝑜𝑓(𝒙𝒕𝒇) should be positive, indicating a feasible 

point. 

Moreover, it is assumed that each processing line at a production facility is subject to equal 

throughput as shown by Eq. (84) 

 

𝒙𝒕𝒇𝜈𝑡𝑓 =∑∑ 𝑄𝑠𝑓𝑎𝑡
𝑎∈𝒜𝑠∈𝒮

                         ∀𝑡 ∈ 𝒯; ∀𝑓 ∈ ℱ   (84) 

where,  𝜈𝑡𝑓  corresponds to the number of production lines during time period 𝑡 at production 

facility 𝑓; 𝒙𝒕𝒇 is the raw material flow per production line during time period 𝑡 at production 

facility 𝑓. Additionally, the process variables should be in agreement with the chosen module 

option as enforced by Eq. (85-86) 

 
𝑙𝑏𝑜 − 𝑥𝑡𝑓 ≤ 𝐻(1 − 𝑦𝑡𝑓𝑜)                         ∀𝑜 ∈ 𝒪𝑚; ∀𝑚 ∈ ℳ;∀𝑡 ∈ 𝒯; ∀𝑓 ∈ ℱ 

  (85) 

 
𝑥𝑡𝑓 − 𝑢𝑏𝑜 ≤ 𝐻(1 − 𝑦𝑡𝑓𝑜)                         ∀𝑜 ∈ 𝒪𝑚; ∀𝑚 ∈ ℳ;∀𝑡 ∈ 𝒯; ∀𝑓 ∈ ℱ 

  (86) 

where, 𝑢𝑏𝑜 is a vector of upper bounds on the variable 𝑥 for option 𝑜 for module 𝑚; 𝑙𝑏𝑜 is vector 

of lower bounds on the variable 𝑥 for option 𝑜 for module 𝑚; 𝐻 is a big-M constant. 

It is assumed that production facilities do not have any storage capacity for products and thus all 

the  material produced at production facilities is transported to warehouses for storage. The total 
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amount of products produced at the production facilities is the summation of the product 

produced at each parallel processing line as shown by Eq. (87) 

 

𝒙𝒕𝒇𝜈𝑡𝑓 = ∑∑𝑄𝑓𝑤𝑝𝑡
𝑝∈𝑃𝑓∈ℱ

                         ∀𝑡 ∈ 𝒯; ∀𝑤 ∈ 𝒲   (87) 

where, 𝒙𝒕𝒇 is the product flow per production line during time period 𝑡 at production facility 𝑓. 

Logical constraints 

The number of active processing lines at a given production facility in each time period are 

evaluated using Eq. (88). This is required for constraint given by Eq. (84) to model the throughput 

to each processing line. 

 

𝜈𝑡𝑓 = ∑ 𝑞𝑡𝑓𝑜
𝑜∈𝒪𝑚

             ∀𝑡 ∈ 𝒯, 𝑓 ∈ ℱ   (88) 

𝑞𝑡𝑓𝑜 is the number of production lines of option 𝑜 ∈ 𝒪𝑚 for module 𝑚 ∈ ℳ during time period 

𝑡 at production facility 𝑓. The constraints shown by Eq.(89 -90) are needed to evaluate 𝑧𝑚𝑜 as 

these variables are not included in any other constraints but are needed for the evaluation of the 

capital cost in the objective function. 

 
𝜈̅𝑓𝑜 ≥ 𝑞𝑡𝑓𝑜            ∀𝑡 ∈ 𝒯, ∀𝑓 ∈ ℱ, ∀𝑜 ∈ 𝒪𝑚; ∀𝑚 ∈ ℳ 

  (89) 

where, 𝜈̅𝑓𝑜 is the number of production lines of option 𝑜 ∈ 𝒪𝑚 for module 𝑚 ∈ℳ installed at 

production facility 𝑓. 

 

𝑧𝑚𝑜 = ∑ 𝜈̅𝑓𝑜
𝑓∈ℱ

            ∀𝑜 ∈ 𝒪𝑚; ∀𝑚 ∈ ℳ   (90) 
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The relation between integer variables 𝑞𝑡𝑓𝑜 and binary variables 𝑦𝑡𝑓𝑜 is established with the help 

of constraints given by Eq. (91-92). 

 
𝑦𝑡𝑓𝑜 ≤ 𝑞𝑡𝑓𝑜    ∀𝑡 ∈ 𝒯, 𝑓 ∈ ℱ, ∀𝑜 ∈ 𝒪𝑚; ∀𝑚 ∈ ℳ 

  (91) 

 
𝑞𝑡𝑓𝑜 ≤ 𝜈max𝑦𝑡𝑓𝑜             ∀𝑡 ∈ 𝒯, 𝑓 ∈ ℱ, ∀𝑜 ∈ 𝒪𝑚; ∀𝑚 ∈ ℳ 

  (92) 

It is assumed that the total number of units of each module active at a production facility are 

same for all modules. This is modeled using Eq. (93). 

 

∑ 𝑞𝑡𝑓𝑜
𝑜∈𝒪𝑚̅̅̅,𝑚̅∈ℳ

= ∑ 𝑞𝑡𝑓𝑜
𝑜∈𝒪𝑚,𝑚∈ℳ\{𝑚̅}

             ∀𝑡 ∈ 𝒯, 𝑓 ∈ ℱ   (93) 

It is assumed that in each time period, only one module option can be installed at a production 

facility as shown by Eq. (94)  

 

∑ 𝑦𝑡𝑓𝑜
𝑜∈𝒪𝑚,𝑚∈𝑀

≤ 1             ∀𝑡 ∈ 𝒯, 𝑓 ∈ ℱ   (94) 

where, 𝑄𝑓𝑤𝑝𝑡 , 𝑄𝑠𝑓𝑎𝑡 , 𝑄𝑤𝑟𝑝𝑡 , 𝐼𝑤𝑝𝑡, 𝑥𝑡𝑓  ∈ ℝ; 𝑧𝑚𝑜, 𝜈𝑡𝑓 , 𝜈̅𝑓𝑜, 𝑞𝑡𝑓𝑜 ∈ ℤ; 𝑦𝑡𝑓𝑜 ∈ {0,1}; 𝑄𝑓𝑤𝑝𝑡 ≥

0;𝑄𝑠𝑓𝑎𝑡 ≥ 0,𝑄𝑤𝑟𝑝𝑡 ≥ 0; 0 ≤ 𝐼𝑤𝑝𝑡 ≤ 𝐼𝑤̅𝑝; 0 ≤ 𝑥𝑡𝑓.  

It is assumed that the optimal production facilities selected by solving the optimization problem 

are installed at the beginning of the planning horizon. 

It is important to note that the constraints given by Eq.(84) and Eq.(87) contain additional bilinear 

terms. The bilinear terms in this case, are multiplications of continuous variable and integer 

variables. Since McCormick relaxations are accurate at the boundaries or end points, it is 

beneficial to express integer variables in terms of binary variables. This is achieved by first 

rewriting Eq. (84) and Eq. (87) as Eq.(95) and Eq.(96), respectively. 
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∑𝑔𝑡𝑓𝑗
𝑗∈𝐽

=∑∑ 𝑄𝑠𝑓𝑎𝑡
𝑎∈𝒜𝑠∈𝒮

   (95) 

 

∑𝑏𝑡𝑓𝑗
𝑗∈𝐽

= ∑∑𝑄𝑓𝑤𝑝𝑡
𝑝∈𝑃𝑓∈ℱ

   (96) 

where, 𝑔𝑡𝑓𝑗 and 𝑏𝑡𝑓𝑗 are intermediate variables which can be expressed as shown by Eq.(97) and 

Eq.(98), respectively. 

 
𝑔𝑡𝑓𝑗 = 𝒙𝒕𝒇𝑗𝑢𝑡𝑓𝑗 

  (97) 

 
𝑏𝑡𝑓𝑗 = 𝒙𝒕𝒇𝑗𝑢𝑡𝑓𝑗 

  (98) 

The integer variables 𝜈𝑡𝑓 are expanded using binary variables 𝑢𝑡𝑓𝑗, as shown by Eq.(99) and 

Eq.(100). 

 

∑𝑢𝑡𝑓𝑗
𝑗∈𝐽

= 1   𝐽 ∈ {0,… ,𝑁}   (99) 

where, 𝑁 is the upper bound on integer variables 𝜈𝑡𝑓. For each integer value from 0 to 𝑁, a binary 

variable 𝑢𝑡𝑓𝑗 is defined. Constraint given by Eq.(99) states that only one of the binary variables 

can be 1. Finally, the integer variables and the binary variables are related through Eq. (100) which 

ensures that if 𝑢𝑡𝑓𝑗 is 1, 𝜈𝑡𝑓 is 𝑗. 

 

∑𝑗𝑢𝑡𝑓𝑗
𝑗∈𝐽

= 𝜈𝑡𝑓  𝐽 ∈ {0,… ,𝑁}  (100) 

The constraints shown by Eq.(97) and Eq.(98) are then relaxed using McCormick relaxations as 

discussed in Section 5.3.2. The relaxations for Eq.(97) are shown by Eq. (101-104) 
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𝑔𝑡𝑓𝑗 ≥ 𝑥𝑡𝑓

𝐿 𝑗𝑢𝑡𝑓𝑗 
 (101) 

 
𝑔𝑡𝑓𝑗 ≥ 𝑥𝑡𝑓

𝑈 𝑗𝑢𝑡𝑓𝑗 + 𝑥𝑡𝑓𝑗 − 𝑥𝑡𝑓
𝑈 𝑗 

 (102) 

 
𝑔𝑡𝑓𝑗 ≤ 𝑥𝑡𝑓

𝑈 𝑗𝑢𝑡𝑓𝑗 
 (103) 

 
𝑔𝑡𝑓𝑗 ≤ 𝑥𝑡𝑓𝑗 + 𝑥𝑡𝑓

𝐿 𝑗𝑢𝑡𝑓𝑗 − 𝑥𝑡𝑓
𝐿 𝑗 

 (104) 

where, 𝑥𝑡𝑓
𝐿  and 𝑥𝑡𝑓

𝑈  represent lower and upper bounds on the continuous variables that represent 

the material flow rate of the raw materials respectively. The lower bound for binary variables is 0 

and the upper bound is 1. However, since the variable being relaxed is 𝑗𝑢𝑡𝑓𝑗, the upper bound is 

replaced by 𝑗. Similarly, the relaxations for Eq.(98) are shown by Eq.(105-108).  

 
𝑏𝑡𝑓𝑗 ≥ 𝑥𝑡𝑓

𝐿 𝑢𝑡𝑓𝑗 
 (105) 

 
𝑏𝑡𝑓𝑗 ≥ 𝑥𝑡𝑓

𝑈 𝑢𝑡𝑓𝑗 + 𝑥𝑡𝑓𝑗 − 𝑥𝑡𝑓
𝑈 𝑗 

 (106) 

 
𝑏𝑡𝑓𝑗 ≤ 𝑥𝑡𝑓

𝑈 𝑗𝑢𝑡𝑓𝑗 
 (107) 

 
𝑏𝑡𝑓𝑗 ≤ 𝑥𝑡𝑓𝑗 + 𝑥𝑡𝑓

𝐿 𝑗𝑢𝑡𝑓𝑗 − 𝑥𝑡𝑓
𝐿 𝑗 

 (108) 

where, 𝑥𝑡𝑓
𝐿  and 𝑥𝑡𝑓

𝑈  represent lower and upper bounds on the continuous variables that represent 

the material flow rate of the products respectively. Since the relaxations shown by Eq. (101-108) 

are with respect to the binary variable 𝑢𝑗, the relaxation will lead to the optimal solution of the 

original problem. 
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5.3 Background 

5.3.1 Economy of numbers 

In manufacturing, when a module is built in large numbers the cost of a module decreases because 

of the effect of learning or experience. This effect is studied under economies of experiential 

learning or economies of numbers and it is an important factor to consider for assessing the 

economic advantages of modular designs. Like the economy of scale where a 2/3rd power law is 

commonly used to estimate the capital cost across different scales, economies of numbers are 

modeled using an exponential relation as shown by Eq. (109) 

 
𝐶𝑒𝑜𝑛 = 𝐶0(𝑛)

𝛽   
 (109) 

where, 𝐶𝑒𝑜𝑛 represents the capital cost considering the economy of numbers; 𝛽 is the coefficient 

of mass production; 𝐶0 is the capital cost for producing one equipment; 𝑛 is the number of 

modules produced. 

