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Efficient plant operations involve making optimal decisions in different short-term 

scheduling and production planning. Although performed separately, it is evident that 

huge savings can be achieved from the integration of the planning and scheduling. In this 

dissertation a number of approaches are developed to address this problem. In chapter 2, 

the short-term scheduling problem is solved considering uncertainty using a two-stage 

stochastic programming approach. The production schedule for the first stage is 

determined considering the long-term objective of expected cost, where uncertainty is 

considered following a scenario-based model.  To address the issue of computation 

complexity in optimizing scheduling problem a number of decomposition techniques are 

presented in chapter 3 for the efficient solution of large-scale scheduling problems. 

Heuristic based approaches are developed leading to an order of magnitude reduction of 

required computational time. The relaxation of different sets of constraints and variables 

is investigated in order to derive the tightest upper bound for Lagrangean relaxation and 
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Lagrangean decomposition. Based on these approaches, an iterative algorithmic 

procedure is proposed resulting in the determination of schedules for realistic size 

scheduling problems. Two approaches are developed for the integration of production 

planning and scheduling. In chapter 4, a new formulation is presented to this problem 

based on the idea of periodic scheduling. The proposed continuous-time formulation 

corresponds to a mixed integer nonlinear programming problem that determines the 

optimal cycle length and schedule. In chapter 5, a hierarchical approach is presented for 

the more general case, where there is no periodicity in production demands. A solution 

framework is developed, where the planning problem considers uncertainty utilizing a 

scenario-based multi-stage model; while the solution of the scheduling problem results in 

the optimal production schedule for the current time period. An iterative procedure is 

employed to guarantee that the results from planning and scheduling problems are 

consistent. The whole approach is implemented based on a rolling horizon strategy. 

Chapter 6 presents a general approach of improving the Lagrangean decomposition based 

on a modified Nelder-mead algorithm to update the Lagrangean multipliers which 

guarantees to give a bound at least as tight as that of the previous iteration.  
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CHAPTER 1 

INTRODUCTION 

 

Process systems engineering utilizes optimization as a tool to determine the most efficient 

solution for plant production planning and short-term scheduling problems.  Planning and 

scheduling can be distinguished based on various characteristics. First in terms of the 

considered time horizon, short-term scheduling spans a time horizon of few days; while 

the time horizon of planning extends to few months or a year. Second in terms of the 

decisions involved, short-term scheduling provides feasible production schedule 

considering the detailed operating conditions; while planning involves consideration of 

financial and business decisions over extended periods of time. Lastly considering 

uncertainty, short-term scheduling needs to consider the disturbing events such as rush 

orders, machine breakdown and attempts to absorb the impact; while the planning needs 

to foresee the possible changes in the future and the effects of the current decisions thus 

achieving an optimal solution for the benefits of the entire planning time horizon. 

However planning and scheduling decisions are always closely coupled in practical 

industrial plant, which requires the integration of the decision process for planning and 

scheduling. In this thesis, we analyze the difficulties in the current planning and 

scheduling work and develop mathematical programming models as well as solution 

approaches to overcome these issues.  In later chapters, two efficient solution approaches 

are proposed to integrate the production planning and short-term scheduling based on 

different demand requirements and uncertainty considerations.  
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Scheduling involves the determination of the order in which different tasks are carried 

out on different equipments and the detailed timing of the execution of all tasks to 

optimize plant operation. There are a number of papers published in the last decade 

focusing on a variety of approaches of formulating the short-term scheduling problem in 

order to reduce the computational complexity of the resulting mathematical model. 

Extensive reviews can be found in Reklaitis (1992); Pantelides (1994); Applequist et al. 

(1997) and Pinto and Shah, (1998).  Most of the proposed work can be classified on the 

basis of time representation. Kondili et al.
 
(1993a) and Shah et al. (1993) developed 

short-term scheduling models and solution techniques using discrete-time formulation. 

The discretization of time results in approximation of time horizon and large number of 

variables. In order to overcome the limitation of time-discretization methods, continuous-

time formulation has been given great attention. Zhang and Sargent (1994) presented a 

mixed integer nonlinear programming (MINLP) formulation based on the resource-state-

task (RST) network representation and applied linearization.  Mockus and Reklaitis 

(1996) proposed a MINLP formulation using state-task network (STN) representation 

employing a Bayesian heuristic approach. Ierapetritou and Floudas (1998) presented a 

novel continuous-time representation which is described briefly in section 1.1. This 

representation was proven to reduce the computational complexity of the scheduling 

problem by taking advantage of the event point concept thus avoiding the use of time 

slots.  

However, there are still a number of issues involved in the efficient solution of short-

term scheduling problems. The most important one is the computational complexity 

associated with realistic case studies due to the increasing dimensionality and the 
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presence of uncertainty. The work on stochastic programming was initiated by Dantzig 

(1955). Although considerable improvements had been achieved in the following years in 

terms of algorithmic development and theoretical properties (Wets, 1990), the 

manageable size of stochastic problems is not at all comparable to practical large-scale 

problems.  In this work, a two-stage stochastic programming approach is used to generate 

a solution with the optimal expected value. In chapter 2, a realistic industrial scheduling 

problem is considered where price of energy is the major uncertain parameter.  The 

results illustrate the effectiveness of the proposed stochastic two-stage formulation since 

the schedule obtained using the proposed approach is the same as the optimal solution if 

future price of energy is assumed known. 

The solution of realistic size scheduling problem is far from being resolved which 

usually deal with the production of dozens of different products as for example in 

pharmaceutical and chemical plants utilizing batch and semi-continuous process 

operations.  In Ierapetritou and Floudas’ model (1998), the number of binary variables 

increases proportionally to the number of event points, which is a general characteristic 

of any scheduling model. This means that for large time horizons (i.e. large number of 

event points) the computational requirement for the solution of scheduling problem will 

become intractable. Therefore decomposition appears to be a promising direction to build 

sub-problems that can be solved to optimality and thus lead to the solution of the original 

problem. In Chapter 3, first a number of heuristic decomposition techniques are 

developed to generate fast feasible solutions including time-based decomposition with 

smoothing technique, required production method and resource-based decomposition. 

Then Lagrangean relaxation (LR) and Lagrangean decomposition (LD) are utilized to 
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decompose the scheduling problem based on the relaxation of important constraints and 

variables, respectively. Finally an overall framework is proposed based on generation of 

lower bound using heuristics and upper bound using LR/LD. The efficiency of the 

proposed approach is demonstrated with a number of examples where better solutions are 

obtained utilizing up to an order of magnitude less CPU time. 

Production planning problem corresponds to a higher level of process operation 

decision making since it considers longer time horizon and multiple orders that involve 

different operating conditions as well as unit changes, price and cost variability.  Studies 

were conducted in this work to integrate the scheduling level consideration within the 

planning problem. Corresponding to different demand scenarios and uncertainties, two 

solution approaches are proposed. In the context of a campaign-mode production where 

demands are relatively stable and uncertainty is minimum over the planning period, a 

periodic scheduling model is presented in chapter 4 to address the simultaneous 

consideration of scheduling and planning problem. A continuous-time formulation is 

exploited based on a scheduling formulation of Ierapetritou and Floudas (1998). New 

constraints are developed to determine the scheduling decisions between cycles and 

incorporated into the continuous-time planning model.  This model results in an efficient 

solution of large scale planning problems where scheduling decisions are simultaneously 

determined. For the case where demand is distributed within the time horizon and 

changes frequently, a hierarchical solution framework is proposed in chapter 5. The 

planning and scheduling models are considered within a recursive algorithm that 

converges to the final optimal schedule. In this framework, uncertainty is considered in 

the planning problem using scenario-based multi-stage optimization modeling. Although 
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future time periods are considered in the planning model, only the decisions for the 

current time period are made and the required production is transferred to the scheduling 

problems. Short-term scheduling model is utilized to generate an optimal schedule that 

satisfies the production from planning results. In the case where discrepancy appears such 

as over-optimistic or under-estimated planning results, an iterative procedure is employed 

to resolve the difference with necessary adjustments until the results become consistent.   

Lagrangean relaxation and Lagrangean decomposition have been used to decompose 

the planning and scheduling problems as other authors reported in their work. However 

the performance of Lagrangean approaches for practical problems is not always 

satisfying due to their poor convergence. As a result, an improved Nelder-Mead based 

algorithm is developed to update the Lagrangean multipliers which guarantees the bound 

generated is at least as good as that of the previous iteration.  This approach provides a 

good alternative to the current prevalent subgradient method, and can be exploited when 

subgradient method fails to improve the Lagrangean objective function as illustrated in 

the case studies. Since Lagrangean approaches can substantially improve the solution of 

practical size problems, the proposed framework is presented in the last chapter of the 

thesis. 

 

1.1 MATHEMATICAL FORMULATION 

In this section the mathematical formulation proposed by Ierapetritou and Floudas (1998) 

for the deterministic schedule is briefly presented since it constitutes the main building 

block of the approaches developed in this work. To motivate the need of the proposed 

research a small example is then presented, which will be repeatedly used in the 

following chapters. 
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Sequence Constraints: Same task in the same unit 

          (1-8) 

        

(1-9) 
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Sequence Constraints: Different tasks in the same unit 
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Sequence Constraints: Different tasks in different units 

                      (1-12) 

 

Sequence Constraints: Completion of previous tasks 
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Time Horizon Constraints 
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Objective: Maximization of profit 

           (1-16) 

  

These constraints can be classified as mass-related constraints (1-1)-(1-6) and time-

related constraints (1-7)-(1-15). Constraints (1-1) state that only one task can be 

performed in the same unit at each event point n. Constraints (1-2) enforce the 

requirement for minimum amount, Vij
min
 of material in order for a unit j to start 

processing task i, and the maximum capacity of a unit Vij
max

, to correspond to lower and 

upper bounds on the capacities of B(i,j,n) when  task i is performed (i.e. wv(i,n) equals 

one.). All B(i,j,n) variables are forced to zero when wv(i,n) equals zero. Maximum 

storage capacity for each state s is represented as upper bound to storage of state s at each 

event point n in constraints (1-3). Material balances (1-4) and (1-5) state that the amount 

of material of state s at event point n is equal to that at event point n-1 adjusted by any 

amounts produced or consumed between the event points n-1 and n and the amount 

delivered to the market at event point n. Demand constraints (1-6) express that the 

production needs to satisfy the market orders. 

The time-related constraints (1-7)-(1-15) are very important since they enforce the 

optimal sequencing and timing of all the tasks that satisfy the mass-related requirements. 

In this work, the duration is assumed a variation of 1/3 around the mean value of the 

processing time τij
mean
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and expresses the time required by the unit j to process one unit of material when 

performing task i. Constraints (1-7) express the dependence of the time duration of task i 

in unit j at event point n from the amount of material being processed. Note that when 

wv(i,n) equals zero, the last two terms become zero due to the capacity constraints (1-2) 

and hence T
f
(i,j,n) = T

s
(i,j,n).  The sequence constraints enforce the recipe requirements 

between starting and final times of different tasks.  Sequence constraints (1-8)-(1-10) 

state that task i starting at event point n+1 should start after the end of the same task 

performed at the same unit j which has already started at event point n. Constraints (1-11) 

establish the relationship between the starting time of a task i at point n+1 and the end 

time of task i' at event point n when these tasks take place at the same unit. Similarly, 

constraints (1-12) represent the order of different tasks i,i' that are performed in different 

units j,j' but take place consecutively according to the production recipe. The sequence 

constraints (1-13) represent the requirement of a task i to start after the completion of all 

the tasks performed at past event points in the same unit j. Time horizon constraints (1-

14) and (1-15) require that all the tasks have to start and end within the time horizon. 