Palys et al. [14] solve an integer programming problem where the number of modules is decided 

in order to minimize the supply chain cost. They study the effect of exponent 𝛽 on the supply 

chain cost using Eq. (109). The economy of numbers as shown by Eq. (109) and economies of scale 

can be combined to represent the capital cost as shown in Eq. (110) [17] 

 

𝐶 = 𝐶0 (
𝑑

𝐷0
)
𝛼

(𝑛)𝛽 
 (110) 

where, 𝛽 is the exponent for economy of scale. 𝑛 is the actual number of equipment; 𝛼𝑖 is the 

factor for economies of scale; 𝑑 is the equipment capacity; 𝐷0 represents the base capacity used 

for evaluating 𝐶0; 𝐶0 is total annualized capital cost. 
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5.3.2 Convexification of bilinear terms using McCormick relaxation 

The presence of bilinear terms in an MINLP problem can significantly affect the computational 

complexity of solving the problem to optimality by introducing additional nonconvexity which 

leads to multiple local optima. In such a case, the computational complexity of an MINLP model 

can be reduced if the problem can be partly or fully convexified. McCormick envelopes provide a 

way to convexify bilinear terms leading to a convex nonlinear programming model [226][227]. 

McCormick envelopes reduce the complexity of an MINLP problem at the cost of leading to a 

solution that does not corresponding to the objective function. Solution of the relaxed problem is 

a lower bound to the solution of the original problem. Therefore, there have been studies aiming 

to achieve a tighter relaxation that is closer to the true solution [228][229]. A typical bilinear term 

is shown by Eq.(111), where variables 𝑥 and 𝑦 are continuous variables. 

 
𝑥𝑦 = 𝑞 

 (111) 

Because of the term contains products of two variables, the resulting constraint is a nonconvex 

constraint. This constraint can be relaxed using McCormick relaxation as shown by Eq.(112). 

 
𝑞 ≥ 𝑥𝐿𝑦 + 𝑥𝑦𝐿 − 𝑥𝐿𝑦𝐿 

𝑞 ≥ 𝑥𝑈𝑦 + 𝑥𝑦𝑈 − 𝑥𝑈𝑦𝑈 

𝑞 ≤ 𝑥𝑈𝑦 + 𝑥𝑦𝐿 − 𝑥𝑈𝑦𝐿 

𝑞 ≤ 𝑥𝑦𝑈 + 𝑥𝐿𝑦 − 𝑥𝐿𝑦𝑈 

 (112) 

It should be noted that the McCormick relaxation is exact when one of the variables 𝑥 and 𝑦 in 

Eq.(112) is binary. In such a case, solving the relaxed problem leads to an optimal solution to the 

original MINLP.  
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In the context of the problem considered in this work, the bilinear term appears as a product of 

continuous and integer variables. To adapt the McCormick relaxation for integer variables while 

obtaining an exact solution, first the integer variables need to be expressed as binary variables. 

To achieve this, binary variables 𝑧𝑗 are introduced where each 𝑗 corresponds to an integer value 

of 𝑗 that the variable 𝑦 can take. By definition, only one of the variables 𝑧𝑗 can be 1. This is enforced 

by Eq. (113).  

 

∑𝑧𝑗
𝑗∈𝐽

= 1  (113) 

The relation between binary variables 𝑧𝑗 and the integer variables is established using Eq.(114). 

 

∑𝑗𝑧𝑗
𝑗

= 𝑦  (114) 

It can be observed that if the value of 𝑦 is 𝑗, 𝑧𝑗 is 1 and vice versa. Finally, intermediate variables 

𝑝 are used such that the relation shown by Eq. (115) 

 

∑𝑝𝑗
𝑗∈𝐽

= 𝑞  (115) 

where, each 𝑝𝑗  is expressed using Eq. (116). Variables 𝑝𝑗  are intermediate variables that do not 

hold any physical significance but are required to write McCormick relaxation for the bilinear 

terms. 

 
𝑝𝑗 = 𝑥𝑗𝑧𝑗   𝐽 ∈ {0,… ,𝑁} 

 (116) 

It can be observed that due to multiplication of continuous and binary variables in Eq.(116), the 

constraint is bilinear. McCormick relaxations can now be written for Eq.(116) that lead to an exact 

solution as that of the original problem. 
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5.4 Results 

In this section, a case study of a supply chain network consisting of a modular process that 

includes a system of reactor and separator is considered. A detailed explanation of the proposed 

solution methodology and results are first shown on a problem consisting of the planning horizon 

of six months and two planning periods of three months. The aim is to study the effect of mass 

production exponent on the optimal facility location, as well as on the optimal process design. 

Further, the framework is applied to another scenario consisting of eight planning periods of 3 

months with the planning horizon of two years. 

Problem definition 

To demonstrate the idea, a sample superstructure of the supply chain network is considered, as 

shown in Figure 5-1. The network consists three retailers and two warehouses and potential two 

suppliers and three production facilities to choose from. The planning horizon consists of two 

planning periods. In each time period, demand is realized by the retailers. The arrows in Figure 

5-1 show the allowable material flow in the supply chain network. The problem is to minimize the 

total cost of the supply chain, as shown by Eq.(74). The parameters such as distances between all 

possible combinations of entities in the supply chain superstructure, inventory holding costs at 

warehouses, product demands at the retailers, and operating costs at the production sites are 

known a priori. It is important to note that the network shown in Figure 5-1 represents a 

superstructure of all possible options for the optimal design of the supply chain network. The 

optimal design choice will also select the location of the entities in the supply chain network. 

At the production facilities, the production is carried out through a process consisting of a 

continuously stirred tank reactor in series with an ideal separator. The process is modularized into 

reactor and separator modules. The aim is to convert raw material A into two finished products B 
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and E, as shown in Figure 4-2. An isothermal liquid-phase reaction is considered following the 

kinetic mechanism as described in the previous studies of Rooney and Biegler [198] and Goyal and 

Ierapetritou [169]. The model equations for the process are shown by Eq. (117)  

 𝐹𝐴0 − 𝑥𝐴𝐹(1 − 𝛼) − 𝑉𝐶𝐴0(𝑘1 + 𝑘2)𝑥𝐴 = 0 

−𝐹𝑥𝐵(1 − 𝛼) + 𝑉𝐶𝐴0𝑘1𝑥𝐴 = 0 

−𝐹𝑥𝐶 + 𝑉𝐶𝐴0(𝑘2𝑥𝐴 − (𝑘3 + 𝑘4)𝑥𝐶 + 𝑘5𝑥𝐸) = 0 

−𝐹𝑥𝐷(1 − 𝛽) + 𝑉𝐶𝐴0𝑘3𝑥𝐶 = 0 

−𝐹𝑥𝐸(1 − 𝛽) + 𝑉𝐶𝐴0(𝑘4𝑥𝐶 − 𝑘5𝑥𝐷) = 0 

𝑥𝐴 + 𝑥𝐵 + 𝑥𝐶 + 𝑥𝐷 + 𝑥𝐸 − 1 = 0 

 (117) 

where, 𝑥𝐴, 𝑥𝐵, 𝑥𝐶, 𝑥𝐷, and 𝑥𝐸 represent the mole fraction of components A, B, C, D, and E, 

respectively; 𝑘𝑖 are the rate constants; 𝑉 is the volume of the reactor; 𝐶𝐴0 is the inlet 

concentration of A; 𝛼 is the recycle fraction of stream A and B; 𝛽 is the recycle fraction of D and 

E; 𝐹 is the molar flow rate at the outlet of the reactor; 𝐹𝐴0 is the molar flow rate at the inlet of the 

reactor. The nominal values of the kinetic constants are 𝑘1 = 0.0374, 𝑘2  =  0.0195, 𝑘3 =

 0.0165, 𝑘4 =  0.2701, and 𝑘5  =  0.0261.  

It is assumed that four reactor design options are available based on their volume. Different 

separator design options are available depending on the throughput that they can handle. The 

available options and the respective costs for the reactor and the separator are shown in Table 

5-1. 

Table 5-1: Design options for reactor and separator 

Options Reactor (m3) 𝑪𝒓 (k$) Separator 

(𝑭𝑨𝟎mol/h) 

𝑪𝒔 (k$) 

Option 1 5 400 30-50 300 
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Option 2 20 850 40-70 720 

Option 3 35 1200 60-100 980 

Option 4 50 1650 90-140 1210 

The problem is to determine the optimal supply chain network that minimizes the total cost of 

the supply chain over the planning horizon. The decisions include the following. i) location of 

production facilities ii) selection of module options to define a process iii) optimal material flow 

iv) optimal selection of suppliers v) Feasibility of satisfying the product demand. In general, it is 

assumed the coefficient of mass production will be known for the modules under consideration. 

However, in this problem, we study the effect of the coefficient of mass production on the optimal 

design of the network.  

 

Figure 5-2 Framework for integration of process data in the supply chain optimization 
formulation 

Solution methodology 

For solving this problem, the approach first obtains the feasibility constraints, followed by 

incorporating the constraints in the optimization formulation presented in Section 5.2. For 
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obtaining the feasibility constraints, the methodology used by Bhosekar and Ierapetritou [225] is 

used. The methodology is shown in Figure 5-2, and the details of the individual steps are described 

as follows. 

Step 1: The first step is to collect the historical feasibility data or data from process simulation. In 

this example, the data is obtained by running the simulation of the reactor, as shown in Eq. (69). 

The simulation is developed in GAMS 31.1.0 and solved as a nonlinear program using Baron mixed 

integer nonlinear programming solver version 20.4.14. Inputs for the simulation include four 

variables that are reactor volume, 𝐹𝐴0, 𝐹𝐵, and 𝐹𝐸. The output includes labels (-1 for infeasible 

and 1 for feasible) that indicate if the set of inputs leads to a feasible process. For each option of 

the reactor a grid-based sampling approach is used and 512 data points (10 samples in each 𝐹𝐴0, 

𝐹𝐵, 𝐹𝐸) are generated, and the output labels are collected. It is assumed that the feasibility of the 

ideal separator depends only on the inlet flow rate range. 

Step 2: In this step, we train a classifier for each option using the data generated in step 1. In this 

work, SVM is the chosen classifier, and SVM models are trained for the reactor as described in 

section 4.2.3. The scikit-learn python toolbox is used with default options for training the SVM 

models. It should be noted that since the separator is ideal and its feasibility depends only on the 

flow rate, there is no need to build a classifier for the separator. 

Step 3: In this step, the model quality is assessed using the test dataset. Because of the simplicity 

of the classifier equation and satisfactory performance, this work implements a linear kernel for 

solving the optimization problem using steps 4 and 5. The model performance needs to be 

improved by choosing a different kernel, more data, or different set of parameters, or a different 

classifier such as neural network if the model built in this step does not meet the desired quality. 
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The validation results for reactor options are shown in Table 5-2 where it can be observed that 

the models have satisfactory values for validation metrics. 

Table 5-2: SVM model validation for the reactor using a linear kernel 

Option  CF% CIF% NC% Total Error 

Option 1 100 100 0 0 

Option 2 86.36 97.53 9.52 4.85 

Option 3 81.82 95.71 10 8.73 

Option 4 85.36 88.7 16.66 12.62 

Step 4: In this step, we obtain an algebraic equation for the SVM model. This is done by obtaining 

the intercept and support vectors from the trained classifier from step 3. Since this is the only 

information required for Eq. (65), algebraic expression for the classifier can be obtained. 

Step 5: This is the final step of the framework where the classifier is incorporated into the 

optimization problem. The problem is obtained by replacing constraints shown by Eq. (117) with 

Eq. (118). 

  𝑆𝑉𝑀𝑟(𝒙) ≥ −𝑀1(1 − 𝑦𝑟)    ∀𝑟 ∈ 𝑅; ∀𝑘 ∈ 𝐾 

𝑉 − 𝑉𝑟 ≤ 𝑀(1 − 𝑦𝑟)    ∀𝑟 ∈ 𝑅 

𝑉𝑟 − 𝑉 ≤ 𝑀(1 − 𝑦𝑟)    ∀𝑟 ∈ 𝑅 

𝐹𝐴0 − 𝑢𝑏𝑠 ≤ 𝑀(1 − 𝑦𝑠))    ∀𝑠 ∈ 𝑆 

𝑙𝑏𝑠 − 𝐹𝐴0 ≤ 𝑀(1 − 𝑦𝑠))    ∀𝑠 ∈ 𝑆 

 (118) 

To study the effect of mass production exponent 𝛽, four different values of 𝛽 are considered. The 

problem is solved using GAMS 31.1.0 with CPLEX 12.10.0.0. The critical optimality tolerance is set 

to 0. The maximum allowable time limit for solving the problem to optimality is set to 10000 

seconds. First, a value of 1.0 is considered for the exponent of mass production. This value 
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indicates an absence of economy of numbers, as can be observed by Eq. (109). The optimal reactor 

and separator options, as well as optimal production facility location for this case, are shown in 

Table 5-3 along with the corresponding results for lower values of 𝛽 such as 0.7, 0.8, and 0.9. The 

total number of equipment for the chosen reactor and separator module options that are installed 

in the supply chain network for all values of 𝛽 under comparison are shown in Table 5-4. The units 

Ri and Si represent ith option for the reactor and separator respectively. For example, R1 

represents the first option for the reactor and S1 represents the first option for the separator. The 

number of lines in Table 5-3 correspond to the respective production facilities. For example, for 

𝛽 value of 0.7, there are production facilities 1, 2, and 3 have 1, 2, and 2 units of reactor option 2 

(R2) installed. 

Table 5-3 Optimal reactor and separator options as 𝛽 is changed 

 𝜷 = 𝟎. 𝟕 𝜷 = 𝟎. 𝟖 𝜷 = 𝟎. 𝟗 𝜷 = 𝟏. 𝟎 

Uni

t 

Productio

n facility 

Numbe

r of 

lines 

Productio

n facility 

Numbe

r of 

lines 

Productio

n facility 

Numbe

r of 

lines 

Productio

n facility 

Numbe

r of 

lines 

R1 - - - - - - - - 

R2 1,2,3 1,2,2 1,2,3 1,2,2 1 1 - - 

R3 - - - - 3 1 1 1 

R4 - - - - - - 3 1 

S1 1,2,3 1,2,2 1,2,3 1,2,2 - - 1 1 

S2 - - - - - - - - 

S3 - - - - - - - - 

S4 - - - - 1,3 1,1 3 1 
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Table 5-4 The total number of equipment for the reactor and separator 

 𝜷 = 𝟎. 𝟕 𝜷 = 𝟎. 𝟖 𝜷 = 𝟎. 𝟗 𝜷 = 𝟏. 𝟎 

Unit Total number of 

lines 

Total number of 

lines 

Total number of 

lines 

Total number of 

lines 

R1 - - - - 

R2 5 5 1 - 

R3 - - 1 1 

R4 - - - 1 

S1 5 5 - 1 

S2 - - - - 

S3 - - - - 

S4 - - 2 1 

It can be observed from Table 5-3 that in the absence of the economy of numbers (the case with 

𝛽 = 1), the optimal solution includes one unit each of two reactor options and one unit each of 

two separator options. The options selected are options 3 and 4 for the reactor and options 1 and 

4 for the separator. As 𝛽 is reduced to 0.9, effect of economy of numbers can be observed as 

illustrated in Table 5-3, the optimal solution includes two units of separator option 4 and reactor 

options 2 and 3. This shows that the optimal solution slightly favors standardized and smaller 

units. This effect is more profound for lower values of 𝛽 where the reactor option 1 and separator 

option 2 leads to the most cost-effective solutions. Since the options shown in the first two 

columns of Table 5-3 represent smaller and less expensive units than those shown in the next two 

columns, it can be observed that in the presence of the economy of numbers, smaller modules 

are cost-efficient. For the results related to 𝛽 values of 0.9 and 1.0 in Table 5-3, it can be observed 

that the optimal solution includes production facilities 1 and 3, whereas production facility 2 is 
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excluded. On the other hand, for the values of 𝛽 of 0.7 and 0.8, all production facilities are 

selected, signifying a more distributed production. It should also be noted that in the absence of 

the economy of numbers, the framework prefers bigger and decentralized production, indicating 

that the tradeoff between capital cost savings and transportation costs is addressed. The 

individual costs for all the values of 𝛽 are reported in Table 5-5. For lower values of 𝛽, the 

framework finds a solution that reduces transportation cost, as well as the capital cost. In the 

absence of the economy of numbers, this solution is not preferred. This is because the savings in 

the capital costs dominate the savings in the transportation costs.  

These trends are better depicted in Figure 5-3, Figure 5-4, and Figure 5-5. Optimal total cost 

increases as the exponent of mass production is increased, as shown in Figure 5-3. This is intuitive 

since the solution obtained with the consideration of the economy of numbers will be at least as 

cost-effective as the solution obtained with the consideration of the economy of numbers since 

the only difference in two cases is the capital cost, which will be lower. However, Figure 5-4 

demonstrates the difference in the transportation cost, which indicates that a different solution 

is preferred for the cases where 𝛽 is 0.7 and 0.8. Figure 5-5 shows the capital cost corresponding 

to the optimal solutions as the coefficient of mass production is varied from 0.7 to 1. It can be 

observed the capital cost increases as 𝛽 is increased. However, the second data series presented 

in Figure 5-5 shows the capital cost for the optimal solution if 𝛽 was equal to 1. This shows that 

for the case when 𝛽 is 1, the gain achieved by centralized and relatively larger scale process 

modules dominates the advantages of the solutions preferred when 𝛽 is 0.7.  

Table 5-5 Cost comparison for different values of 𝛽 

Cost 𝜷 = 𝟎. 𝟕 𝜷 = 𝟎. 𝟖 𝜷 = 𝟎. 𝟗 𝜷 = 𝟏. 𝟎 

Total cost(mil $) 3.815304 4.434842 4.622018 4.678892 
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Transportation cost (mil $) 0.194348 0.194348 0.241078 0.245892 

Capital cost (mil $) 3.547945 4.167483 4.307939 4.360000 

Operating cost (k$) 73.000 73.000 73.000 73.000 

Inv cost ($) 10.6 10.6 0 0 

 

 

Figure 5-3 Optimal total cost as mass production exponent is varied 
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Figure 5-4 Optimal transportation cost as the mass production exponent is varied 

 

 

Figure 5-5 Optimal capital cost as the mass production exponent is varied 
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be known. Due to a longer planning horizon and more number of supply chain entities this 

problem is computationally more demanding than the previous case study. 

The problem is solved using the formulation proposed in section 5.2 using the mixed integer linear 

programming solver CPLEX through GAMS with a time limit of 10000 seconds. The critical 

optimality tolerance is set to 2 percent. The problem has 1056 discrete variables, and the problem 

is solved to optimality in 9510 seconds on a PC with Intel® Xeon® CPU E-2174G @ 3.80GHz and 

32.0 GB RAM, running a Windows 10 Enterprise, 64-bit operating system when the value of 𝛽 is 

0.7. The optimal total cost obtained is $7.74 million, and the optimal solution is presented in Table 

5-6 and Table 5-7. The same problem in the absence of economy of numbers leads to a different 

solution in 3970 seconds with an optimal cost of $49.07 million, as shown in the columns 

corresponding to 𝛽 = 1 in Table 5-6 and Table 5-7. The key difference is that the reactor and 

separator options proposed by the optimal solution are bigger than those suggested for the 

previous case with 𝛽 = 0.7. The results for 𝛽 value of 1 are shown in the columns corresponding 

to 𝛽 = 1 in Table 5-6 and Table 5-7. It can be observed that only three units of reactor and 

separator option 4 are included in the optimal solution. This again shows that with the 

consideration for the economy of numbers, distributed and smaller-scale manufacturing is 

preferred. 

Table 5-6 Optimal reactor and separator options for two values of β 

 
𝜷 = 𝟎. 𝟕 𝜷 = 𝟏 

Unit Production 

facility 

Number of lines Production 

facility 

Number of lines 

R1 - - - - 
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R2 1,2,3,4 2,4,3,1 - - 

R3 - - - - 

R4 - - 1,2,3 1,1,1 

S1 1,2,3,4 2,4,3,1 - - 

S2 - - - - 

S3 - - - - 

S4 - - 1,2,3 1,1,1 

 

Table 5-7 The total number of equipment for the reactor and separator 

 𝜷 = 𝟎. 𝟕 𝜷 = 𝟏 

Unit Total number of lines Total number of lines 

R1 - - 

R2 10 - 

R3 - - 

R4 - 3 

S1 10 - 

S2 - - 

S3 - - 

S4 - 3 
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Finally, it should be noted that the optimal solutions across all the scenarios considered in the two 

case studies consist of different options for the reactor and separator. For 𝛽 value of 1, the 

optimal solution includes reactor option 4 and separator option 4. On the other hand, for 𝛽 value 

of 0.7, the optimal solution includes reactor option 2 and separator option 1. The ability to pick 

the most appropriate modules for the different unit operations involved in the production facility 

can provide an additional flexibility to supply chain design optimization compared to the case 

where the entire processing line is considered as one module. 

5.5 Conclusions 

In this work, a modular supply chain optimization formulation is presented. The formulation 

considers multiperiod optimization of the supply chain network and simultaneously addresses the 

problems of facility location, process design, production feasibility analysis, and the effect of mass 

production on the capital cost of the process. For finding an optimal facility location, the 

formulation chooses an optimal solution from the set of potential locations. For production 

feasibility analysis, the model uses SVM classifiers trained using historical production data to 

approximate the feasible region of the available standardized process modules. For modeling the 

effect of mass production, an exponential relation is used with the help of the coefficient of mass 

production that reduces the cost per-module as more modules are installed. The resulting 

problem consists of binary variables that represent facility locations, and integer variables 

represent the number of modular equipment installed. This results in an MINLP problem, and the 

optimal solution addresses the tradeoff between centralized vs. distributed manufacturing. Since 

the coefficient of mass production depends on the specific modules considered in the problem of 

interest, a study is provided for different values of the coefficient of mass production.  
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The resulting problem is reformulated with the help of McCormick relaxations that help reduce 

the computational complexity of the formulation. Further, the nonlinearity in the capital cost 

resulting from the economies of numbers is resolved with the help of binary expansion of integer 

variables converting the optimization problem to an MILP problem. The formulation is applied to 

a case study of a process consisting of a reactor and separator, where the process can be 

modularized in two modules based on the unit operations. The process design is obtained by 

choosing from multiple options for each module, varying in cost as well as capacity. The supply 

chain optimization problem is solved for two scenarios. In the first scenario, a two-period planning 

horizon is assumed, and in the second scenario, a five-period planning horizon is considered. 

Studying the effect of exponent of mass production, it is noted that considering the economy of 

numbers is essential in truly assessing the economic viability of a small scale, modular, and 

distributed manufacturing. This work also demonstrates a way using which historical data about 

a process can be utilized in supply chain network design. As opposed to traditional studies where 

processing capacity is assumed, the accurate representations of process feasible regions can help 

in understanding the flexibility of a supply chain network with respect to uncertain parameters 

such as the product demands. Finally, the formulation presented in this work can be extended in 

multiple directions. In terms of optimization, for larger-scale problems, decomposition algorithms 

for improving the computational complexity will be investigated. The formulation can be 

extended to conduct a systematic flexibility analysis of the supply chain network when subject to 

product demand uncertainty.  
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6 Modular supply chain optimization under uncertainty 

Abstract 

Due to increased competition, globalization, and market volatility, supply chain design under 

demand uncertainty has been a challenging problem. With the flexibility in strategic decisions as 

well as in the processing capacity that the modular designs provide, modular manufacturing is a 

promising way forward for addressing supply chain design under uncertainty. It has been shown 

that modular designs provide several advantages such as flexible processing capacity, lower costs 

due to standardization. In this work, a supply chain network consisting of modular processes is 

considered. The problem of simultaneously designing the process as well as the supply chain is 

addressed under product demand uncertainty for a multiperiod planning horizon. A mixed integer 

two-stage stochastic linear programming model is formulated with integer variables indicating 

the process design and continuous variables represent the material flow in the supply chain 

network. The problem is solved using a rolling horizon approach. Benders decomposition is used 

to reduce the computational complexity of the optimization problem. In addition to minimizing 

the expected cost of the supply chain network, a downside risk measure is incorporated that helps 

risk-averse decision making. The results demonstrate the flexibility of modular designs to achieve 

the desired throughputs and, at the same time, yield a pareto optimal curve for minimizing the 

objectives of expected cost and downside risk. 