 

1.2 EXAMPLE 1 

In this example (Example 2 in Ierapetritou and Floudas, 1998), two different products are 

produced through five processing stages: heating, reactions 1, 2, and 3 and separation of 
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Product 2 from Impure E as shown in the State Task Network (STN) representation of the 

process in Figure 1-1. The data for this example are presented in Table 1-1.  

 

 

Unit Capacity Suitability Mean Processing 

Time ( � � � � � � � ) 
Heater 100 Heating 1.0 

Reactor 1 50 Reaction 1,2,3 2.0,2.0,1.0 

Reactor 2 80 Reaction 1,2,3 2.0,2.0,1.0 

Still 200 Separation 2.0 

 

State 

 

Storage 

Capacity 

Initial 

Amount 

Price 

Feed A Unlimited Unlimited 0.0 

Feed B Unlimited Unlimited 0.0 

Feed C Unlimited Unlimited 0.0 

Hot A 100 0.0 0.0 

Int AB 200 0.0 0.0 

Int BC 150 0.0 0.0 

Impure E 200 0.0 0.0 

Product 1 Unlimited 0.0 10.0 

Product 2 Unlimited 0.0 10.0 

  

Table 1-1: Data for Example 1 
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10% 

90% 

Product 1 

Heating 

Hot A 

40% 
Reaction 2 60% 

60% 

Int AB 

80% 

Feed B 

50% Reaction 1 

Feed C 

Reaction 3 

Impure E 

Separation 

Product 2 50% 20% 

40% 

Int BC

Feed A

 

 

 

 

 

 

 

 

Figure 1-1: State Task Network for Example 1 

 

The objective is to achieve maximum profit with given time horizon and sufficient 

raw materials. Formulation in section 1.1 is applied to this example and the problem is 

solved on Sun Ultra 60 workstation using CPLEX 6.6.  The results corresponding to 

different time horizons are presented in Table 1-2.  

 

Time Horizon Number of Event Points Objective Function CPU time (sec) 

8 hrs 5 1498.19 0.47 

16 hrs 9 3737.10 177.93 

24 hrs 13 6034.92 92367.94 

 

Table 1-2: Results for Example 1 without Decomposition 

 

Note that for time horizons of 8 and 16 hours the objective function corresponds to 

the optimal solution since further increase of the number of event points does not affect 
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the value of the objective function (Ierapetritou and Floudas, 1998). For 24 hours 

however the solution can be sub-optimal since further increase of the number of event 

points makes the problem computationally infeasible to solve. Thus, the need to develop 

decomposition-based approaches becomes imperative.   

It should also be pointed out that the optimal solution for time horizons of 8 and 16 

hours corresponds to the solution of the deterministic model which means that all the 

parameters in this example are known. When uncertainty is taken into account, the same 

schedule could be sub-optimal since a change in price of products or demand will result 

in different optimal schedules.  For example, the optimal production for time horizon of 

16 hours is 147.533 for P1 and 224.764 for P2 and the corresponding schedule is shown 

in Figure 1-2. If a price change is considered such that the price of P1 rises to 11 and the 

price of P2 remains the same, the corresponding optimal production is 150.318 for P1 and 

216.000 for P2. As shown in Figure 1-3, the optimal schedule is different from the 

previous one.  Therefore it is important to incorporate uncertainty in the decision-making 

process. 

Planning usually considers a time horizon of months. Obviously short-term 

scheduling formulation cannot lead to detailed scheduling decisions for this long period 

due to the computational difficulty revealed. In chapter 4 and 5, we are going to revisit 

this example in planning time scale using proposed planning and scheduling approaches.  
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Figure 1-2: Optimal Schedule of Example 1 

 

 

 

 

Figure 1-3: Optimal Schedule of Example 1 Considering Price Variability 
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CHAPTER 2 

SHORT-TERM SCHEDULING UNDER UNCERTAINTY 

The short-term scheduling problem with random prices and demands is considered in this 

chapter. A two-stage stochastic programming approach is proposed that utilizes a forecasting 

technique to generate scenarios of the uncertain parameters. A mathematical model is developed 

for an industrial problem where the applicability of the proposed approach is illustrated. 

 

2.1. INTRODUCTION 

As stated in chapter 1, a significant amount of work in the area of short-term scheduling 

has focused on the development of deterministic models, where the problem data are 

assumed well known in advance.  In reality, uncertainty in the description of a number of 

different parameters such as processing times, costs and demands may have considerable 

impact on the objectives imposed by deterministic models. Consequently, the most 

suitable approach to handle these uncertainties is through the use of probabilistic models 

that describe the model parameters in terms of probability distribution.  

The probabilistic models take into account the detailed statistical properties of the 

parameter variations and utilize two main solution approaches, the chance-constrained 

programming and two-stage stochastic programming. Chance-constrained programming 

attempts to reconcile optimization over uncertain constraints. These constraints, which 

contain uncertain parameters, are guaranteed to be satisfied with a certain probability, i.e. 

reliability level. The chance-constrained programming problem is generally in the 

following form (Birge and Louveaux, 1997). 
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             (2-1) 

where x is the decision variable vector and p is the uncertain parameter vector which is 

contained in the probabilistic constraint. If the probability density function of p is known, 

then the probabilistic constraint can in principle, be substituted by a deterministic 

constraint of the form, 

,0)(3 ≤xg                (2-2) 

thus the entire optimization problem can be solved with a nonlinear solver. In the case 

where only a single probabilistic constraint exists in the model, the solution can be 

derived simply by a coordinate transformation. In the case where uncertain parameters 

follow quasi-concave probability distribution, the relaxed problem is proved convex 

which can be easily solved (Kall and Wallace, 1994).  The probabilistic constraint with 

normal distribution uncertain parameters can be computed with an efficient simulation 

approach (Prekopa, 1995).  This approach has been utilized in linear predictive control 

model (Schwarm and Nikolaou, 1999; Li et al., 2000) and optimal polymer design 

(Maranas, 1997).  Depending on the form of g2, however, the explicit form of g3 may be 

difficult to obtain. For example, the chance-constrained programming is not well 

developed for nonlinear processes due to the difficulty in determining the relations 

between the uncertain parameters and the output constraints. 

The two-stage stochastic programming approach is most commonly used in chemical 

engineering literature for process planning problem (Subrahmanyanm, 1994; 

Pistikopoulos and Ierapetritou, 1995; Clay and Grossmann, 1997; Acevedo and 
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Pistikopoulos, 1998 and Gupta and Maranas, 2000) since the problem can be converted to 

a large deterministic problem for discrete distributed uncertain parameters. The general 

form of the two-stage stochastic programming formulation is the following (Dantzig 

1989): 

  

          (2-3) 

 

where x1 is the vector of the first stage decision variables corresponding to the time 

period where the value of the involving parameters exists, whereas x2 is the vector of the 

second stage decision variables for the time periods where the scheduling decisions 

depend on the specific realizations of the uncertain parameters, θ. The advantage of such 

an approach is that the first stage decisions take into account the uncertainty in future 

parameters.  This model allows superior decisions to be made since it considers the risk 

of variability in the model parameters in the future.  In order to incorporate the future 

variability of uncertain parameters, a scenario-based approach for the second stage 

decision model is presented. To illustrate the scenario-based two-stage approach, a 

parametric example is given as follows. Considering the problem: 
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the first objective is the minimization of the first stage direct costs c
T
x plus the expected 

recourse cost E[Q(x,w)] over all of the possible scenarios while meeting the first stage 
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constraints Ax = b. The recourse cost Q depends both on x, the first stage decision, and on 

the random event w and describes the optimal selection of the second-stage decisions 

y(w) that depend on the realization of the uncertain parameters w. It minimizes the cost 

d
T
(w)y subject to recourse function, T(w)x + W(w)y(w) = h(w).  Nonanticipativity 

property is assumed here which means that the decision in the first stage x is independent 

of which second stage scenario actually occurs, because the decision at the current time 

cannot take advantage of knowledge in the future. Problem (2-4) can be expressed in a 

deterministic equivalent formulation (2-5) by introducing a second stage variable yi for 

each scenario i.   

0
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       (2-5) 

where N is the number of scenarios and pi is the probability of the scenario to occur.  The 

first stage decision cannot discriminate one scenario from another and must be feasible 

for each scenario, i.e. Ax = b and Ti x + Wi yi = hi for all i = 1,...,N. Because all the 

decisions x and yi are solved simultaneously, x is determined to be optimal over all the 

scenarios. Thus the nonanticipativity property is maintained. 

In the rest of this chapter, a realistic problem is used to illustrate the applicability the 

two-stage stochastic approach in the production scheduling problems. The problem is 

described in section 2.2 followed by two-stage stochastic mathematical model in section 

2.3. In section 2.4, forecasting techniques are discussed and incorporated in the solution 
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framework. Results by using proposed approach are compared with that of deterministic 

model. 

 

2.2 PROBLEM STATEMENT 

Cryogenic air separation technology is currently the most efficient and cost-effective 

technology for the production of large quantities of oxygen, nitrogen and argon as 

gaseous and liquid products. A detailed review of cryogenic air separation processes and 

comparison with other air separation alternatives can be found in a recent paper by Smith 

and Klosek 2001. Most of the work that appears in the literature to date addressing the 

optimization of air separations deals with the energy integration and process synthesis 

alternatives as ways to improve energy efficiency. This work presents a completely 

different application of process optimization focused on operational optimization when 

there is power price variability. One difficulty that the plant faces during operation is the 

power price at which the utility company supplies electricity to the plant. The power 

prices are often subject to high fluctuations, which can significantly increase the total 

production cost in the plant. To deal with power cost variability the plant can operate in 

three different modes (regular, assisted, shutdown) that vary with respect to operation 

efficiency and energy requirements. Regular mode of operation is the most efficient and 

most expensive one. When the plant is running on the regular mode the plant power 

consumption consists of air separation unit power which is approximately 20% of total 

power and liquefier power which corresponds to the rest 80% of the total power 

consumption. This means that the plant consumes the maximum amount of power on the 

regular mode and if the power price is high the regular mode is very expensive. 
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Obviously, the shutdown mode is the cheapest one because the plant consumes the only 

miscellaneous power. When the plant is running on the assisted mode the liquefier is shut 

down, so the plant consumes only around 20% of the total power however, it requires the 

consumption of one of the plant products from the storage (which was made early) for the 

refrigeration. It must be noted that there is some extra cost for both shutdown and assisted 

mode, which is related to the recovery of the plant back to the regular mode. 

Consequently, when the energy cost increases the plant can shift from regular to the 

alternative assisted mode which is less expensive or in some cases, to the shutdown mode 

in which there is no production but the plant continues to satisfy the demand by utilizing 

the stored inventory. A method to generate a detailed schedule of process operation mode 

and production rates that minimizes the total cost of power for plant operation is needed.  

The problem is made more challenging because the power price is typically known for 

only a portion of the desired scheduling horizon. For the rest of the horizon, the power 

price is uncertain and can be only forecasted. There is also uncertainty in the product 

demands from the plant.  This uncertainty is not addressed explicitly; however, special 

attention is given to the storage tank level calculations to minimize the effect of this 

uncertainty.  

 In order to optimize plant production taking into account the uncertainty in future 

information, a two stage stochastic programming approach was developed.  This 

approach was chosen since it would allow the power price uncertainty to be addressed in 

a manner where the risk of incurring high cost operation periodically could be traded off 

against the benefit of low cost operation most of the time. This required development of 

mathematical models of the plant operation, formulation the objective function for the 
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problem, development of a robust procedure for solving the optimization problem in a 

reasonable amount of time and development of a forecasting model for power prices. The 

forecasting model for power prices should be based on historical power price data and 

must be capable of generating alternative price scenarios for use in the stochastic 

programming approach. 

 

2.3 MATHEMATICAL MODEL 

In the scheduling of air separation process operations, uncertainty appears as a result of 

internal and external influences.  Product flow rate and distribution variability are 

influences internal to the plant while power price uncertainty is an external influence. The 

internal influences on uncertainty are generally constant with respect to time and small 

with respect to the total storage volume.  Consequently, they will not need to be changed 

each time the schedule is prepared.  Therefore, these uncertainties are accounted for in 

the storage tank level constraints. On the other hand, the external influence of power 

price on uncertainty is not generally constant with time and will change each time the 

schedule is prepared.  The two-stage stochastic programming approach is implemented to 

account the effects of power price uncertainty on production scheduling.  

Storage tank capacity constraints include the parameters, ∆, to take care of the 

uncertainty in the production and distribution of liquid N2 and O2 over a time step i. The 

schedule assumes production changes instantly every hour.  This does not happen in 

reality.  Distribution entails emptying the tank into discrete trailers. It is very unlikely (in 

a real situation) that this is going to occur over exactly one time step and that the trailer 
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filling rate will be constant over the time horizon. To account these problems, an 

additional safety parameter ∆ is added in both sides of the liquid level constraints. 

The power price c(i) is an hourly varying parameter. The power prices for three days 

in the future are assumed deterministically known in this work. The power prices beyond 

three days are assumed to be stochastic. If the production schedule is set using only the 

deterministic information, future changes in price may cause the current best schedule to 

be significantly less than optimal over a longer time horizon. For example, knowledge 

that prices will be higher in the future should cause the schedule to favor more periods of 

operation in regular mode during the scheduling horizon even if the power prices within 

the horizon are currently high relative to normal expectations. The power price forecast 

could be assumed to be correct and treated as deterministic information to solve the 

scheduling problem over a longer time horizon. However, this approach would not allow 

the risk due to power price uncertainty to be managed.  

The two-stage stochastic modeling approach was developed to accommodate the need 

to consider uncertainty in the future prices as early as possible in the decision making 

process to better manage risk. The basic assumption made in developing the 

mathematical model for the power optimization considering power price uncertainty in 

future time periods was to separate the decision making into two stages. In the first stage, 

the power prices are assumed known with specific deterministic values. The second stage 

decisions represent the operating schedule and production in the future time period where 

power prices are uncertain. In particular, the two-stage model developed here involves a 

first stage consisting of three days where we assume that the power price is known with 

certainty and a second stage of three to five days where forecasted power prices are used.  
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Note that since the feasibility of the operations schedule does not depend on power price, 

no consideration of future feasibility is necessary. 

 

2.3.1 FIRST STAGE 

The indices, variables and parameter definitions used in the proposed mathematical 

formulation are in the notation section. On the basis of this notation, the mathematical 

model of the air separation plant is presented below: 

  

Balance Equations and Productivity Constraints 

 

          

(2-6) 

 

The variables x j

p (i) correspond to the production rate of product p during time period 

i when the plant operates in the mode j (rm, am). A
j
 and b

j
 are the coefficient matrix and 

right hand side vector respectively (Coefficient Matrix and Other Parameters section). I is 

number of time steps in the optimization horizon. 

 

Capacity Constraints for Mode j=rm and am (regular mode and assisted mode) 

        (2-7) 

αj
p,β j

p are the minimum and maximum production rates of product p when the plant 

operates in the mode j (Values of α
 j
, β 

j 
 and matrix B

 j
  see Coefficient Matrix and Other 

Parameters section). p
j
(i) is a binary variable indicating which mode the plant is operating 
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in during time period i. These constraints are derived from the capacity limits of the 

equipment used in the two modes. 

Storage Constraints 

 

        (2-8)       

  

These constraints connect step i+1 with the previous step i. According to these 

constraints the level of liquid N2 and O2 in the storage tank at time step i+1 (LLIN(i+1), 

LLOX(i+1)), equals the level of liquid O2 and N2 in the tank at the previous time step 

(LLIN(i), LLOX(i)), adjusted by the amounts produced  and distributed from the storage to 

customers. Q(i)=(QLIN(i), QLOX(i))
T
 – the amount of distributed product during the time 

step i. A small correction term that reflects material loss during storage and distribution is 

also added: V= (VLIN, VLOX)
T
. C

r
 and C

a
 are matrices

 
 depicted in Coefficient Matrix and 

Other Parameters section. 

 

Storage Tank Level Bounds 

 

           (2-9) 

    

These constraints express the requirement for a minimum level of liquid N2 and O2 in 

the storage tanks (S min

LIN  and S
min

LOX ) , to enable the efficient pumping of the liquid from the 

tank. The maximum level constraints (S max

LIN  and S
max

LOX ) arise from the storage tank 

capacity limits.  Slack variables Slin(i) and Slox(i) are introduced to relax the lower 
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bound on the liquid level in the storage tanks. This relaxation needs to be done to 

accommodate instances where the total demand for liquid oxygen/nitrogen over the time 

horizon under consideration exceeds the amount that can be produced by the plant in that 

time.  The slack variables prevent the problem from becoming infeasible and failing to 

deliver a result. It is important to note that the objective function should minimize not 

only the cost of operation, but also the slack variables (through an appropriately scaled 

penalty parameter), so that the constraint is satisfied as closely as possible. Since the 

slack variables are used to relax the lower bound of inventory levels, the existence of 

nonzero values does not imply solution infeasibility and thus is acceptable.   

 

Logical Constraints 

In order to reflect the ability of the plant to switch between three different operating 

modes, we introduce the following binary variables and constraints.  

 

              (2-10) 

 

This constraint ensures that only one mode of operation is selected at any time step. 

For example, if the plant operates in regular operation mode, then p
rm
(i) = 1 and p

am
(i) = 

0 and  p
sh
(i) =0 and capacity constraints for regular mode correspond to the upper and 

lower bounds on the production rates for the various products.  In assisted mode the 

upper and lower bounds will be those appropriate for the corresponding production mode. 
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Switch variable constraints 

The variables Sw
am
(i) and Sw

sh
(i) are introduced into the system to account for the 

minimum switching time between the operating modes. Sw
am
(i)  takes a value of 1, 

whenever the mode of operation shifts from regular at time step i-1 to assisted at time 

step i (which means that there is a ‘switch’ to assisted mode) and is 0 otherwise. 

Similarly Sw
sh
(i) takes a value of 1 whenever the mode of operation shifts from regular or 

assisted at time step i-1 to shutdown at time step i and is 0 otherwise. 

 

               (2-11) 

   

 

 

Matrices H, F and J are depicted in Coefficient Matrix and Other Parameters section. 

In this example, two operating criteria for mode switching have been introduced into 

the model. These are: 

• If the plant switches into the assisted mode of operation, then it must remain in that 

mode for at least four time steps. 

• If the plant switches into the shutdown mode of operation, then it must remain in that 

mode for at least eight time steps. 

The first condition is satisfied using the following condition: 

 

         (2-12)
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If the mode of operation switches to assisted mode at time step i, i.e. Sw
am
(i) = 1, then the 

LHS of equation becomes zero, forcing all p
rm
 and p

sh
 variables for the next four time 

steps to be zero. This ensures that the plant remains in assisted mode for the next four 

hours. If Sw
am
(i) = 0, then the condition is relaxed. The second requirement is satisfied by 

a similar condition:  

        

                                                (2-13) 

 

If Sw
sh
(i) = 1, this forces all p variables on the LHS to be zero, thus ensuring that the 

plant remains in Shutdown mode for eight hours. If Sw
sh
(i) = 0, the condition is relaxed. 

 

Power Consumption Model: 

              (2-14) 
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pw(i) denotes total power consumption of the plant in the time period i. pwASU(i)  the 

power consumed by the air separation unit, pwNLU(i) the power consumed by the liquefier 

and pwmisc  the miscellaneous power, which is used for plant support needs, such as lights, 

instruments etc. This amount of power is assumed to be constant for all operating modes 

and does not vary with time. 

 

2.3.2 SECOND STAGE 

In order to determine the expected value of the objective function, the second stage 

mathematical model must be developed to include a set of power price scenarios.  

Denoting with I
1 
the number of steps of the first stage of the horizon, with q - the 

subscript of the set of scenarios considered for each step of the second stage and the 

continuous and binary variables for the second stage x2
j
q(i),L2q (i),pw2q (i) and p2

j
q (i), 

Sw2
j
q (i), we will get the following set of constraints that are similar to (2-6)- (2-16): 

 

Balance Equations and Productivity Constraints 

  

               

(2-17) 

 

 

 

N
q
 is the total number of scenarios. 
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Capacity Constraints for Mode j=rm, am  

            (2-18) 

 

 

Storage Constraints 

 

                 (2-19)      

 

 

 

Note that the integration of the first and second stage models is performed through the 

levels of product in storage tanks: the final inventory of the first stage (LLIN(I
1
), LLOX(I

1
)) 

is considered to be the initial inventory of the second stage. 

 

Storage Tank Level Bounds  

                                                

                                                (2-20) 

 

Lmax and Lmin are defined in Equation (2-5). 
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Logical Constraints 

                                                         

              (2-21)                                                                                 

  

  

Switch Variable Constraints 
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Power Consumption Model  

            (2-25) 
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2.3.3 OBJECTIVE FUNCTION FORMULATION 

For the first stage, the power prices c(i) for all time periods are known. The cost of the 

plant operation in the first stage can be calculated as: 

                                                                                                  

                                                                                                                                   (2-28) 

In the second stage, there are different scenarios, q, for the power prices c2(i,q) for 

the remaining  time periods in the horizon.  The cost of the plant operation in the second 

stage can be calculated as: 

            

                      (2-29) 

 

wq correspond to the weight for each scenario. Taking into consideration the general form 

of the two stage stochastic programming formulation, the objective function should 

minimize the total cost of the power consumption PC* across both stages simultaneously 

subject to the constraints in each stage.  The constraints are defined by, (2-6) for all 

i=1,2,…I
1
 and (2-17) for all i =I

1
+1,I

1
+2,…I.   