6.1 Introduction 

The increasing popularity of modular design can be attributed to several manufacturing and 

strategic advantages that modular designs provide. Modular designs reduce time-to-market for a 

product because of preassembled modules, lower construction times due to standardization, and 

the possibility of numbering up identical devices to achieve the desired production. Shorter time-
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to-market, combined with the safety of operation[9], reduces the financial risk for the 

investors[152]. Moreover, centralized large-scale manufacturing often means high transportation 

costs for the delivery of raw materials as well as the products. In contrast, small scale, modular 

manufacturing provides a way to distribute manufacturing effectively to reduce transportation 

costs. Finally, with repeated production of standardized units, engineers, as well as the vendors, 

gain experience, which results in lowering the capital cost and improving production lead time 

[17][215][216]. As the benefits of modular processes are better appreciated at the supply chain 

level, recent literature focuses on the supply chain consisting of modular processes. Palys et al. 

[14] consider ammonia supply chain optimization where modular, renewable ammonia 

production using the new technology can be added to the existing supply chain network. In their 

study, the cost of traditional centralized production is compared with a modular design by varying 

the mass production exponent that quantifies the cost-savings due to standardization. Allman and 

Zhang [217] address the possibility of mobile production units and determine their optimal 

location and relocation under time-varying demands. Becker et al. [218] demonstrate increased 

flexibility due to modular manufacturing on the network cost for the problem of tactical planning 

of modular production networks. The formulations proposed in their work determine the 

location, process, and capacity of modular plants. Lier et al. [219] provide a review of challenges 

on the equipment level, network level, and logistics level for transformable production with 

modular composition. Yang and You [153] study the economic and environmental aspects of plant 

relocation, centralized manufacturing, and distributed manufacturing for methanol 

manufacturing using a model-based study. The aforementioned work considers the deterministic 

supply chain optimization problem.  

However, in a practical supply chain network, several uncertainties exist in the form of product 

demand, production delays, and delivery times to list a few. Due to market volatility, supply chain 
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design under uncertainty has been a challenging problem. You and Grossmann [230] consider the 

problem of the design of a responsive supply chain addressing the objectives of cost and expected 

lead times. They propose optimization models and algorithms to solve those models to address 

the integrated problem of network design and inventory management[231]. Sahay and 

Ierapetritou [232] propose a hybrid simulation and optimization framework for supply chain 

optimization under demand uncertainty, where the downside risk and profit objectives are 

simultaneously optimized. They show that supply chain design considering only the periods in the 

near future may lead to infeasible supply chain network for future periods when product demand 

increases. In such a case, desired service levels will not be maintained. Since modular 

manufacturing provides greater flexibility than a centralized plant, it provides a promising way in 

this respect. With modular manufacturing, inefficiencies due to overdesign can be avoided at the 

same time maintaining desired service levels and low inventory costs. However, for the case of 

supply chains with modular processing, uncertainty considerations are relatively less explored. 

Allen et al. [16] consider the problem of shale gas production planning, where uncertainties are 

associated with the depletion of resources. Considering the mobility of modular equipment, they 

solve a multistage stochastic programming problem. They note that modular plants are beneficial 

in such a case due to the possibility of operating at lower throughputs as the resources deplete. 

As shown by our recent work [188], considering production feasibility in design optimization as 

well as in supply chain optimization (Chapter 5) can provide an additional level of flexibility where 

a process can be defined using the appropriate standardized modules of choice. 

The critical details at the production level relate to defining a process based on a limited number 

of different modules [155]. Previously[225], it has been shown that modular designs have an 

added advantage of providing a quantitative estimate of the flexibility of process design. One 

reason for flexibility is the increased degrees of freedom since individual modules can be designed 
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instead of designing the process as a whole. The approach presented in our previous work uses 

historical information related to the feasible region of operation for each module in a data-driven 

feasibility analysis framework. Process feasibility can then be defined using the feasibility of 

individual modules. Consideration for feasibility in the optimization process can have several 

advantages, and this approach has been proven useful in the past on a variety of applications as 

discussed in section 2.4). In this work, it is assumed that data-driven approximation of the feasible 

region is available. 

In this work, the supply chain network design problem is addressed using modular production to 

determine the optimal process design, and the facility location to minimize the total cost of the 

supply chain over the desired planning horizon. The formulation presented in this work uses 

support vector machine (SVM) models trained using historical process data as an approximation 

of the feasible region for each process module. The feasibility analysis approach used in this work 

provides a way to integrate production level details in the supply chain optimization problem. The 

product demand is considered to be uncertain with a known probability distribution. The resulting 

problem is a two-stage stochastic mixed integer programming problem where binary variables 

represent facility locations, integer variables represent the number of modular equipment 

installed, and continuous variables represent the material flow in the network. The problem is 

reformulated as a large-scale mixed integer linear programming model by representing 

probability distribution in terms of a finite number of scenarios. The problem of computational 

complexity for the large-scale problem is reduced by using Benders decomposition. Multiperiod 

decisions are implemented using a rolling horizon optimization approach. The formulation also 

accounts for risk-averse decision-making with the help of downside risk. The resulting problem is 

a multiobjective optimization problem where the objectives of minimizing the total cost as well 

as minimizing the downside risk are simultaneously achieved. A set of pareto optimal solutions is 
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achieved by solving the problem to optimality. The results also demonstrate that modular designs 

provide flexibility to adjust processing capacity as the product demand increases over the 

planning horizon. 

The chapter is organized as follows. The supply chain optimization model is presented in section 

6.2. The relevant background regarding various details of the formulation is provided in section 

6.3. The formulation is solved for two case studies, and the results are presented in section 6.4. 

Section 6.5 provides a summary and concluding remarks. 

6.2 Supply chain model 

The supply chain network considered in this work is generic and is motivated by our previous work 

[188]. The network consists of suppliers, production facilities, warehouses, and retailers. The 

demand is realized at each retailer in each time period. The product or raw material flow is 

allowed using all possible pathways i.e. all suppliers can send material to all production facilities, 

all production facilities can send material to all warehouses, and all warehouses can send material 

to all retailers. It is important to note that the production details are taken into account, and the 

production is carried out using modular processes.  This results in a key difference between 

traditional supply chain optimization formulations and the formulation presented in this work. 

Since the problem aims to find the number of modules used at each production facility, integer 

variables are introduced as opposed to binary variables, which limit the information to a yes or 

no decision. A typical supply chain network is shown in Figure 5-1.  

The decisions to be made by optimizing this network include the choice of a production facility 

for production in each time period, the number and the type of modules to be installed at each 

production site, the amount of material transported between suppliers, production facilities, 

warehouses, and retailers.  
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6.2.1 Optimization problem formulation 

Based on the notations described in Appendix B an MILP model is formulated. 

Objective. Minimizing the total cost is the primary objective of this formulation. The total cost 

consists of transportation cost, inventory cost, capital cost, and operating cost as shown by Eq. 

(119) 

 

minimize cost = ∑ ∑ 𝜁𝑓𝑚𝑜𝑧𝑚𝑜
𝑜∈𝒪𝑚𝑚∈ℳ

 

+𝔼(∑(∑ ∑ ∑𝑄𝑓𝑤𝑝𝑡𝑖
𝑝∈𝑃

𝑐𝑓𝑝
𝑤∈𝒲𝑓∈ℱ𝑡∈𝒯

 

+ ∑ ∑ ∑𝑄𝑓𝑤𝑝𝑡𝑖
𝑝∈𝑃

ℎ𝑓𝑤𝑝
𝑤∈𝒲𝑓∈ℱ

 

+∑∑∑ 𝑄𝑠𝑓𝑎𝑡𝑖
𝑎∈𝒜

ℎ𝑠𝑓𝑎
𝑓∈ℱ𝑠∈𝒮

+ ∑ ∑∑𝑄𝑤𝑟𝑝𝑡𝑖
𝑝∈𝑃

ℎ𝑤𝑟𝑝
𝑟∈ℛ𝑤∈𝒲

 

+ ∑ ∑ 𝐼𝑤𝑝𝑡𝑖𝑔𝑤𝑝
𝑝∈𝒫𝑤∈𝒲

+∑∑𝐵𝑟𝑝𝑡𝑖𝑏𝑟𝑝
𝑝∈𝒫𝑟∈ℛ

)) 

 (119) 

where, 𝑄𝑓𝑤𝑝𝑡𝑖 is the quantity of the product 𝑝 delivered from production facility 𝑓 to warehouse 

𝑤 in time period 𝑡 of scenario 𝑖; , 𝑄𝑠𝑓𝑎𝑡𝑖 is the quantity of the raw material 𝑎 delivered from 

supplier 𝑠 to production facility 𝑓 in time period 𝑡 of scenario 𝑖; 𝑄𝑤𝑟𝑝𝑡𝑖 is the quantity of product 

𝑝 delivered from warehouse 𝑤 to retailer 𝑟 in time period 𝑡 of scenario 𝑖; 𝑐𝑓𝑝 operating cost per 

unit of product 𝑝 at production facility 𝑓; ℎ𝑓𝑤𝑝 is transportation cost per unit of product 𝑝 from 

production facility 𝑓 to warehouse 𝑤; ℎ𝑠𝑓𝑎 transportation cost per unit of raw material 𝑎 from 

supplier 𝑠 to production facility 𝑓; ℎ𝑤𝑟𝑝 is transportation cost per unit of product 𝑝 from 
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warehouse 𝑤 to retailer 𝑟; 𝑔𝑤𝑝 is inventory cost for storing a unit of product 𝑝 for one time period 

at warehouse 𝑤; 𝜁𝑓𝑚𝑜 is the capital cost for installing one unit of option 𝑜 for module 𝑚 at a 

production facility 𝑓; 𝑧𝑚𝑜 is the number of units of option 𝑜 ∈ 𝒪𝑚 for module 𝑚 ∈ℳ installed 

across all production facilities; 𝐼𝑤𝑝𝑡𝑖 is the inventory of product 𝑝 ∈ 𝒫 stored at warehouse 𝑤 

during time period 𝑡 of scenario 𝑖; 𝐵𝑟𝑝𝑡𝑖 is the unmet demand for product 𝑝 at retailer 𝑟 in time 

period 𝑡 of scenario 𝑖; 𝑏𝑟𝑝 is the penalty per unit of unmet demand of product 𝑝 at retailer 𝑟.  

Inventory balance 

Inventory balance must be satisfied at each warehouse at each time period. Warehouse inventory 

at each time period is the difference between the amount of product they ship out and the 

amount of product they receive added to the warehouse inventory at the end of the previous 

planning period, as shown by Eq. (120). At the beginning of the first time period, the initial 

inventory 𝐼𝑤𝑝0 is known and introduced as a model parameter. 

 

𝐼𝑤𝑝𝑡𝑖 = 𝐼𝑤𝑝(𝑡−1)𝑖 +∑ ∑ 𝑄𝑓𝑤𝑝𝑡𝑖
𝑤∈𝒲𝑓∈ℱ

− ∑ ∑𝑄𝑤𝑟𝑝𝑡𝑖
𝑟∈ℛ𝑤∈𝒲

  

∀𝑤 ∈ 𝒲,∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯, ∀𝑖 ∈ 𝑆𝐶 

 (120) 

where 𝐼𝑤𝑝𝑡𝑖 is the inventory of product 𝑝 ∈ 𝒫 stored at warehouse 𝑤 during time period 𝑡 of 

scenario 𝑖. It is assumed that there is no inventory at the production facilities. As a result, no 

reorder policy is incorporated at the warehouses. 

Demand satisfaction 

The difference between the product demand and the amount of product delivered to the retailer 

is unmet demand. This is formulated by Eq.(121) 
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𝛿𝑟𝑝𝑡𝑖 − ∑ 𝑄𝑤𝑟𝑝𝑡𝑖
𝑤∈𝒲

= 𝐵𝑟𝑝𝑡𝑖              ∀𝑟 ∈ ℛ, ∀𝑝 ∈ 𝒫, ∀𝑡 ∈ 𝒯, ∀𝑖 ∈ 𝑆𝐶  (121) 

where, 𝛿𝑟𝑝𝑡𝑖  is the demand for product 𝑝 at retailer 𝑟 in time period 𝑡 of scenario 𝑖; 𝐵𝑟𝑝𝑡𝑖 is the 

unmet demand of product 𝑝 in time period 𝑡 in scenario 𝑖 at retailer 𝑟. The service level is then 

calculated using Eq. (122). 

 

𝑆𝐿𝑖 = 1 −
∑ ∑ ∑ 𝐵𝑟𝑝𝑡𝑖𝑟𝑝𝑡

∑ ∑ ∑ 𝛿𝑟𝑝𝑡𝑖𝑟𝑝𝑡
 

 (122) 

Downside risk 

The downside risk is defined using Eq. (123-125). 