 

            (2-30) 

 

 

2.4 POWER PRICE FORCASTING 

The two stage stochastic formulation of the optimization problem requires the utilization 

of a forecasting technique to predict the future prices and their confidence intervals.  The 

{ }qLOXLIN

N

q

I

Ii

qq

I

i

NqPenaltyPenaltywhere

iSlackwiSlackPCPCPC

q

,...,2,1],[

)(2)(2min
1 11

*

1

1

∈∀=Ρ









⋅Ρ+×Ρ++= ∑ ∑∑
= +==

∑
=

×=
1

1

)()(
I

i

ipwicPC



 

 

31

 

quality of the results depends strongly on the quality of the forecasting model.  Extensive 

testing and analysis of the power forecasting model was done to quantify its accuracy and 

potential impact on the optimal operating schedule.  

 

2.4.1 ARIMA MODEL 

 

 

 

 

 

 

 

 

 

 

Figure 2-1: Power Price Profile 

 

It can be observed from Figure 2-1, where the price fluctuations are shown for a 

period of 8 days, that although the power price varies tremendously with time there is a 

pattern within each day through out the year. As a result of this, the following procedure 

was developed to predict the future power prices based on historic data.  A forecasting 

method was developed to predict the average daily power price for future days.  A 

separate model was developed which correlates the hour of the day with the ratio of the 
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)1()1()(ˆ −−−= tetYtY θ

hourly power price to average power price for the day.  The combination of these models 

allows the power price to be predicted on an hourly basis for the future days as required 

by the problem formulation.  

There is an extended literature in the development and application of forecasting 

techniques. A survey and detailed comparison of various methodologies can be found in 

the book by Makridakis et al. 1984.  Among the models that we tested for the power price 

prediction, the moving average with trend and the exponential smoothing method with 

trend cannot reflect the change of trend of price due to their simplicity. Winters’s method 

for seasonal variation and Harrison’s harmonic smoothing method with seasonal 

estimates through Fourier analysis don’t work well since the series of energy price didn’t 

show obvious seasonal pattern. Neither does Brown’s quadratic exponential smoothing 

method since the variation fails to be approximated by quadratic terms. After testing 

these forecasting methods, we utilized an ARIMA model to forecast the average power 

prices for a period of 2 to 5 days. An ARIMA (Autoregressive Integrated Moving 

Average) model has three adjustable parameters: 

p - the number of autoregressive terms in the model 

d - the number of non-seasonal differences  

q - the number of lagged forecast errors in the prediction equation  

Depending on the values of those parameters, the generalized ARIMA mathematical 

model corresponds to different forecasting formulas. For example an ARIMA(0,1,1) 

model corresponds to a simple exponential smoothing method as shown below:   

       (2-31) 
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where )(ˆ tY is the predicted value of variable Y at time t, )1( −tY is the actual value of Y at 

time t-1, )1( −te  is the lagged forecast error and θ is a constant multiplier.  

Using power price data from the ISO New England website for the period from Jan,1st to 

July,17th, 2000, it was found that an ARIMA(2,1,1) was best at predicting the trend of 

average daily power price. ARIMA(2,1,1) is a mixed mode model characterized by the 

following forecasting equation 

)1())3()2(())2()1(()1()(ˆ
21

−θ−−−−φ+−−−φ+−+µ= tetYtYtYtYtYtY            (2-32) 

where µ is where the constant term, ф1 is the first order autoregressive term coefficient, 

ф2 is the second order autoregressive term coefficient. The purpose of introducing these 

terms is to minimize or eliminate the autocorrelation of the errors. Table 2-1 shows the 

statistical results comparing the ARIMA(2,1,1) to other ARIMA forecasting models. In 

Table 2-1, AIC is Akaike’s Information criterion and SBC is Schwarz’s Bayesian 

Criterion.  ARIMA models with smaller values of these parameters indicate to fit the data 

series better than the competing alternatives.  The ARIMA models were developed using 

the SAS statistical toolbox (SAS online documentation 1999). 
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Model Constant 

Estimate 

Variance 

Estimate 

Std Error 

Estimate 

AIC SBC Number of 

Residuals 

ARIMA(0,1,0) 0.135394 25.66067 5.065637 1120.239 1123.454 184 

ARIMA(0,2,0) 0.255499 46.30518 6.804791 1215.507 1218.711 182 

ARIMA(1,1,0) 0.162413 25.37821 5.037679 1119.194 1125.624 184 

ARIMA(1,1,1) 0.069262 23.79662 4.878178 1108.341 1117.985 184 

ARIMA(2,1,0) 0.245482 23.94656 4.893522 1109.496 1119.141 184 

ARIMA(2,1,1) 0.1282 23.16539 4.813044 1104.375 1117.234 184 

 

Table 2-1: Comparison of ARIMA Models 

The power price data from the ISO New England website for the year 2000 were also 

used to develop a model for the expected hourly pattern within a day.  The model 

correlating the hour of the day with the ratio of the hourly power price to average power 

price for the day is plotted in Figure 2-2. 
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   Figure 2-2. Hourly to Average Daily Price Ratio 

 

2.4.2 FORECASTING RESULTS 

Let us consider the specific example of predicting the power prices on July 18
th
 and July 

19
th
 of 2000. Following the above procedure, first we predict the average daily prices 

based on previous data using the ARIMA(2,1,1) model. This results in average values of 

37.43 and 39.64, respectively, compared to actual averages of 39.90 and 33.33. Then 

using the model for hourly to average daily price ratio, we predict the hourly power price 

fluctuations for these two days as shown in Figure 2-3.  
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 Figure 2-3: Actual and Predicted Prices for July 18
th 
and July 19

th 

 

In addition to the predicted power prices, confidence intervals can be also estimated. 

Figure 2-4 and 2-5 show the 70% and 95% confidence limits. As expected by increasing 

the probability of capturing the price variability the range of uncertainty increases. The 

error between the predicted and the actual prices is plotted in Figure 2-6 and reaches a 

maximum of approximately 70%. One can argue from the error in power price prediction 

that the power prices cannot be predicted to any reasonable accuracy.  However, we will 

illustrate in the next section that the power price prediction can be very effectively used 

in deciding the optimal operating schedule taking into account future price variability.  
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Figure 2-4: 70% Confidence Interval 
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Figure 2-5: 95% Confidence Interval 
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Figure 2-6: Relative Error in Power Price Prediction 

 

2.4.3 FORECASTING MODEL IMPACT ANALYSIS 

The following experiment was carried out to test the impact of the forecasted power 

prices. A period of 5 days was randomly selected from the historic data.  The chosen days 

were from July 15
th
 until July 20

th
 of 2000. The problem was solved using the first stage 

only with actual power prices for July 15, 16, 17, 18 and 19.  The results for this case are 

shown in Figure 2-7. The problem was again solved using the first stage only with actual 

power prices for July 15, 16, 17 and power prices forecasted using the methodology 

presented above for July 18 and 19. The results for this case are shown in Figure 2-8. By 

examining the results, especially in terms of operating mode schedule, it is found that the 

schedules obtained using the predicted and the actual prices have only one major 
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difference.  The schedule with the predicted prices for the last two days called for an 

additional period of operation in shut down mode during the first day.  This situation 

occurred because extraordinary peaks cannot be precisely predicted.  Specifically, a 

significant price spike occurred on July 18
th
 (Figure 2-1) that was not predicted by the 

forecast. This caused the schedule decisions made using the predicted prices to be more 

optimistic. However, it is important to remember that it is equally possible for the power 

price to be over predicted and result in pessimistic schedule decisions. 
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Figure 2-7:  Optimal Operating Schedule for the First 3 Days When the Actual 

Power Price is Used for All 5 Days 
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Figure 2-8: Optimal Operating Schedule for the First 3 Days When the Actual 

Power Price is Used for 3 Days and Forecasted Prices for the Last 2 Days 

To evaluate the impact of the power price forecasts for more than two days in the 

future, we followed the same approach but used an eight-day horizon.  The problem was 

solved using the first stage formulation and the actual power prices for eight days.  These 

results are shown in Figure 2-9.  The problem was then solved again using actual power 

prices for the first three days and predicted power prices for the last 5 days.  These results 

are shown in Figure 2-10. In this case when more information about future prices is 

included into the model, the schedules obtained for the first three days are very close. 

This occurs even though actual prices were used in one case and forecasted prices were 

used in the other.  The only minor difference in the first three days is one more hour of 

operation in shutdown mode when forecasted prices are used. The schedules for the last 

five days have similar amounts of time in shutdown mode but differ significantly in when 

the shutdowns occur.  In this case, the schedule is more aggressive when the forecasted 
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prices are used but it needs to be emphasized that this result cannot be generalized.  It is 

equally likely that other cases will result in less optimistic schedules when forecasted 

prices are used.  

The above analysis shows that using the power forecasting model developed here in 

the scheduling optimization problem generates reasonable schedules compared with 

using actual power prices.  The forecasted prices also exhibit the expected behavior when 

the scheduling horizon is increased.  The five-day scheduling horizon cases using 

forecasted information have more optimistic schedules compared to the eight-day horizon 

cases using forecasted information. As discussed earlier, this should be expected since 

there is no significant penalty for consuming products in storage until the lower storage 

limits are approached.  Consequently, it is believed that the forecasting model is 

sufficiently accurate for the purpose of using it in a two stage stochastic optimization to 

better manage the risk due to uncertain future power prices. 
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Figure 2-9:  Optimal Operating Schedule When the Actual Power Price is Used for 

All 8 Days 

 

 

 

 

 

 

 

 

 

Figure 2-10: Optimal Operating Schedule When the Actual Power Price is Used for 

3 Days and Forecasted Prices for the Last 5 Days 
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2.4.4 STOCHASTIC PROBLEM RESULTS 

The results of presented the previous sections show that the use of predicted prices for 

future time period results in operation schedules close to the ones that would have chosen 

if the real prices were known. However, forecasting accuracy will typically decrease for 

larger prediction horizons.  

To incorporate the uncertainty in future power price predictions, the two-stage 

stochastic programming approach will be utilized, which will allow to manage risk by 

optimizing the expected value of various power price forecast scenarios using different 

weights for each scenario rather than optimizing using a single uncertain power price 

forecast. 

The most important part of the two stage stochastic optimization is defining the 

scenarios that define possible future power prices and the weights they should be given in 

the objective function. These scenarios should be selected to cover the expected range of 

variability of power price. In this work, the scenarios were chosen to be the values of the 

power price forecasts at the upper and lower confidence limits for a given probability. 

The weight for each scenario was chosen to be the value of the standard normal 

probability density function at the given probability normalized by the values for all 

scenarios.  Additional work can also be incorporated following different probability 

distribution functions.  

The specific cases considered here use deterministic power prices for the first three 

days followed by predicted power prices for the last five days.  The data used are the 

same as those used to generate the results of Figure 2-10. Three scenarios are considered 

in the second stage, the predicted hourly power price values that correspond to the 
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maximum, median and minimum values of the 85% confidence intervals. The resulting 

operation schedule is shown in Figure 2-11. The schedule is the same as the one obtained 

when only the mean predicted values are considered.  However, the decision-making 

becomes more risk averse if higher confidence limits are considered for the future price 

prediction.  The schedule results derived for the 95% confidence intervals of the power 

price forecast are shown in Figure 2-12. In this schedule, the switch into shutdown mode 

is for a shorter duration, eight hours versus ten. This indicates that the power price 

variability results in a potential negative impact of the maximum scenario greater than the 

potential positive impact of the minimum scenario. This result demonstrates that one can 

trade-off the risk they are willing to take versus the operating cost of production. The 

maximum allowable cost to avoid the risk is also quantifiable by examining the 

differences in the objective functions between cases. 

 

Figure 2-11: Optimal Operating Schedule Using Two Stage Stochastic Programming 

Approach for 8 Days Covering 85% Confidence Intervals 
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Figure 2-12: Optimal Operating Schedule Using Two Stage Stochastic 

Programming Approach for 8 Days Covering 95% Confidence Intervals 

 

2.5 SUMMARY 

Realistic short-term scheduling problems involve uncertainty since the operating 

specifications such as product demands and prices usually vary during the process 

operation. The two-stage stachastic programming approach proposed in this work 

establishes a stochastic optimization framework which gives emphasis on the influence of 

uncertain parameters on the current production plan. ARIMA model is utilized to provide 

scenarios of  future value of uncertain parameters. These scenarios are considered in the 

second stage model that corresponds to the period when perfect information is absent.  

The production schedule for the current period thus is determined with reasonable 

consideration towards long term goal by incorporating the second stage into the objective 

function.  The efficiency of this approach is illustrated with a realistic industrial problem. 
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A production optimization model is developed for an air separation plant which is subject 

to high fluctuation of energy price and demand. The production decisions achieved in this 

problem with the proposed approach are the same as the actual production decisions with 

perfect information, while those generated without considering variability of future 

energy price give an inferior schedule.  
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NOTATION � � � � � � � � �
x rm

LIN (i)  : liquid N2 production rate in regular mode at step i 

x am

LIN (i)  : Net consumption rate of liquid N2 in assisted mode at step i 

x rm

AIR (i)  : Air production rate in regular mode at step i 

x am

AIR (i)  : Air production rate in assisted mode at step i  

x rm

ARG (i)  : Argon production rate in regular mode at step i 

x am

ARG (i)  : Argon production rate in assisted mode at step i 

x rm

LOX (i)  : Liquid O2 production rate in regular mode at step i 

x am

LOX (i)  : Liquid O2 production rate in assisted mode at step i 

x rm

GOX (i)  : Gaseous O2 production rate in regular mode at step i 

x am

GOX (i)  : Gaseous O2 production rate in assisted mode at step i 

x rm

vent (i)  : Rate of vent gas production in regular mode at step i 

x am

vent (i)  : Rate of vent gas production in assisted mode at step i 

xliq(i)  : equivalent liquid rate in regular mode at step i 

p
rm
(i)  :  binary variables corresponding to regular mode of 

                                    operation at step i 

p
am
(i)  : binary variables corresponding to assisted mode of 

                                    operation at step i 

p
sh
(i)  : binary variables corresponding to shutdown mode of 

                                    operation at step i 

Sw
am
(i)  : Switch variables that define a switch to assisted mode  

Sw
sh
(i)  : Switch variables that define a switch to shutdown mode  

LLIN(i)  : Level of liquid N2 in storage tank at end of step i 

LLOX(i)  : Level of liquid O2 in storage tank at end of step i 

pw(i)  : Total power consumption at step i 

pwASU(i) : Power consumed by Air Separation unit at step i 

pwNLU(i) : Power consumed by Nitrogen Liquefying unit at step i 
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pwmisc  : Miscellaneous power consumed at step i (constant) 

x2 rm

LIN ,q(i) : liquid N2 production rate in regular mode at step i in scenario q 

x2 am

LIN ,q (i) : Net consumption rate of liquid N2 in assisted mode at step i in 

                                    scenario q 

x2 rm

AIR ,q (i) : Air production rate in regular mode at step i in scenario q 

x2 am

AIR ,q (i) : Air production rate in assisted mode at step i in scenario q 

x2 rm

ARG ,q (i) : Argon production rate in regular mode at step i in scenario q 

x2 am

ARG ,q (i) : Argon production rate in assisted mode at step i in scenario q 

x2 rm

LOX ,q (i) : Liquid O2 production rate in regular mode at step i in scenario q 

x2 am

LOX ,q (i) : Liquid O2 production rate in assisted mode at step i in scenario q 

x2 rm

GOX ,q (i) : Gaseous O2 production rate in regular mode at step i in scenario q 

x2 am

GOX ,q (i) : Gaseous O2 production rate in assisted mode at step i in scenario q 

x2 rm

vent ,q (i) : Rate of vent gas production in regular mode at step i in scenario q 

x2 am

vent ,q (i) : Rate of vent gas production in assisted mode at step i in scenario q 

x2liq,q  (i) : equivalent liquid rate in regular mode at step i in scenario q 

p2
rm

q(i) :  binary variables corresponding to regular mode of  

                                    operation at step i in scenario q 

p2
am

q (i) : binary variables corresponding to assisted mode of 

                                    operation at step i in scenario q 

p2
sh
q (i) : binary variables corresponding to shutdown mode of 

                                    operation at step i in scenario q 

Sw2
am

q (i) : Switch variables that define a switch to assisted mode in scenario q      

Sw2
sh
q (i) : Switch variables that define a switch to shutdown mode  

                                    in scenario q 

L2LIN,q (i) : Level of liquid N2 in storage tank at end of step i in scenario q 

L2LOX,q (i) : Level of liquid O2 in storage tank at end of step i in scenario q 

pw2q (i) : Total power consumption at step i in scenario q 

pw2ASU,q (i) : Power consumed by Air Separation unit at step i in scenario q 
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pw2NLU,q (i) : Power consumed by Nitrogen liquefying unit at step i in scenario q 

 � � � � � � � � � �
c (i)  : Price rates at step i 

c2 (i)  : Price rates at step i at the second stage 

QLIN(i)  :  Amount of liquid N2 distributed at every time step i  

Q2LIN,q(i) :  Amount of liquid N2 distributed at every time step i in scenario q 

VLIN  : Losses of liquid N2 at every time step (constant) 

QLOX(i)  : Amount of liquid O2 distributed at every time step i 

Q2LOX,q(i)  : Amount of liquid O2 distributed at every time step i in scenario q 

VLOX  : Losses of liquid O2 at every time step (constant) 

αLIN, αLOX, αLIQ , αAIR , αGOX :   minimal production rates for Liquid N2, Liquid O2,  

                                                          equivalent liquid, air and gaseous O2,                            

respectively 

βLIN, βLOX,βLIQ , βAIR, βGOX :   maximum production rates for Liq N2, Liq O2,     

                      equivalent liquid, air and gaseous O2, respectively 

S min

LIN   : Minimum level of Liquid N2 allowed in storage tank 

S max

LIN   : Maximum level of Liquid N2 allowed in storage tank 

S min

LOX   : Minimum level of Liquid O2 allowed in storage tank 

S max

LOX   : Maximum level of Liquid O2 allowed in storage tank 

∆ low

LIN , ∆
high

LIN  : Factors accounting for random variations in level of liquid N2 

   in storage tank because of random distribution of liquid N2 i.e.      

VLIN, over time period i; for lower level and upper level. 

∆ low

LOX , ∆
high

LOX  : Factors accounting for random variations in level of liquid O2 

   in storage tank because of random distribution of liquid O2 i.e.      

VLOX, over time period i; for lower level and upper level. 
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 Coefficient Matrix and Other Parameters 

 

 

 

 

 

 

  

 

 

 

 

  

 

    

   

K
0
ASU=1800;    K

1
 ASU=-1.3;  K

2
ASU=0.003;       K

0
NLU=4000;   K

1
 NLU=1.0;  K

2
NLU=0.02;       

αLIN ,  : 250 KSCFH   βLIN   : 480 KSCFH  

αLOX   : 10 KSCFH   βLOX  : 160 KSCFH 

αLIQ    : 275 KSCFH   βLIQ  : 770 KSCFH 

αAIR    : 550 KSCFH   βAIR  : 660 KSCFH 

αGOX  : 70 KSCFH   βGOX  : 85 KSCFH 

S min

LIN    : 18000 KSCF    ∆ low

LIN   : 3000 KSCF 

S max

LIN   : 61000 KSCF   ∆ high

LIN   : 4000 KSCF 

S min

LOX   : 5000 KSCF   ∆ low

LOX   : 1200 KSCF 

S max

LOX    : 20500 KSCF   ∆ high

LOX   : 160 KSCF 

QLOX = 25 KSCFH , VLOX = 150 KSCFH 

Pmisc = 325 kW;  
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CHAPTER 3 

DECOMPOSITION APPROACHES FOR SHORT-TERM 

SCHEDULING PROBLEMS 

Decomposition techniques for short-term scheduling problems are discussed in this chapter. 

These techniques include heuristics that can solve original problem to near-optimality in 

computational time of up to one order of magnitude reduction, and Lagrangean relaxation and 

Lagrangean decomposition that provide a stronger upper bound than LP relaxation problems. A 

solution framework for short-term scheduling based on these techniques is proposed with two 

examples. 

 

3.1 INTRODUCTION 

In the last decade, a number of papers have been devoted to solving short-term 

scheduling problems such as Pekny and Reklaitis (1998), Shah (1998), Pinto and 

Grossmann (1998) and others discussed in chapter 1. Among these work, mixed integer 

linear programming is a competitive alternative due to its general framework to 

incorporate realistic conditions.  However, a major difficulty lies in the computational 

expense since complexity brought by number of integer variables and corresponding 

constrains requires exponential computation time.  Therefore, solving MILP scheduling 

problems without simplification makes this approach prohibitive for industrial 

applications where it often fails to find a feasible solution (Pekny and Reklaitis, 1998). 

This trend can be observed in many approaches such as the uniform time discretization 

(Kondili et al.1993a), the time-slot based approach (Pinto and Grossmann, 1995), and 
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continuous-time approaches (Zhang and Sargent, 1996; Mockus and Reklaitis, 1996; 

Ierapetritou and Floudas, 1998) when the problem size is increased to realistic scale.  

In order to overcome this difficulty, many decomposition methods have been 

developed, which generally could be classified into algorithmic and heuristic. Following 

the early decomposition algorithm (Benders, 1962
 
and Dantzig, 1963), Olaf et al.

 
(1993) 

summarized their generalizations, developing the variable decomposition and constraint 

decomposition approaches. New approaches in the former category include branch-and-

cut algorithms (Johnson, Nemhauser and Savelsbergh, 2000) in which extra cuts are 

added to the MILP to strengthen its relaxation gap and combined constraint logic 

programming methods with MILP (Jain and Grossmann, 2001).  While a large number of 

heuristics are presented to provide a fast solution for scheduling problems. Basset et al. 