 
𝜓𝑖 = Ω− 𝑆𝐿𝑖; 𝜓𝑖 ≥ 0 

 (123) 

 

𝐷𝑅 =∑𝜋𝑖𝜓𝑖
𝑖

  (124) 

 
𝐷𝑅 ≤ 𝜖 

 (125) 

where, Ω is the target service level; 𝜓𝑖 is the difference in service level for scenario 𝑖 and the 

target service level; 𝐷𝑅 is the expected downside risk; 𝜖 is the risk tolerance parameter specified 

by the user; 𝜋𝑖 is the probability of scenario 𝑖. 

 Feasibility constraints 

The production feasibility should be ensured at each production facility during each time period. 

This is accomplished with the help of machine learning-based feasibility models, as shown in Eq. 

(126).  
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𝑆𝑉𝑀𝑜𝑓(𝒙𝒕𝒇𝒊) ≥ −𝐾(1 − 𝑦𝑓𝑜)               ∀𝑜 ∈ 𝒪𝑚; ∀𝑚 ∈ ℳ;∀𝑡 ∈ 𝒯;∀𝑓 ∈ ℱ 

 (126) 

where, 𝑆𝑉𝑀𝑜𝑓(𝒙𝒕𝒇𝒊) represents SVM models for option 𝑜 at production facility 𝑓; 𝐾 is the big-M 

constant for the feasibility constraints; 𝑦𝑓𝑜 are binary variables indicating if option 𝑜 ∈ 𝒪𝑚 for 

module 𝑚 ∈ ℳ is installed at production facility 𝑓; 𝒙𝒕𝒇𝒊 is material flow per production line during 

time period 𝑡 at production facility 𝑓 in scenario 𝑖. The value of 𝐾 is obtained empirically for each 

SVM model, since the upper and lower bounds on the variables are known over which a particular 

SVM model is applicable. A large number of samples are generated and the value of 𝑆𝑉𝑀𝑜𝑓(𝒙𝒕𝒇) 

is calculated, and 𝐾 is chosen to be larger than the maximum of all values. The constraint indicates 

that when 𝑦𝑓𝑜 is 1, 𝑆𝑉𝑀𝑜𝑓(𝒙𝒕𝒇) should be positive, indicating a feasible point. 

Moreover, it is assumed that each processing line at a production facility is subject to equal 

throughput as shown by Eq. (127) 

 

𝒙𝒕𝒇𝒊𝜈𝑓 =∑∑ 𝑄𝑠𝑓𝑎𝑡𝑖
𝑎∈𝒜𝑠∈𝒮

                         ∀𝑡 ∈ 𝒯; ∀𝑓 ∈ ℱ, ∀𝑖 ∈ 𝑆𝐶  (127) 

where,  𝜈𝑓  corresponds to the number of production lines at production facility 𝑓; 𝒙𝒕𝒇𝒊 is the raw 

material flow per production line during time period 𝑡 at production facility 𝑓 for scenario 𝑖. 

Additionally, the process variables should be in agreement with the chosen module option as 

enforced by Eq. (128-129) 

 
𝑙𝑏𝑜 − 𝑥𝑡𝑓𝑖 ≤ 𝐻(1 − 𝑦𝑓𝑜)                         ∀𝑜 ∈ 𝒪𝑚; ∀𝑚 ∈ ℳ;∀𝑡 ∈ 𝒯; ∀𝑓 ∈ ℱ 

 (128) 

 
𝑥𝑡𝑓𝑖 − 𝑢𝑏𝑜 ≤ 𝐻(1 − 𝑦𝑓𝑜)                        ∀𝑜 ∈ 𝒪𝑚; ∀𝑚 ∈ ℳ;∀𝑡 ∈ 𝒯;∀𝑓 ∈ ℱ 

 (129) 

where, 𝑢𝑏𝑜 is a vector of upper bounds on the variable 𝑥 for option 𝑜 for module 𝑚; 𝑙𝑏𝑜 is vector 

of lower bounds on the variable 𝑥 for option 𝑜 for module 𝑚; 𝐻 is a big-M constant. 
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It is assumed that production facilities do not have any storage capacity for products, and thus all 

the material produced at production facilities is transported to warehouses for storage. The total 

amount of products manufactured at the production facilities is the summation of the product 

manufactured at each parallel processing line as shown by Eq. (130) 

 

𝒙𝒕𝒇𝒊𝜈𝑓 = ∑∑𝑄𝑓𝑤𝑝𝑡𝑖
𝑝∈𝑃𝑓∈ℱ

                         ∀𝑡 ∈ 𝒯; ∀𝑤 ∈ 𝒲,∀𝑖 ∈ 𝑆𝐶  (130) 

where, 𝒙𝒕𝒇𝒊 is the product flow per production line during time period 𝑡 at production facility 𝑓 

for scenario 𝑖. 

Logical constraints 

The number of active processing lines at a given production facility in each time period is 

evaluated using Eq. (131). This is required for constraint given by Eq. (127) to model the 

throughput to each processing line. 

 

𝜈𝑓 = ∑ 𝑞𝑓𝑜
𝑜∈𝒪𝑚

            𝑓 ∈ ℱ  (131) 

𝑞𝑓𝑜 is the number of production lines of option 𝑜 ∈ 𝒪𝑚 for module 𝑚 ∈ℳ at production facility 

𝑓. The constraint shown by Eq.(132) is needed to evaluate 𝑧𝑚𝑜. 

 

𝑧𝑚𝑜 = ∑𝑞𝑓𝑜
𝑓∈ℱ

            ∀𝑜 ∈ 𝒪𝑚; ∀𝑚 ∈ ℳ  (132) 

The relation between integer variables 𝑞𝑓𝑜 and binary variables 𝑦𝑓𝑜 is established with the help 

of constraints given by Eq. (133-134). 

 
𝑦𝑓𝑜 ≤ 𝑞𝑓𝑜    𝑓 ∈ ℱ, ∀𝑜 ∈ 𝒪𝑚; ∀𝑚 ∈ ℳ 

 (133) 
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𝑞𝑓𝑜 ≤ 𝜈max𝑦𝑓𝑜             𝑓 ∈ ℱ, ∀𝑜 ∈ 𝒪𝑚; ∀𝑚 ∈ ℳ 

 (134) 

It is assumed that the total number of units of each module active at a production facility are the 

same for all modules. This is modeled using Eq. (135). 

 

∑ 𝑞𝑓𝑜
𝑜∈𝒪𝑚̅̅̅,𝑚̅∈ℳ

= ∑ 𝑞𝑓𝑜
𝑜∈𝒪𝑚,𝑚∈ℳ\{𝑚̅}

             𝑓 ∈ ℱ  (135) 

It is assumed that in each time period, only one module option can be installed at a production 

facility as shown by Eq. (136)  

 

∑ 𝑦𝑓𝑜
𝑜∈𝒪𝑚,𝑚∈𝑀

≤ 1             ∀𝑡 ∈ 𝒯, 𝑓 ∈ ℱ  (136) 

where, 𝑄𝑓𝑤𝑝𝑡𝑖 , 𝑄𝑠𝑓𝑎𝑡𝑖, 𝑄𝑤𝑟𝑝𝑡𝑖, 𝐼𝑤𝑝𝑡𝑖, 𝑥𝑡𝑓𝑖  ∈ ℝ; 𝑧𝑚𝑜, 𝜈𝑓 , 𝑞𝑓𝑜 ∈ ℤ; 𝑦𝑓𝑜 ∈ {0,1}; 𝑄𝑓𝑤𝑝𝑡𝑖 ≥

0;𝑄𝑠𝑓𝑎𝑡𝑖 ≥ 0,𝑄𝑤𝑟𝑝𝑡𝑖 ≥ 0; 0 ≤ 𝐼𝑤𝑝𝑡𝑖 ≤ 𝐼𝑤̅𝑝; 0 ≤ 𝑥𝑡𝑓𝑖.  

It is assumed that the optimal production facilities selected by solving the optimization problem 

are installed at the beginning of the planning horizon. 

It is important to note that the constraints given by Eq.(127) and Eq.(130) contain additional 

bilinear terms. The bilinear terms, in this case, are multiplications of a continuous variable and 

integer variables. Since McCormick relaxations are accurate at the boundaries or endpoints, it is 

beneficial to express integer variables in terms of binary variables. This is achieved by first 

rewriting Eq. (127) and Eq. (130) as Eq.(137) and Eq.(138), respectively. 

 

∑𝑔𝑡𝑓𝑗𝑖
𝑗∈𝐽

=∑∑ 𝑄𝑠𝑓𝑎𝑡𝑖
𝑎∈𝒜𝑠∈𝒮

  (137) 
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∑𝑏𝑡𝑓𝑗𝑖
𝑗∈𝐽

= ∑∑𝑄𝑓𝑤𝑝𝑡𝑖
𝑝∈𝑃𝑓∈ℱ

  (138) 

where, 𝑔𝑡𝑓𝑗𝑖 and 𝑏𝑡𝑓𝑗𝑖 are intermediate variables which can be expressed as shown by Eq.(139) 

and Eq.(140), respectively. 

 
𝑔𝑡𝑓𝑗𝑖 = 𝒙𝒕𝒇𝒊𝑗𝑢𝑓𝑗 

 (139) 

 
𝑏𝑡𝑓𝑗𝑖 = 𝒙𝒕𝒇𝒊𝑗𝑢𝑓𝑗  

 (140) 

The integer variables 𝜈𝑡𝑓 are expanded using binary variables 𝑢𝑡𝑓𝑗, as shown by Eq.(141) and 

Eq.(142). 

 

∑𝑢𝑓𝑗
𝑗∈𝐽

= 1   𝐽 ∈ {0,… ,𝑁}  (141) 

where, 𝑁 is the upper bound on integer variables 𝜈𝑓. For each integer value from 0 to 𝑁, a binary 

variable 𝑢𝑓𝑗 is defined. Constraint, given by Eq. (141), states that only one of the binary variables 

can be 1. Finally, the integer variables and the binary variables are related through Eq. (142) which 

ensures that if 𝑢𝑓𝑗 is 1, 𝜈𝑓 is 𝑗. 

 

∑𝑗𝑢𝑓𝑗
𝑗∈𝐽

= 𝜈𝑓  𝐽 ∈ {0,… , 𝑁}  (142) 

The constraints shown by Eq.(139) and Eq.(140) are then relaxed using McCormick relaxations as 

discussed in Section 5.3.2. The relaxations for Eq.(139) are shown by Eq. (143-146) 

 
𝑔𝑡𝑓𝑗𝑖 ≥ 𝑥𝑡𝑓

𝐿 𝑗𝑢𝑓𝑗 
 (143) 

 
𝑔𝑡𝑓𝑗𝑖 ≥ 𝑥𝑡𝑓

𝑈 𝑗𝑢𝑓𝑗 + 𝑥𝑡𝑓𝑖𝑗 − 𝑥𝑡𝑓
𝑈 𝑗 

 (144) 
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𝑔𝑡𝑓𝑗𝑖 ≤ 𝑥𝑡𝑓

𝑈 𝑗𝑢𝑓𝑗 
 (145) 

 
𝑔𝑡𝑓𝑗𝑖 ≤ 𝑥𝑡𝑓𝑖𝑗 + 𝑥𝑡𝑓

𝐿 𝑗𝑢𝑓𝑗 − 𝑥𝑡𝑓
𝐿 𝑗 

 (146) 

where, 𝑥𝑡𝑓
𝐿  and 𝑥𝑡𝑓

𝑈  represent lower and upper bounds on the continuous variables that represent 

the material flow rate of the raw materials, respectively. The lower bound for binary variables is 

0, and the upper bound is 1. However, since the variable being relaxed is 𝑗𝑢𝑓𝑗, the upper bound 

is replaced by 𝑗. Similarly, the relaxations for Eq.(140) are shown by Eq.(147-150).  

 
𝑏𝑡𝑓𝑗𝑖 ≥ 𝑥𝑡𝑓

𝐿 𝑢𝑓𝑗 
 (147) 

 
𝑏𝑡𝑓𝑗𝑖 ≥ 𝑥𝑡𝑓

𝑈 𝑢𝑓𝑗 + 𝑥𝑡𝑓𝑖𝑗 − 𝑥𝑡𝑓
𝑈 𝑗 

 (148) 

 
𝑏𝑡𝑓𝑗𝑖 ≤ 𝑥𝑡𝑓

𝑈 𝑗𝑢𝑓𝑗  
 (149) 

 
𝑏𝑡𝑓𝑗𝑖 ≤ 𝑥𝑡𝑓𝑖𝑗 + 𝑥𝑡𝑓

𝐿 𝑗𝑢𝑓𝑗 − 𝑥𝑡𝑓
𝐿 𝑗 

 (150) 

where, 𝑥𝑡𝑓
𝐿  and 𝑥𝑡𝑓

𝑈  represent lower and upper bounds on the continuous variables that represent 

the material flow rate of the products, respectively. Since the relaxations shown by Eq. (143-150) 

are with respect to the binary variable 𝑢𝑗, the relaxation will lead to the optimal solution of the 

original problem. 