(1996) presented a number of time-based decomposition approaches based on a discrete-

time formulation. Khmelnitsky et al. (2000) proposed a time-decomposition approach to 

solve large-scale scheduling problems and obtain near-optimal solution based on the 

decomposition of the original problem into three sub-problems, namely sequencing, 

loading and timing problems. Boskma (1982) conducted a serial of experiments regarding 

time decomposition approaches, and the results showed that the division of the time in 

sub-periods applied in midterm planning model could impact substantially the outcomes 

of the model. Gupta and Maranas (1999) proposed a hierarchical Lagrangean relaxation 

procedure, along with an upper bound generating heuristic with an application on the 

solution of midterm planning problem.  The algorithmic approaches usually suffer the 

weak relaxation and heuristics cannot guarantee the solution quality.   
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Lagrangean relaxation was presented by Held and Karp (1971) in their work on the 

traveling salesman problem. Based on the observation that mathematical models often 

consist relative easy constraints and hard constraints, Lagrangean relaxation replaces the 

hard constraints with a penalty term in the objective function, thus leaves the remaining 

problem relatively easy to solve.  In addition, the solution from Lagrangean relaxation 

provides an upper bound to the original MILP problem assuming the objective is 

maximization. This upper bound is proven to be stronger than that provided by LP 

relaxation. The wide applications of Lagrangean relaxation are given, for example, in 

capacitated network design problem by Holmberg and Yuan (2000), pooling problem by 

Adhya and Sahinidis (1999) and planning problem by Gupta and Maranas (1999). 

Lagrangean decomposition (Guignard and Kim, 1987) is a special case of Lagrangean 

relaxation where identical copies of variables are created and dualized. The original 

problem is thus decomposed into separate sub-problems and has even stronger bound 

than Lagrangean relaxation. Lagrangean decomposition has been successfully applied to 

plant location problem (Marin and Pelegrin, 1998), transportation and scheduling 

problem (Equi et al., 1997) and routing problem (Rana and Vickson, 1991). A detailed 

review as well as an improved algorithmic development will be given in Chapter 6.  

In this work, a hybrid method is developed where novel heuristics give efficient 

feasible solution to scheduling problems while Lagrangean relaxation and Lagrangean 

decomposition provide upper bound to indicate how good these solutions are compared to 

optimum. Various heuristic-based decomposition approaches are presented in section 3.2, 

whereas the application of Lagrangean relaxation and Lagrangean decomposition 

approach on the solution of short-term scheduling is presented in section 3.3. Finally in 
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section 3.4 a systematic iterative procedure is proposed based on a lower bound obtained 

from a heuristic approach and an upper bound from Lagrangean relaxation and 

Lagrangean decomposition.    

 

3.2 HEURISTIC-BASED DECOMPOSITION APPROACH 

3.2.1 TIME DECOMPOSITION 

Time decomposition methods focus on finding sequence and mass correlation between 

different time periods. The basic time decomposition method consists of dividing a large 

time horizon into several smaller sub-periods where the scheduling problem can be 

solved efficiently.  The resulted sub-problems are then solved sequentially beginning 

with the earliest one. After the schedule of a period is determined, the production in that 

period is calculated and transferred to the initial inventory of the next period. This 

decomposition procedure is very simple and results in much smaller overall 

computational requirements than the original problem as shown in Table 3-1 with 

Example 1 in section 1.2. 

 

Time 

Horizon 

Number of 

Sub-periods 

Number of Event 

Points 

(1
st
 + 2

nd
 + 3

rd
) 

Objective 

Function 
CPU time (sec) 

16 hrs 2 (8hrs) 11 (5 + 6) 3262.87 14.03  (0.44+13.59) 

24 hrs 2 (12hrs) 16 (8 + 8) 5549.41 116.37  (110.30+6.07) 

24 hrs 3 (8hrs) 17 (5 + 6 + 6) 5005.56 24.56  (0.44+13.59+10.53) 

 

 

Table 3-1: Results for Example 1 with Time Decomposition 



 

 

55

 

Note that the time decomposition gives rise to a sub-optimal solution. The reasons are 

i) it maximizes the production of all final products in each sub-period since it uses the 

same objective function as the original problem and thus all the processes that result in 

different products have to be executed in each sub-period which is not an optimum 

operating policy for the whole time horizon, ii) all tasks have to end-up exactly at the end 

of each period, which is an extra constraint in the scheduling problem. To avoid this 

interruption of operation at the end of each sub-period the following "smoothing" 

procedure is applied.  

I. All the tasks that finish at the end of the previous period are determined and the 

earliest starting time among them is denoted as EST. This is then used as new starting 

time of the next period with time horizon of Hsub+ (Hsub –EST), where Hsub is the pre-

defined time horizon of sub-problem.  

II. All the tasks that finish after EST are classified into three categories (Figure 3-1 

for an illustrating case): 

a. the tasks that start before EST and finish before the end of the current 

period Hsub (task 1 and task 4),  

b. the tasks that start after EST and finish before the end of the current period 

Hsub  (task 5), and   

c. the tasks that start at or after EST and finish at the end of the current 

period Hsub  (task 2, task 3 and task 6). 

III.  For the tasks in the first category their starting times and processing times are 

fixed allowing them to continue into the next period, whereas for the tasks in the second 

category only their starting times are fixed. For tasks in the third category nothing is fixed 
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and thus the new schedule of the next period determine their starting times and batch 

sizes. 

The sub-problem that corresponds to the next period is solved with starting time equal 

to EST. 

 

 

 

 

 

 

 

 

 

Figure 3-1: Illustration of Smoothing Technique 

 

This method adjusts the processes at the end of each sub-period so that tasks can 

continue across the periods resulting in smoother plant operation and thus improves 

quality of solution in terms of the objective function value as shown in Table 3-2.   

 

Time 

Horizon 

Number of 

Sub-periods 

Number of Event 

Points 

(1
st
 + 2

nd
 + 3

rd
) 

Objective 

Function 
CPU time (sec) 

16 hrs 2 (8hrs) 11 (5 + 6) 3550.42 2.7  (0.44+2.26) 

24 hrs 2 (12hrs) 16 (8 + 8) 5918.42 492.55  (110.30+382.25) 

24 hrs 3 (8hrs) 17 (5 + 6 + 6) 5484.96 4.34  (0.44+2.26+1.64) 

 

Table 3-2: Results for Example 1 with Smoothing Technique in Time Decomposition 
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However, the solution is still sub-optimal since by using the objective of production 

maximization at each sub-period, the schedule increases the production in each smaller 

time horizon, which may result in a sub-optimal solution due to inability to perform 

larger batch sizes. To overcome this shortcoming the following method is proposed.  

 

3.2.2 REQUIRED PRODUCTION METHOD 

The basic idea of the required production method is to change the problem target at each 

sub-period aiming the production of the necessary intermediates in order to produce the 

final products.  Therefore, large batches of intermediates can be produced without been 

completely consumed to produce final products during the same sub-period. As a key 

step in this method, the material requirement table is utilized to determine the necessary 

amount of intermediates. The material requirement table is created based on the mass 

balance of the whole process and determines the necessary units of intermediates in order 

to produce one unit of any specific product. Based on the STN representation the 

following cases can be found (Figure 3-2) in order to calculate the material requirement 

table.  

1) Normal task line, where in order to determine the material requirements, one unit 

of final product is assumed and the necessary intermediates are calculated based 

on recipe.  

2) Bifurcation task line, where it is necessary to compare the required amounts for 

task 2 and task 3, and take the larger value to determine the required amount of 

materials in task 1. This is because in this case the State Task Network (STN) 

expresses that two kinds of material are produced from Task 1 since Task 2 and 
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Task 3 are using two state-nodes from Task 1. Thus, the required production for 

Task 1 could be calculated from material in either Task 2 or Task 3. In order to 

satisfy both requirements, the larger one is picked.   

3) Loop task line, where the amount produced by the loop task should be considered. 

For the case where the last batch of the loop task does not contribute to the next 

task, the necessary adjustment should be made. 

 

 

 

 

 

 

             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-2: Illustration of STN Basic Structures 

 

Task 1 Task 2 

Task 2 Task 1 

Task 3 

Task 2 

Task 1 
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The material requirement table for Example 1 is shown in Table 3-3. 

 

State s Ratio Calculated from P1 Ratio Calculated from P2 

P1 1 0.5926 

P2 1.6875 1 

HA 1 0.5926 

Int BC 1.5 0.8889 

Int AB 1.6875 1 

Impure E 1.875 1.1111 

 

Table 3-3.  Material Requirement Table for Example 1 

 

 

Given specific production of all final products, the amounts of intermediates, which 

are denoted as ‘required production’, are calculated by multiplying the ratio in the 

material requirement table and the amount of final product. Then, instead of maximizing 

production of the final products at each sub-period, the objective is to produce the 

required amounts for all final products and intermediates. In mathematical terms two 

additional constraints are added.  

 

Production Constraints  

NnSsnjiBnsP
s iIi Jj

p

si ∈∈∀









ρ= ∑ ∑

∈ ∈

,),,(),(         (3-1) 

where P(s,n) denotes the production of state s at the event point n. Constraints (3-1) are 

used to calculate the amount of state s that is produced at each event point.  
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Production Requirement Constraints 

( ) NnSssslackPnsP res

s

n

∈∈∀−≥∑ ,)(,       (3-2) 

where  P
res
(s) denotes the required production of state s in order to fulfill the production 

of final products. Constraints (3-2) represent that the amount of state s, which has been 

produced during the whole period, has to be greater or equal to Ps
res
.  

 

Objective function  

  ( )∑=
s

sslackzmin        (3-3) 

The objective function corresponds to the minimization of the slack variables introduced 

in the production requirement constraints. Therefore in each period the solution 

maximizes the production of all the required intermediates as well as final products. It 

should be pointed out that constraints (3-1)-(3-3) don’t change any mass balance or 

sequence constraints defined in section 1.1.  The required production method is usually 

applied together with time decomposition. 

 

3.2.3 COMBINATION OF SMOOTHING TECHNIQUE AND REQURIRED 

PRODUCTION METHOD 

In this section, the required production method is considered simultaneously with the 

time decomposition with smoothing technique. For the scheduling problem with the 

objective to minimize production, where P
res
(s) is not given, the following approach is 

proposed. i) Consider specific volumes of final products, using the solution of the relaxed 
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LP relaxation problem or Lagrangean relaxation (LR) or Lagrangean decomposition (LD) 

as it will be discussed in the next section.  ii) Calculate the required production for 

intermediates.  iii) Except the last sub-period, set (3-3) as the objective function for other 

sub-periods and apply the decomposition technique described in 3.2.1.  iv) Set (1-15) as 

the objective function for the last sub-period. v) Fix the binary variables and solve the 

original problem.  It should be noted that for step (iii), a positive objective value means 

that Ps
res
 is sufficiently large, whereas a zero objective function requires an additional 

iteration with an increased Ps
res
.   

The results for Example 1 are listed in Table 3-4. Compared with the results of time 

decomposition without the required production constraints (Table 3-1 and Table 3-2), it 

should be noticed that generally better quality objective values are achieved, especially 

when applied to problem with large time horizon that needs to be decomposed into multi-

periods. This is because better connection between the sub-problems is achieved 

compared to time decomposition method and thus the solution of each sub-period 

involves some large batch sizes independent of whether or not production of all different 

final products are achieved in that sub-period.   
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Time 

Horizon 

Number of 

Sub-periods 

Number of 

Event Points  

(1
st
 + 2

nd
 + 3

rd
) 

Objective 

Function 
CPU time (sec) 

16 hrs 2 (8hrs) 11 (5+6) 3373.25 18.97 (16.14+2.83) 

24 hrs 2 (12hrs) 14 (6+8) 5875.96 30.77 (22.93+7.84) 

24 hrs 3 (8hrs) 16 (5+5+6) 5662.17 27.12 (14.81+4.99+7.32) 

 

Table 3-4: Results for Example 1 Using Required Production Method with 

Smoothing Technique 

The advantage of this approach is illustrated better when larger scale problems are 

considered. The same example is solved here but considering a larger time horizon of 48 

hours. Following this approach, first the linear relaxation of the original problem (LP) 

was solved using 26 event points. The necessary amounts of products were calculated 

based on the LP result, and the required production method and smoothing technique 

were used with decomposing the whole time horizon into 3 periods of 16 hours each. The 

final step involves refinement of the schedule by fixing the binary variables with positive 

value and resolving the original scheduling problem of 48 hours.  The result obtained by 

this approach is shown in Table 3-5 and compared with the solution of the original 

problem and the solution of the overall problem by applying cyclic scheduling mode 

which repeatedly executes the same operation schedule for a smaller time horizon. As 

illustrated in Table 3-5, the proposed approach generates an improved objective function 

value reducing the computational time in more than one order of magnitude.  
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Solution Approach Objective Value 
Number of 

Event points 

CPU time 

(sec) 

Best solution 

by solving original 

problem 

 

48 hours 

 

12637.60 

 

24 

10000.47* 

(3717.96**) 

8×6 hours 
8989.14  

(1498.19×6) 
30 (5×6) 0.47 

12×4 hours 
10631.60 

(2657.90×4) 
32 (8×4) 107.11 

16×3 hours 
11211.3  

(3737.10×3) 
27 (9×3) 177.93 

 

Cyclic mode 

24×2 hours 
12039.22 

(6019.16×2) 
26 (13×2) 

10000.12* 

(9394.66**) 

Proposed approach 12710.98 25 804.95 

 

*   Default time to stop the calculation 

** Computational time to find this solution. 

Table 3-5: Computation Results for 48 Hours Schedule of Example1 

 

The same approach was applied to Example 2. In this example, four products are 

produced through eight tasks from three feeds. There are nine intermediates in the 

system. In all, six different units are required for the whole process. The STN 

representation for this process is shown in Figure 3-3, and the required data is presented 

in Table 3-6.  The processing times are allowed to vary 1/3 around the mean values 

(τij
mean

).  The objective is to maximize the profit with the given time horizon. The 

computational results of the proposed approach, original scheduling problem and cyclic 

mode approach are listed in Table 3-7, pointing to the fact that the proposed approach 
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performs very well since a very good solution in terms of objective value is obtained in 

reasonably short time. 

Unit Capacity Suitability Mean Processing 

Time ( � � � � � � � ) 
Unit 1 1000 Task 1 1.0 

Unit 2 2500 Tasks 3,7 1.0 

Unit 3 3500 Task 4 1.0 

Unit 4 1500 Task 2 1.0 

Unit 5 1000 Task 6 1.0 

Unit 6 4000 Tasks 5,8 1.0 

State 

 

Storage 

Capacity 

Initial 

Amount 

Price 

Feeds 1,2,3 unlimited 0.0 0.0 

Intermediate 4 1000 0.0 0.0 

Intermediate 5 1000 0.0 0.0 

Intermediate 6 1500 0.0 0.0 

Intermediate 7 2000 0.0 0.0 

Intermediate 8 0 0.0 0.0 

Intermediate 9 3000 0.0 0.0 

Products 1,2,3,4 unlimited 0.0 18,19,20,21 

Feeds 1,2,3 unlimited unlimited 0.0 

 

 

Table 3-6: Data for Example 2 
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Figure 3-3: State Task Network for Example 2 

 

Solution Approach Objective Value 
Number of 

Event points 

CPU time 

(sec) 

Best solution 

by solving original 

problem 

48 hours 2193616.47 37 10001.24* 

8×6 hours 
1517849.88 

(252974.98×6) 
54 (9×6) 2552.85 

12×4 

hours 

1785114.66 

(446278.67×4) 
48 (12×4) 

10000.14* 

(8592.72**) 
Cyclic mode 

16×3 

hours 

1930541.304 

(643513.768×3) 

45 (15×3) 

 

10000.22* 

(4087.29**) 

Proposed approach 2169426.95 44 2148.05 

 

*   Default time to stop the calculation 

** Computational time to find this solution. 

Table 3-7: Computation Results for 48 Hours Schedule of Example 2 

 

Task 1 

Task 2 

Task 3 

Int 6 

Task 7 

Int 4 

Int 5 

Task 6 

Task 4 

Int 9 

Task 5 

Int 8 

Int 7 

Task 8 

0.6 

0.3 

0.4

0.3 

0.5 
0.5 0.7 

0.7
0.5 

0.5 
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3.2.4 RESOURCE-BASED DECOMPOSITION 

In this section two different decomposition methods are proposed based on the partition 

of various scheduling resources.  The first one is based on the decomposition of the event 

points whereas the second one decomposes and treats separately the units involved in the 

production.  

 

3.2.4.1 EVENT POINT DECOMPOSITION 

Since the main reason of the excessive computational complexity of large-scale 

scheduling problem is due to the increased number of events occurring during the time 

horizon under consideration, the basic idea of this proposed method is to successively 

increase the number of events while fixing those that have already used. In particular, this 

approach includes the following steps. First, a small number of event points are used and 

the scheduling problem is solved. Then the task sequence is fixed based on the solution of 

the problem with the limited event points, and additional event points are considered for 

the problem to be resolved.  Since fixing the task sequence decreases the number of 

binary variables, fast solution can be achieved. The iterations terminate when no further 

improvement of the objective function can be achieved. The results for example 1 are 

shown in Table 3-8. 
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Time 

Horizon 

Iteration 

Number 

Number of 

Event Points 

Objective 

Function 
CPU time (sec) 

1 5 1760.00 0.12 

2 6 1920.00 0.08 

3 7 2253.33 0.17 

4 8 2253.33 0.16 

5 9 3354.75 0.51 

6 10 3563.27 0.37 

7 11 3563.27 0.60 

 

 

 

16 hrs 

Total CPU 2.01 

1 5 1760.00 0.13 

2 6 1920.00 0.08 

3 7 2253.33 0.17 

4 8 2703.33 0.14 

5 9 3873.33 0.16 

6 10 4787.08 0.22 

7 11 4800.42 0.24 

8 12 5250.42 0.28 

9 13 5335.74 0.99 

10 14 5649.32 0.65 

11 15 5649.32 1.14 

 

 

 

 

 

24 hrs 

Total CPU 4.2 

 

Table 3-8: Results for Example 1 Using Event Point Decomposition 

 

This method performs very well in terms of the required computational time but 

shares the same disadvantage of the previous approaches regarding the optimality of the 

solution. Optimality is not guaranteed for the original problem since once the event points 
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are fixed, the solution cannot accommodate schedules that require different allocation of 

the event points.  

 

3.2.4.2 CRITICAL UNIT IDENTIFICATION 

This approach can be used very efficiently when a bottleneck unit exists. For these cases, 

the critical unit is forced to work continuously during the whole time horizon. This 

requirement is translated to the following constraints.  

Full Utility Constraint 

( ) ( )( ) }{,,,,, unitscriticalofSetjHnjiTnjiT
jIi n

sf ∈∀=−∑∑
∈

    (3-4) 

To identify a bottleneck unit one may check the processing capability of each unit 

together with the process recipe. The results for example 1 of 24 hours using each of the 

reactors as a critical unit are shown in Table 3-9. These results are possibly still a sub-

optimal solution since no verification can be achieved using increased number of event 

points.  However, a better solution than the one generated by solving the original MILP 

problem has been obtained with less CPU time.   

 

Time 

Horizon 

Critical 

Unit 

Number of 

Event Points 

Objective 

Function 

CPU time 

(sec) 

Reactor 1 9 3737.10 224.40 16 hrs 

Reactor 2 9 3737.10 182.10 

Reactor 1 13 6022.57 40045.08 24 hrs 

 Reactor 2 13 6035.49 21855.05 

 

Table 3-9: Results for Example 1 Using Critical Unit Identification Method 
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The proposed decomposition approaches are case dependent and cannot guarantee 

optimality of the scheduling obtained. However the proposed approaches provide a 

number of alternatives in order to obtain solutions of large-scale scheduling problems 

when the available MILP solvers fail to generate even feasible solution to the original 

problem. In addition, the proposed heuristic-based approaches will be utilized in order to 

provide a lower bound to the solution framework proposed in section 3.4.  

 

3.3 LAGRANGEAN APPROACHES 

3.3.1 LAGRANGEAN RELAXATION (LR) 

Lagrangean relaxation provides a systematic way of obtaining upper bounds for specific 

classes of complex large-scale problems. These problems exhibit the characteristic that the 

removal of a set of constraints results in a problem much easier to solve, either 

decomposable or with a special structure (Geoffrion, 1974 and Fisher, 1981). A detailed 

description of Lagrangean relaxation and Lagrangean decomposition is given in chapter 6. 

However, a brief introduction is also provided in this section for the sake of the continuity 

of the thesis. Consider the following optimization problem:  

integral  x x

eDx

bAxts

cxZ

,0

..

max

≥

≤

≤

=

        (3-5) 

The Lagrangean relaxation of this problem with respect to the first set of constraints has 

the following form:  

( ) ( )

integral  xx

eDxts

AxbucxuZ D

,0

..

max

≥

≤

−+=

       (3-6) 
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Assume x* is the optimal solution of the original problem, then the following relation 

holds: 

( ) ( ) ZcxAxbucxuZD =≥−+= ***
       (3-7) 

u>0 since it corresponds to the Lagrange multiplier vector of the constraints bAx ≤ . 

Consequently ZD(u) provides an upper bound to the original problem. In order to get the 

tightest bound, certain u should be found such that: 

( )uZZ D
u

D min=           (3-8) 

Subgradient method is typically used to optimize ZD(u) over u. This involves the 

following updating procedure:  

1) Calculate the step size 

          
( )( )

2

*

k

k

D

k

k

Axb

ZuZ
t

−

−λ
=         (3-9) 

where λk
 is a scalar usually 0<λk≤2 and Z*

 is a lower bound on ZD. Most of the reported 

work provides evidence that the performance of Lagrangean relaxation is quite sensitive 

to the heuristic choice of the step size sequence tk. A common empirical way is to half λ 

and half the number of iterations when there is no increase in ZD(u). Z
*
 is typically 

obtained by applying a heuristic to the original problem. These heuristics may involve 

one of the approaches discussed in section 3.2.  