6.3 Background  

6.3.1 Risk measures 

The general stochastic optimization problem minimizes the total expected cost, which results in 

a solution that is optimal on the average of all scenarios. As a result, this solution is risk-neutral. 

In the case of a real problem, however, decision-makers are usually risk-averse and are interested 
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in simultaneously minimizing the risk. To address this problem, literature consists of several risk 

metrics as well as extensions of existing stochastic programming approaches to the problem 

minimizing risk. Metrics based on variance, variability index, probabilistic risk, and downside risk 

exist in the literature [233]. Since variance and variability index shift the solution towards higher 

expected cost, and probabilistic risk results in a computationally demanding problem due to the 

presence of binary variables [233], downside risk is used in this work. The downside risk is defined 

as shown by Eq. (151) 

 

min𝐷𝑅(𝑥, Ω) = ∑ 𝑝𝑠𝜓𝑠
𝑠∈𝑆𝐶

  (151) 

where, 𝜓𝑠𝑐 ≥ Ω− 𝑆𝐿𝑠𝑐; 𝜓𝑠𝑐 ≥ 0  ∀𝑠𝑐 ∈ 𝑆𝐶. 

Downside risk in this work is defined in terms of the service level as opposed to profit or total cost 

as has been used in the existing literature. As a result, Ω is the target service level; 𝑆𝐿𝑠𝑐 is the 

service level for scenario 𝑠𝑐. 

This is considered as a separate objective in the optimization problem considered in this work 𝜖-

constrained method is used.  

6.3.2 Two-stage stochastic optimization 

In this work, a two-stage stochastic optimization approach is used for addressing product demand 

uncertainties in the supply chain. In a two-stage optimization framework, decisions related to raw 

material transportation, production, product distribution, and inventory for the current planning 

period are made, whereas decisions associated with the future planning periods are postponed 

until uncertain demands are revealed. Decisions for the current planning period, also known as 

‘here and now’ decisions are made in the first stage, whereas the decisions for future periods, 
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also known as ‘wait and see’ decisions are incorporated in the second stage. The classical two-

stage programming problem is described as shown by Eq. (152) and Eq. (153) 

 
min
𝑥∈𝑋

{𝑔(𝑥) ≔ 𝑐𝑇𝑥 + 𝔼[𝑄(𝑥, 𝜉)]} 

𝐴𝑥 ≥ 𝑏 

 (152) 

where, 𝑄(𝑥, 𝜉) is the optimal value of the second stage problem which is represented as  

 
min
𝑦
𝑞𝑇𝑦  subject to 𝑊𝑦 ≥ ℎ − 𝑇𝑥. 𝑦 ∈ 𝒴  (153) 

where, 𝑥 represents first-stage decision vector, 𝑋 is a polyhedral set, defined by a finite number 

of linear constraints,𝑦 is the second-stage decision vector, and 𝜉 = (𝑞, 𝑇,𝑊, ℎ) is the second 

stage data. The two-stage optimization problem given by Eq. (152) and Eq. (153) can be 

equivalently represented by a large-scale linear programming problem where the random vector 

with a known probability distribution can be represented by a finite number of scenarios, as 

shown by Eq. (154).  

 

min𝑐𝑇𝑥 + ∑ 𝜋𝑠𝑞𝑠
𝑇𝑦𝑠

𝑠∈𝑆𝐶

 

𝐴𝑥 ≥ 𝑏 

𝑇𝑠𝑥 +𝑊𝑠𝑦𝑠 ≥ ℎ  ∀𝑠 ∈ 𝑆𝐶 

𝑥 ∈ 𝑋, 𝑦 ∈ 𝒴 

 (154) 

The number of scenarios is chosen to address the tradeoff between the accuracy of the 

distribution, and computational complexity of the problem. If too few scenarios are included to 
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approximate the underlying demand distribution, the representation may not be accurate. On the 

other hand, if a large number of scenarios are included, the resulting optimization problem is a 

computationally expensive problem. Even though including constraints with respect to each 

scenario increases the size of the problem significantly, the resulting problem has a nice structure 

that allows decomposition into subproblems that are small, and that can be solved independently 

[234]. 

The problem considered in this work involves integer variables and, thus, results in a stochastic 

mixed integer programming problem. The solution approach for stochastic mixed integer 

programming problems broadly depends on the type of integer variables (general integers or 

binary) as well as the stage in which integer variables are present [234]. For the problem 

considered in this work, all the general integer and binary variables are present only in the first 

stage, and therefore, classical Benders decomposition[235] can be applied.   

6.3.3 Benders decomposition 

Even though the problem presented in Eq. (154) is large in size, it has a very nice structure that 

can be utilized. It can be noted that for a given first-stage vector 𝑥, the problem given by Eq.(154) 

can be decomposed for each scenario in the set 𝑆𝐶 as shown by Eq. (155). 

 
𝜂𝑠(𝑥) ∶= min 𝑞𝑠

𝑇𝑦𝑠 

𝑊𝑠𝑦𝑠 ≥ ℎ𝑠 − 𝑇𝑠𝑥 

𝑦𝑠 ≥ 0 

 (155) 
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In Eq.(155), since the right-hand side in the constraints can be parametrized by 𝑥, the problems 

given by 𝜂𝑠 are parametric linear programs. Therefore, the problem given by Eq.(154) can be 

reformulated, as shown by Eq. (156). 

 

min𝑐𝑇𝑥 + ∑ 𝜋𝑠𝜂𝑠(𝑥)

𝑠∈𝑆𝐶

 

s. t. 𝐴𝑥 ≥ 𝑏 

𝑥 ∈ 𝑋 

 (156) 

As the feasible region of the problem given by Eq. (156) changes with 𝑥, we make use of the dual 

form, as shown by Eq. (157). 

 
𝜂𝑠(𝑥) = max(ℎ𝑠 − 𝑇𝑠𝑥)

𝑇𝜓𝑠  

𝑊𝑠
𝑇𝜓𝑠 ≤ 𝑞𝑠 

𝜓𝑠 ≥ 0 

 (157) 

With this formulation, it is ensured that only the objective function of the problem changes with 

changing 𝑥, and the feasible region stays the same. Thus we can obtain Benders reformulation as 

shown by Eqs.(158-162) 

 
min 𝑐𝑇𝑥 + 𝜂 

 (158) 
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𝐴𝑥 ≥ 𝑏 

 (159) 

 

𝜂 ≥∑𝜋𝑠(ℎ𝑠 − 𝑇𝑠𝑥)
𝑇𝜓𝑠

𝑖

𝑠

  ∀𝑖 ∈ 𝐼𝑠, 𝑠 ∈ 𝑆𝐶  (160) 

 

0 ≥ (ℎ𝑠 − 𝑇𝑠𝑥)
𝑇(𝑠𝑠

𝑗
) ∀𝑗 ∈ 𝐽𝑠, 𝑠 ∈ 𝑆𝐶 

 (161) 

 
𝑥 ∈ 𝑋 

 (162) 

where, 𝜓𝑠
𝑖  is the set of extreme points of the polyhedron formed by the constraints in problem 

given by Eq. (157); 𝑠𝑠
𝑗
 is the set of extreme rays of that polyhedron. It can be noted that 𝐼𝑠 and 𝐽𝑠 

are finite. Eq. (160) and Eq.(161) are known as optimality cuts and feasibility cuts, respectively. 

The resulting problem has many constraints, but fewer variables, as the expected second-stage 

cost is captured by a single variable 𝜂. This formulation is solved by first adding a subset of 

inequalities and then gradually adding constraints as they are violated. In this work, the 

implementation of Benders decomposition provided with the CPLEX mixed integer linear 

programming solver is used. 

6.3.4 Rolling horizon optimization 

As product demands are important input parameters for a multiperiod supply chain optimization 

problem, a common approach is to make full use of available information, even if the information 

in future planning periods is currently uncertain. Moreover, uncertainty in the product demand 

decreases as the future periods come closer. Rolling horizon optimization is an approach to 

benefit from this effect where decisions are made dynamically over the stochastic programming 

problem. The idea is to make decisions at each discrete decision points given a fixed planning 

horizon. The decisions are implemented from the current decision point to the next decision 

point. The state of the system at the end of the first optimization problem is passed on to the next 
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optimization problem that starts from the next decision point. This procedure is repeated until 

the end of the planning horizon. Rolling horizon optimization approach provides significant 

computational advantages as the problem is temporally decomposed into problems with less 

number of planning periods and therefore, fewer scenarios. Rolling horizon optimization 

approach is not new and has been applied to multiperiod optimization problems in a wide variety 

of supply chain optimization problems [236] [237]. A schematic of the rolling horizon approach is 

provided in Figure 6-1. 

 

Figure 6-1 Rolling horizon optimization approach 

At the beginning of the planning horizon, demand information is available for the first planning 

period, and the demand till the end of the rolling horizon is uncertain and available only in the 

form of a random distribution. The expectation and variance of the distribution are predicted 

using the demand forecast. The first stage problem is solved, and the decisions for the current 

period are implemented. At the beginning of the second time period, the demand for the second 

time period is revealed, and the rolling horizon shifts accordingly. The first stage problem is solved 
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again, and the procedure is repeated until the end of the planning horizon. In this work, since the 

number of modules installed are general integer variables, the implemented solution for the 

number of modules installed till the current planning period is used as the lower bounds in the 

subsequent rolling horizon. 

6.4 Results 

In this section, a case study of a supply chain network consisting of a modular process that 

includes a system of reactor and separator is considered. The optimization model shown in 

section 6.2.1 is solved for two cases. The aim is to demonstrate the rolling horizon optimization 

approach for the problem of optimization under demand uncertainty. In this respect, the optimal 

decisions regarding optimal facility location, material flows, and process design are 

demonstrated. Moreover, the multiobjective optimization problem of minimizing the downside 

risk is solved using the 𝜖- constrained method. The results show a set of pareto optimal designs 

that simultaneously minimize the supply chain total cost as well as the downside risk. Finally, the 

advantage of modular designs in allowing the possibility of numbering-up of process units is 

demonstrated.  

Problem definition 

To demonstrate the idea, a sample superstructure of the supply chain network is considered, as 

shown in Figure 5-1. The network consists of three retailers and two warehouses and two 

suppliers and three production facilities to choose from. In each time period, demand is realized 

by the retailers. The arrows in Figure 5-1 show the allowable material flow in the supply chain 

network. The problem is to minimize the total cost of the supply chain, as shown by Eq. (119). The 

parameters such as distances between all possible combinations of entities in the supply chain 

superstructure, inventory holding costs at warehouses, and operating costs at the production 
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sites are known a priori. It is important to note that the network shown in Figure 5-1 represents 

a superstructure of all possible options for the optimal design of the supply chain network. The 

optimal design choice will also select the location of the entities in the supply chain network. 

At the production facilities, the production is carried out through a process consisting of a 

continuously stirred tank reactor in series with an ideal separator. The process is modularized into 

reactor and separator modules. The aim is to convert raw material A into two finished products B 

and E, as shown in Figure 4-2. An isothermal liquid-phase reaction is considered following the 

kinetic mechanism as described in the previous studies of Rooney and Biegler [198] and Goyal and 

Ierapetritou [169]. The model equations for the process are shown by Eq. (163).  

 𝐹𝐴0 − 𝑥𝐴𝐹(1 − 𝛼) − 𝑉𝐶𝐴0(𝑘1 + 𝑘2)𝑥𝐴 = 0 

−𝐹𝑥𝐵(1 − 𝛼) + 𝑉𝐶𝐴0𝑘1𝑥𝐴 = 0 

−𝐹𝑥𝐶 + 𝑉𝐶𝐴0(𝑘2𝑥𝐴 − (𝑘3 + 𝑘4)𝑥𝐶 + 𝑘5𝑥𝐸) = 0 

−𝐹𝑥𝐷(1 − 𝛽) + 𝑉𝐶𝐴0𝑘3𝑥𝐶 = 0 

−𝐹𝑥𝐸(1 − 𝛽) + 𝑉𝐶𝐴0(𝑘4𝑥𝐶 − 𝑘5𝑥𝐷) = 0 

𝑥𝐴 + 𝑥𝐵 + 𝑥𝐶 + 𝑥𝐷 + 𝑥𝐸 − 1 = 0 

 (163) 

where, 𝑥𝐴, 𝑥𝐵, 𝑥𝐶, 𝑥𝐷, and 𝑥𝐸 represent the mole fraction of components A, B, C, D, and E, 

respectively; 𝑘𝑖 are the rate constants; 𝑉 is the volume of the reactor; 𝐶𝐴0 is the inlet 

concentration of A; 𝛼 is the recycle fraction of stream A and B; 𝛽 is the recycle fraction of D and 

E; 𝐹 is the molar flow rate at the outlet of the reactor; 𝐹𝐴0 is the molar flow rate at the inlet of the 

reactor. The nominal values of the kinetic constants are 𝑘1 = 0.0374, 𝑘2  =  0.0195, 𝑘3 =

 0.0165, 𝑘4 =  0.2701, and 𝑘5  =  0.0261.  

It is assumed that four reactor design options are available based on their volume. Different 

separator design options are available depending on the throughput that they can handle. The 
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available options and the respective costs for the reactor and the separator are shown in Table 

6-1. 

Table 6-1: Design options for reactor and separator 

Options Reactor (m3) 𝑪𝒓 (k$) Separator 

(𝑭𝑨𝟎mol/h) 

𝑪𝒔 (k$) 

Option 1 5 400 30-50 300 

Option 2 20 850 40-70 720 

The problem is to determine the optimal supply chain network that minimizes the total cost of 

the supply chain over the planning horizon. The decisions include the following. i) location of 

production facilities ii) selection of module options to define a process iii) optimal material flow 

iv) optimal choice of suppliers v) Feasibility of satisfying the product demand. It is assumed that 

the coefficient of mass production is known for the modules under consideration. Since the 

problem involves optimization under demand uncertainty, the objective is also to minimize the 

downside risk for risk-averse decisions. Optimal solutions are obtained for different values of risk 

tolerances in order to demonstrate the tradeoff between the conflicting objectives of minimizing 

the total cost of the supply chain and minimizing the downside risk. 

Solution methodology 

For solving this problem, it is assumed that the feasibility constraints are available a priori in the 

form of support vector machine models. These constraints are incorporated in the optimization 

framework, as shown in section 6.2.1. For model details on the approach to obtain the feasibility 

constraints, the reader is directed to previous work in the literature [225]. In this work, the data 

is generated using simulations in GAMS 31.1.0 and solved as a nonlinear program using Baron 

mixed integer nonlinear programming solver version 20.4.14. SVM models are built using the data 
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from simulations is used. Scikit-learn python toolbox is used to build the classifiers. The validation 

results for the classifiers are shown in Table 6-2. 

Table 6-2: SVM model validation for the reactor using a linear kernel 

Option  CF% CIF% NC% Total Error 

Option 1 100 100 0 0 

Option 2 86.36 97.53 9.52 4.85 

A general supply chain network, as shown in Figure 5-1, is used to demonstrate the efficacy of the 

proposed approach. Two case studies varying in network size, as well as the planning horizon, are 

used. 

6.4.1 Case study 1 

The supply chain consists of 2 suppliers, 3 production sites, 3 warehouses, and 3 retailers. Product 

demand is realized at the beginning of each time period. The demand in future periods is 

unknown. However, a forecast of the demand distribution is available in the form of expected 

demand and the demand variability. In general, the product demand in the periods close to the 

current planning period is less uncertain, and therefore, the demand variability is less. However, 

since there is more uncertainty related to the demands in the periods much later than the current 

period, the demand variability is more. The effect of time-dependent demand variability is 

modeled using a linear model to predict future demand[238]. In a real scenario, the parameters 

for the linear model are obtained using historical data. In this work, it is assumed that the 

parameters are available. Expected product demand is considered to be increasing at a constant 

rate at each planning period. The rate of increase in demand is assumed to be 10% for this case 

study. In the first study, a planning horizon of 6 periods is considered with each period consisting 

of 4 months and the total planning horizon of 2 years. 
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The optimization is carried out using a rolling horizon optimization approach with the rolling 

horizon period of 6 periods. The rolling horizon optimization framework is implemented in 

Matlab, and the optimization problems are solved with 0 optimality gap in GAMS using CPLEX 

mixed integer linear optimization solver on a PC with Intel® Xeon® CPU E-2174G @ 3.80GHz and 

32.0 GB RAM in an average time of 169 s. Latin Hypercube Sampling is carried out to design the 

scenarios. Latin hypercube sampling has a space-filling property that allows covering the 

probability distribution accurately with a fewer number of scenarios. In this case study, 50 

scenarios are generated. The problem is solved for six different values of the risk tolerance 𝜖. The 

results for the expected supply chain cost and risk tolerance are presented in Figure 6-2. It can be 

observed that as 𝜖 increases, total cost reduces. In this case, 𝜖 is the tolerance towards downside 

risk with respect to the service level. A higher value of 𝜖 indicates the possibility of sustaining the 

supply chain network at a lower service level. As a result, the solutions with higher values of 𝜖 can 

include lower capital, operating, and transportation costs. For the risk tolerances of 0.1 and 0.15, 

the total cost is the same which can be attributed to the tradeoff between risk tolerance and 

backorder cost. If the risk tolerance is high, lower service levels can be maintained. However, this 

will result in increased value of backorder cost. Finally, based on the desired level of risk tolerance, 

an optimal design can be chosen that minimizes the total cost.  
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Figure 6-2 Pareto optimal curve for total cost and downside risk 

This tradeoff can be observed by looking at the solutions at the extreme values of 𝜖 = 0 and that 

for 𝜖 = 0.25. For 𝜖 = 0, the total cost value obtained is $8.24 million, whereas, for 𝜖 = 0.25, the 

total cost is $7.64 million. When the risk tolerance is lower, service levels need to be kept high, 

and as a result, capital cost for 𝜖 = 0 is $6.9 million, which is higher than the capital cost of $4.6 

million for 𝜖 = 0.25. On the other hand, the worst-case scenario for the service level for 𝜖 = 0.25 

is 0.73, whereas that for 𝜖 = 0 is 0.86 indicating that the solution for 𝜖 = 0 is risk averse. 

For the value of 𝜖 = 0.1, the complete rolling horizon solution at the end of the planning horizon 

is reported in Table 6-3. The optimal costs at the end of the planning horizon are reported in Table 

6-4. It can be observed that all production facilities are included in the optimal solution. However, 

different number of production lines are installed at each production facility.  

Table 6-3 optimal choice of production sites and modules at the end of planning horizon for 𝜖 =
0.2 

Production site Reactor module Separator module 

 Module Number of units Module Number of units 
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1 2 1 1 1 

2 2 2 1 2 

3 2 2 1 2 

Table 6-4 Optimal cost at the end of rolling horizon optimization 

Cost $ 

Total cost 5907033 

Transportation cost 684079 

Capital cost 5750000 

Operating cost 242823 

Inventory cost 2529 

Backorder cost 56242 

6.4.2 Case study 2 

It should be noted that considering the rolling horizon of the same length as the planning horizon 

may not always be practical. For the problems with a longer planning horizon, this approach could 

lead to a significantly computationally expensive problem. Moreover, the product demands in the 

periods far ahead in the future may not be accurate. In the second case study presented in this 

work, a larger supply chain network consisting of 4 suppliers, 4 production sites, 3 warehouses, 

and 5 markets. The planning horizon, in this case, is 5 years consisting of 20 planning periods of 3 

months each. It is assumed that demand increases by 3 percent in every time period. The rolling 

horizon length is considered to consist of three time periods. The target service level is set as 0.95, 

and the downside risk tolerance is set to be 0.1. The problem is solved with 2% optimality gap in 

GAMS using CPLEX mixed integer linear optimization solver on a PC with Intel® Xeon® CPU E-

2174G @ 3.80GHz and 32.0 GB RAM. The optimal solution is reported in Table 6-5. 
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Table 6-5 optimal choice of production sites and modules at the end of planning horizon for 𝜖 =
0.1 

Production site Reactor module Separator module 

 Module Number of units Module Number of units 

1 2 2 1 2 

2 1 3 1 3 

3 2 4 1 4 

4 1 1 1 1 

As opposed to centralized large-scale manufacturing, modular design provides the possibility of 

numbering-up of equipment to meet the desired demand. As a result, more units can be installed 

at a later planning period saving on the initial investment as well as providing additional flexibility. 

This can be better illustrated with the help of Figure 6-3, where an increase in the capital cost can 

be observed at multiple periods in the planning horizon. The optimal solution at the end of the 

first planning period for 𝜖 = 0.1 is reported in Table 6-5. It can be observed that all four 

production sites are chosen for production in the optimal solution. Both reactor options and the 

separator option 1 is chosen. The total number of processing lines of the chosen optimal module 

options in the supply chain is 10. The total cost at the end of the planning horizon is reported in 

Table 6-6. 
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Figure 6-3 Capital cost vs. time periods for 𝜖 = 0.2 

Table 6-6 Optimal cost at the end of the planning horizon 

Cost $ 

Total cost 16083529 

Transportation cost 3048872 

Capital cost 9700000 

Operating cost 1210436 

Inventory cost 1234131 

Backorder cost 211879 

6.5 Conclusions 

In this work, the problem of modular supply chain optimization under uncertainty is considered. 

A stochastic mixed integer linear programming formulation is first presented where general 

integers represent the number of process units, binary variables represent facility locations, and 

continuous variables represent material flow in the supply chain. Since the problem is a 

multiperiod problem and the uncertainties associated with the product demands are not resolved 
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in the present planning period, the resulting problem is a two-stage mixed integer stochastic 

programming problem. The second stage problem is represented in the form of a finite number 

of scenarios that represent the demand distribution resulting in a large-scale mixed integer linear 

programming problem. The resulting computational complexity is addressed with the help of 

Benders decomposition. The objectives of downside risk and supply chain total costs are 

minimized simultaneously using multiobjective optimization. The optimization formulation 

presented in this work allows for simultaneous process design and feasibility analysis. Data-driven 

approximations of the feasible region are considered to be available that are incorporated in the 

optimization formulation. With respect to process design, the optimal solution aims at choosing 

from a small set of standardized module options varying in production capacity and the capital 

cost. The formulation is applied to a case study of a supply chain consisting of a modular process 

consisting of two modules. The solution leads to the optimal selection of the type and number of 

process modules, production facility location, and at the same time, minimizing downside risk. 

Multiobjective optimization framework consisting of 𝜖-constraint for the downside risk is 

incorporated, using which a set of solutions on the pareto optimal curve can be obtained. It is 

noted that as opposed to a centralized large-scale processing module, modular designs provide 

flexibility to number-up production units in order to achieve the desired throughput. The results 

demonstrate that as the product demand increases in the future, more processing units are 

installed. This characteristic of the modular processes provides a promising way to reduce initial 

investment and to maintain a flexible supply chain with respect to market volatility. In the future, 

this approach provides an interesting opportunity for supply chains where the raw material 

availability, as well as the product demand, is geographically distributed. Due to reduced costs 

from design standardization as well as from the flexibility of increasing or reducing the production 

capacity, new supply chain designs can quantitatively assess the benefits of modular processes.   
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7 Summary and future work 

In this dissertation, machine learning-based frameworks are proposed to address the problems in 

supply chain optimization. In the first problem, data obtained from the supply chain simulations 

are used to determine optimal inventory allocation in a multienterprise supply chain network. It 

was noted that the resulting problem has a particular characteristic, which is the discontinuity of 

the objective function. To optimize in the presence of discontinuities, SVM models are used first 

to isolate distinct continuous regions. The results demonstrate that considering discontinuities 

leads to better results in terms of computational cost as well as the solution quality when 

compared to a few of the existing state-of-the-art algorithms. 

Further, the problems related to modular manufacturing are considered where historical data 

about individual process modules is available. This data is used to build a classification model that 

is later incorporated into the design optimization problem as well as the supply chain optimization 

model. While considering the design optimization, the objectives of minimizing the total cost as 

well as maximizing the design flexibility are considered, and a pareto set of solutions is obtained. 

For the modular supply chain optimization, it is demonstrated that integrating process-level 

details in the supply chain optimization can provide added flexibility to the decision-maker. Using 

the proposed formulation, the problem of optimal facility location, optimal process design, and 

optimal material flow in the supply chain network can be obtained. At the same time, tradeoffs 

between centralized vs. distributed manufacturing as well as capital cost benefits due to design 

standardization can be quantified. Finally, the problem is extended to the case of demand 

uncertainty. A two-stage mixed integer stochastic programming problem is formulated and solved 

using a rolling horizon optimization approach to address the problem of multiperiod planning. 

While designing the supply chain under demand uncertainty, risk measures are incorporated that 

facilitate risk-averse decision making based on the risk tolerance of the decision-maker. The 
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resulting solution simultaneously minimizes risk as well as the total expected cost of the supply 

chain network. 

This work has the potential to be extended in several directions. 

• For the multienterprise supply chain optimization problem, future work can consider the 

environmental impact of the supply chain as well as use the agent-based modeling framework 

to study the effect of environmental policies on the cost and the environmental impact of the 

supply chain. In addition to optimizing inventory allocation in the supply chain, future work 

can address the optimization of inventory policy where decisions such as the reorder amount 

and the reorder policy will be made. The optimization framework presented in this work is 

not specific to the supply chain application. In the future, more problems such as parameter 

estimation can be considered. Moreover, the approach presented for isolation of continuous 

regions can be readily used to model a discontinuous response. 

• The design optimization framework considered in this work can be generalized to process 

synthesis problems where different technologies or even different connections in a flow sheet 

can be compared. Additional objectives, such as environmental impact, can be considered in 

the design stage using the proposed approach. 

• For the supply chain optimization problem, the investigation of computationally efficient 

decomposition techniques will help the problem to be scaled to larger supply chain networks 

and longer planning horizons. 

• In the future, the frameworks presented in this work provide an exciting opportunity for 

supply chains where the raw material availability, as well as the product demand, is 

geographically distributed, such as biomass supply chains. 
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• For the problem of optimization under demand uncertainty, future work can consider the 

possibility of mobile production units that can be moved to different production facilities 

based on the geographic distribution of the demand and the availability of the raw materials. 

• The approach presented for integration of process design and supply chain optimization can 

be broadened to consider product design where the optimization framework can choose from 

an array of product portfolio based on the composition and availability of the raw materials 

as well as the demand for products. 

• The integration of feasibility analysis and optimization presented in this work opens new and 

challenging problems from an optimization perspective. Tailor-made mixed integer nonlinear 

programming formulations that can handle nonlinear classifiers as constraints will improve 

the applicability of this approach.
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Appendix A 

Sets 

𝒯 set of time periods 

ℱ set of production facilities 

𝒮 set of suppliers 

𝒲  set of warehouses 

𝒫 set of products  

ℛ  set of retailers 

𝒜  set of raw materials 

ℳ  set of modules 

𝒪𝑚 set of options for module 𝑚 ∈ ℳ  

Parameters 

𝑐𝑓𝑝  operating cost per unit of product 𝑝 ∈ 𝒫 at production facility 𝑓 ∈ ℱ 

ℎ𝑓𝑤𝑝     transportation cost per unit of product 𝑝 ∈ 𝒫 from production facility 𝑓 ∈ ℱ to warehouse 

𝑤 ∈ 𝒲   

ℎ𝑠𝑓𝑎 transportation cost per unit of raw material 𝑎 ∈ 𝒜 from supplier 𝑠 ∈ 𝒮 to production 

facility 𝑓 ∈ ℱ  

ℎ𝑤𝑟𝑝  transportation cost per unit of product 𝑝 ∈ 𝒫 from warehouse 𝑤 ∈ 𝒲 to retailer 𝑟 ∈ ℛ 
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𝑔𝑤𝑝  inventory cost for storing a unit of product 𝑝 ∈ 𝒫 for one time period at warehouse 𝑤 ∈

𝒲 

𝜁𝑓𝑚𝑜  capital cost for installing one unit of option 𝑜 ∈ 𝒪𝑚 for module 𝑚 ∈ ℳat a production 

facility 𝑓 ∈ ℱ 

𝑧̃𝑚𝑜  base number of units for option 𝑜 ∈ 𝒪𝑚 for module 𝑚 ∈ℳ 

𝛽  coefficient of mass production 

𝐼𝑤𝑝0  initial inventory of product 𝑝 ∈ 𝒫 at warehouse 𝑤 ∈ 𝒲  

𝐼𝑤̅𝑝  storage capacity for product 𝑝 ∈ 𝒫 at warehouse 𝑤 ∈ 𝒲 

𝛿𝑟𝑝𝑡   demand for product 𝑝 ∈ 𝒫 at retailer 𝑟 ∈ ℛ in time period 𝑡 ∈ 𝒯 

𝜈max  maximum number of lines that can be installed at a production facility  

𝐾  big-M constant for the feasibility constraints 

𝐻  big-M constant for the constraints defining material flow for each module option 

𝑢𝑏𝑜 vector of upper bounds on the variable 𝑥 for option 𝑜 ∈ 𝒪𝑚 for module 𝑚 ∈ ℳ 

𝑙𝑏𝑜  vector of lower bounds on the variable 𝑥 for option 𝑜 ∈ 𝒪𝑚 for module 𝑚 ∈ℳ 

Decision variables 

𝑄𝑓𝑤𝑝𝑡  

  

Quantity of product 𝑝 ∈ 𝒫 delivered from production facility 𝑓 ∈ ℱ to warehouse 

𝑤 ∈ 𝒲 in a time period 𝑡 ∈ 𝒯 

𝑄𝑠𝑓𝑎𝑡  Quantity of raw material 𝑎 ∈ 𝒜 from supplier 𝑠 ∈ 𝒮 to production facility 𝑓 ∈ ℱ in a 

time period 𝑡 ∈ 𝒯 

𝑄𝑤𝑟𝑝𝑡  Quantity of product 𝑝 ∈ 𝒫 delivered from warehouse 𝑤 ∈ 𝒲 to retailer 𝑟 ∈ ℛ 
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𝐼𝑤𝑝𝑡  Inventory of product 𝑝 ∈ 𝒫 stored at warehouse 𝑤 ∈ 𝒲 during time period 𝑡 ∈ 𝒯 

𝑧𝑚𝑜  Number of units of option 𝑜 ∈ 𝒪𝑚 for module 𝑚 ∈ℳ installed across all production 

facilities 

𝜈𝑡𝑓  Number of production lines during time period 𝑡 ∈ 𝒯 at production facility 𝑓 ∈ ℱ 

𝜈̅𝑓𝑜  Number of production lines of option 𝑜 ∈ 𝒪𝑚 for module 𝑚 ∈ ℳ installed at 

production facility 𝑓 ∈ ℱ 

𝑞𝑡𝑓𝑜  Number of production lines of option 𝑜 ∈ 𝒪𝑚 for module 𝑚 ∈ ℳ during time period 

𝑡 ∈ 𝒯 at production facility 𝑓 ∈ ℱ 

𝑦𝑡𝑓𝑜  Binary variable indicating if option 𝑜 ∈ 𝒪𝑚 for module 𝑚 ∈ ℳ during time period 

𝑡 ∈ 𝒯 is installed at production facility 𝑓 ∈ ℱ 

𝑥𝑡𝑓  Real variable indicating material flow per production line during time period 𝑡 ∈ 𝒯 

at production facility 𝑓 ∈ ℱ 

𝑆𝑉𝑀𝑜𝑓  SVM model for option 𝑜 ∈ 𝒪𝑚 at production facility 𝑓 ∈ ℱ 
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Appendix B 

Sets 

𝒯 set of time periods 

ℱ set of production facilities 

𝒮 set of suppliers 

𝒲  set of warehouses 

𝒫 set of products  

ℛ  set of retailers 

𝒜  set of raw materials 

ℳ  set of modules 

𝒪𝑚 set of options for module 𝑚 ∈ ℳ  

𝑆𝐶  set of scenarios 

Parameters 

𝑐𝑓𝑝  operating cost per unit of product 𝑝 ∈ 𝒫 at production facility 𝑓 ∈ ℱ 

ℎ𝑓𝑤𝑝     transportation cost per unit of product 𝑝 ∈ 𝒫 from production facility 𝑓 ∈ ℱ to warehouse 

𝑤 ∈ 𝒲   

ℎ𝑠𝑓𝑎 transportation cost per unit of raw material 𝑎 ∈ 𝒜 from supplier 𝑠 ∈ 𝒮 to production 

facility 𝑓 ∈ ℱ  

ℎ𝑤𝑟𝑝  transportation cost per unit of product 𝑝 ∈ 𝒫 from warehouse 𝑤 ∈ 𝒲 to retailer 𝑟 ∈ ℛ 
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𝑔𝑤𝑝  inventory cost for storing a unit of product 𝑝 ∈ 𝒫 for one time period at warehouse 𝑤 ∈

𝒲 

𝑏𝑟𝑝  penalty per unit of unmet demand of product 𝑝 at retailer 𝑟. 

𝜁𝑓𝑚𝑜  capital cost for installing one unit of option 𝑜 ∈ 𝒪𝑚 for module 𝑚 ∈ ℳat a production 

facility 𝑓 ∈ ℱ 

𝑧̃𝑚𝑜  base number of units for option 𝑜 ∈ 𝒪𝑚 for module 𝑚 ∈ℳ 

𝛽  coefficient of mass production 

𝐼𝑤𝑝0  initial inventory of product 𝑝 ∈ 𝒫 at warehouse 𝑤 ∈ 𝒲  

𝐼𝑤̅𝑝  storage capacity for product 𝑝 ∈ 𝒫 at warehouse 𝑤 ∈ 𝒲 

𝛿𝑟𝑝𝑡   demand for product 𝑝 ∈ 𝒫 at retailer 𝑟 ∈ ℛ in time period 𝑡 ∈ 𝒯 

𝜈max  maximum number of lines that can be installed at a production facility  

𝐾  big-M constant for the feasibility constraints 

𝐻  big-M constant for the constraints defining material flow for each module option 

𝑢𝑏𝑜 vector of upper bounds on the variable 𝑥 for option 𝑜 ∈ 𝒪𝑚 for module 𝑚 ∈ ℳ 

𝑙𝑏𝑜  vector of lower bounds on the variable 𝑥 for option 𝑜 ∈ 𝒪𝑚 for module 𝑚 ∈ℳ 

Decision variables 

𝑄𝑓𝑤𝑝𝑡𝑖  

  

Quantity of product 𝑝 ∈ 𝒫 delivered from production facility 𝑓 ∈ ℱ to warehouse 

𝑤 ∈ 𝒲 in a time period 𝑡 ∈ 𝒯 for scenario 𝑖 
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𝑄𝑠𝑓𝑎𝑡𝑖  Quantity of raw material 𝑎 ∈ 𝒜 from supplier 𝑠 ∈ 𝒮 to production facility 𝑓 ∈ ℱ in a 

time period 𝑡 ∈ 𝒯 for scenario 𝑖 

𝑄𝑤𝑟𝑝𝑡𝑖  Quantity of product 𝑝 ∈ 𝒫 delivered from warehouse 𝑤 ∈ 𝒲 to retailer 𝑟 ∈ ℛ in a 

time period 𝑡 ∈ 𝒯 for scenario 𝑖 

𝐼𝑤𝑝𝑡𝑖  Inventory of product 𝑝 ∈ 𝒫 stored at warehouse 𝑤 ∈ 𝒲 during time period 𝑡 ∈ 𝒯 

for scenario 𝑖 

𝐵𝑟𝑝𝑡𝑖  Unmet demand for product 𝑝 at retailer 𝑟 in time period 𝑡 of scenario 𝑖 

𝑧𝑚𝑜  Number of units of option 𝑜 ∈ 𝒪𝑚 for module 𝑚 ∈ℳ installed across all production 

facilities 

𝜈𝑓  Number of production lines at production facility 𝑓 ∈ ℱ 

𝑞𝑓𝑜  Number of production lines of option 𝑜 ∈ 𝒪𝑚 for module 𝑚 ∈ ℳ at production 

facility 𝑓 ∈ ℱ 

𝑦𝑓𝑜  Binary variable indicating if option 𝑜 ∈ 𝒪𝑚 for module 𝑚 ∈ ℳ is installed at 

production facility 𝑓 ∈ ℱ 

𝑥𝑡𝑓𝑖  Real variable indicating material flow per production line during time period 𝑡 ∈ 𝒯 

at production facility 𝑓 ∈ ℱ for scenario 𝑖 

𝑆𝑉𝑀𝑜𝑓  SVM model for option 𝑜 ∈ 𝒪𝑚 at production facility 𝑓 ∈ ℱ 

 

 