2) Update u 

)(1 k

k

kk Axbtuu −+=+
       (3-10) 

( )1,0max
+= k

uu  
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Since the optimal solution for ( )uZZ D
u

D min=  is not guaranteed by using subgradient 

method, the computation for LR problem usually terminates after a certain number of 

iterations.  In the following illustrating examples, it is shown that LR provides better 

bound than linear relaxation, however it is not guaranteed to provide a bound at all cases.  

The scheduling problem formulation (1-1)-(1-15), involves equality constraints 

representing mass balances and duration constraints, and inequality constraints 

expressing capacity limitation, allocation constraints, sequence constraints, and horizon 

constraints. To investigate the quality of LR each of these sets of constraints was selected 

to be relaxed in the objective function.  

The results for Example 1 using a time horizon of 8, 16 and 24 hours are tabulated in 

Table 3-10. The iteration criterion used is to half λ when the objective value fails to drop 

within 5 iterations. The stopping criterion is tk < 0.00001 or the total iteration number 

reaches 100.  When the horizon constraints are relaxed, LR problem stops because the 

number of iterations reaches 100, while for other constraints, the iterations terminate with 

tk reaching the specific tolerance.  

Note that all the LR problems for time horizon of 8 and 16 hours except the ones 

where the mass balances are relaxed converge and result in good upper bounds to the 

overall problem. The upper bound provided by the relaxation of allocation constraint is 

the tightest one, but too expensive in terms of computation time for time horizon of more 

than 16 hours compared to the original problem solution time. The results also indicate 

that the maximum capacity constraints are the critical ones in the model. Once we relax 

it, the optimization problem can be solved rather easily. The mass balances appear as 

good candidate for relaxation since they connect the inventory, batch size and define the 
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mass flow. However, if no storage limitations are posed on products, ST(s,n) and d(s,n) 

are free variables after relaxing the mass balances, thus resulting in unbounded problem. 

For the case of 24 hours the computational requirements are still very high for all cases 

except when the maximum capacity constraints are relaxed which reinforce the above 

statement about the crucial nature of these constraints.  

To investigate further the quality of the bounds obtained by relaxing various 

constraints, only one specific constraint was relaxed selected randomly from the set of 

binding constraints generated by the linear relaxation problem (LP).  The results are 

shown in Table 3-11. Note that the relaxation of only one of the binding constraints 

results in the optimal solution requiring a very small computational time for time 

horizons of 8 and 16 hours. However, for 24 hours no solution can be obtained within the 

imposed limit of 3000 CPU sec.   
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Constraint Set 
8 hours 

5 event points 

16 hours 

9 event points 

24 hours 

13 event points 

 OBJ CPU (sec) OBJ CPU (sec) OBJ CPU (sec) 

Maximum 

Capacity 
1781.47 18.8 4371.88 47.6 7227.45 14.6 

Duration 1765.25 12.4 4361.56 31.7 --------- > 3000 

Allocation 1498.32 33.7 3783.73 19.92 --------- > 3000 

Horizon 1654.68 29.0 4071.56 17.3 --------- > 3000 

Sequence 

(Different tasks 

in different 

units) 

1567.74 26.2 4200.86 850 --------- > 3000 

Mass Bal. UNBD ------ UNBD ------ UNBD ------ 

 

Table 3-10: LR Results for Example 1 Relaxing the Whole Set of Constraints 

 

Constraint Set 
8 hours 

5 event points 

16 hours 

9 event points 

24 hours 

13 event points 

 OBJ CPU (sec) OBJ CPU (sec) OBJ CPU (sec) 

Maximum 

Capacity 
1498.19 0.45 3737.10 285.42 --------- > 3000 

Horizon 1498.19 1.49 3737.10 330.24 --------- > 3000 

Sequence 

(Different tasks 

in different 

units) 

1498.19 2.49 3737.10 259.69 --------- > 3000 

 

Table 3-11: LR Results for Example 1 Relaxing Only One Constraint 
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3.3.2 LAGRANGEAN DECOMPOSITION (LD) 

Lagrangean decomposition has been proposed by Guignard and Kim (Guignard et al., 

1987) as a extension of Lagrangean relaxation by relaxing a set of variables such that the 

resulting model becomes decomposable into two or more sub-problems that are easier to 

solve.  Consider the following general model: 

max f
T
x + d

T
(y

1
+y

2
) 

s.t. Ax + B
1
y
1≤ b1   

      (3-11) 

      Cx +B
2
y
2≤ b2  

      x∈X, y1,y2∈{0,1} 

The model is decomposable in terms of the integer variables y
1
,y

2 
but linked through 

the continuous variable x. The application of Lagrangean decomposition can be achieved 

by creating identical copy of variable x in both two sets of constraints and relaxing the 

equality constraint as follows: 

Z
D
(u) =  max f

T
x + d

T
(y

1
+y

2
)+ u(z-x) 

     s.t.   Ax + B
1
y
1≤ b1        (3-12) 

                   Cz + B
2
y
2≤ b2 

         x,z∈X , y1,y2∈{0,1} 

The resulting problem can be decomposed to the following sub-problems that can be 

solved independently: 

   max f
T
x + d

T
y
1
- ux  +  max  d

T
y
2
+ uz     (3-13) 

s.t.   Ax + B
1
y
1≤ b1  s.t.   Cz + B

2
y
2≤ b2 

        x∈X , y1∈{0,1}       z∈X , y2∈{0,1} 
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Lagrangean decomposition is typically used to obtain good upper bound to the 

original problem. The tightest bound corresponds to the solution of the following non-

differentiable optimization problem: 

           (3-14) 

 

This minimization problem is difficult and time-consuming to solve. Thus similar to 

Lagrangean relaxation, Lagrangean decomposition employs an iterative technique such as 

subgradient method to update the Lagrangean multiplier u and stops after a certain pre-

defined criteria are satisfied. For realistic size problems, subgradient method is not 

always performing well. An extended research on Lagrangean decomposition is 

conducted in chapter 6 where an alternative method of updating Lagrangean multipliers is 

developed. This new method improves the Lagrangean objective function at each 

iteration and thus has a promising application on scheduling problems. 

To apply the Lagrangean decomposition approach to the solution of scheduling 

problem the crucial question is to identify constraints to be decomposed and variables to 

be duplicated such that the model becomes easily decomposable and thus easier to solve. 

From the basic description of the mathematical formulation of scheduling problem it can 

be noticed that there are two separable sets of constraints, the mass related constraints 

consisting of mass balances, capacity constraints, and the time related constraints 

consisting of the duration and sequence constraints. These two sets of constraints are only 

connected through the binary variables wv(i,n) and the batch sizes B(i,j,n). Thus we 

propose the relaxation of these sets of variables that give rise to the following sub-

problems: 

)(min uZZ D

u

LD =
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Sub-problem 1: 

 

 

subject to:   

Allocation Constraints 

 

 

Capacity Constraints 

 

 

2.2 Material Balances 

 

 

Storage Constraints 

        

       

Demand Constraints 

     

  

Sub-problem 2: 
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Allocation Constraints 

 

   

Capacity Constraints 

       

 

Duration Constraints 

         

 

Sequence Constraints 

Same Task in Same unit:     

 

 

 

         

 

Different Tasks in the Same unit 

 

 

Completion of previous tasks  

 

 

Completion of previous tasks  
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Time Horizon Constraints 

 

 

 

The results of implementing this decomposition for Example 1 are presented in the 

first column of Table 3-12. The second column shows results of an alternative 

decomposition where sub-problem 1 contains only one of the binding maximum capacity 

constraints from LP relaxation of original problem, and sub-problem 2 contains all the 

rest constraints.  

 

 

 

Proposed 

decomposition 

Decomposition where sub-problem 

1 contains only one of the binding 

maximum capacity constraints 

OBJ 1760.00 1498.19 8 hours 

5 event points CPU (sec) 0.06 0.41 

OBJ 4343.75 3737.10 16 hours 

9 event points CPU (sec) 1.80 286.71 

OBJ 6873.333 ----------- 24 hours 

13 event points CPU (sec) 615.06 > 4000 sec. resource limit 

 

Table 3-12: LD Results for Example1  
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Although the second decomposition with single constraint gives rise to better 

objective function, it does not provide efficient speed up in order to be used for larger 

scale problems. No solution could be obtained for the case of 24 hours time horizon with 

resource limit of 4000 seconds where 13 event points are required.  

Comparing the Lagrangean relaxation with the Lagrangean decomposition, it should 

be noticed that LD performs better than LR for the larger problem where the need for 

decomposition is imperative. However both of LD and LR are valid alternatives in order 

to generate an upper bound in the framework presented in the next section.  

 

3.4 PROPOSED ALGORITHMIC APPROACH 

Based on the heuristic-based approaches and Lagrangean relaxation/Lagrangean 

decomposition presented in the previous sections the following algorithmic procedure is 

proposed for the efficient solution of the short-term scheduling problem (Figure 3-4).  

Step 1: Initialize the procedure by solving the linear relaxation of the problem to 

obtain the initial values of the dual variables and binding constraints.  

Step 2: Formulate and solve the Lagrangean relaxation problem and Lagrangean 

decomposition problem. 

Step 3: Based on the results of optimization problems in step 2 determine the current 

upper bound as: Z
UB
=min (Z

LR
(u

k
), Z

LD
(u

k
))
 

Step 4: According to the nature of the scheduling problem utilize one of the heuristic 

based approaches proposed in section 4 to obtain a feasible solution Z
LB
 of the 

original problem. Update the lower bound in LR and LD with Z
*
 = Z

LB 
.  
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Step 5: Check for convergence using the following two criteria, first if the difference 

between the upper and lower bound is less than a required tolerance or second if a 

specific number of iterations has been reached. If one of these criteria is met, the 

calculation stops, otherwise continues to step 6. 

Step 6: Update the values of dual variables u using the subgradient method: 

)(1 kk
k

kk zxtuu −+=+
 

( )
2

*

kk

UBk

k

zx

ZZ
t

−

−λ
=  

where the x and z vectors correspond to the identical copies of the set of batch size 

variables and assignment variables.  

       Step 7: Increase the iteration count k=k+1 and return to Step 2. 

The proposed approach was used to solve Example 1 for a time horizon of 18 hours using 

10 event points. All computations performed on a Sun Ultra 60 workstation with CPLEX 

6.6. The steps of the solution procedure are listed in Table 3-13.  

 

Lower Bound Upper Bound 

 Solve the LP relaxation to optimality 

of 4894.48 in 0.45 seconds. 

Use event-based heuristic decomposition 

and generate a lower bound of 3873.33 

in 0.86 seconds. 

 

 Apply Lagrangean decomposition and 

generate an upper bound of 4969.17 

in 9.6 sec. 

 Apply Lagrangean relaxation and 
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generate upper bound of 4813.55 in 

25.4 seconds. Choose the lower upper 

bound. 

Determine the Required production 

amount according to the solution of 

4813.55 at LR and use the required 

production method to obtain a solution 

of 4193.94 in 351.40 seconds. 

 

Based on the Gantt Chart of the above 

solution, identify reactor 1 as critical 

unit. This step results in an objective 

value of 4334.38 in 787.04 seconds. 

 

 Apply Lagrangean relaxation based 

on the solution of 4334.38. A solution 

of 4449.98 is achieved in 526.77 

seconds. 

 

Table 3-13: Solving Example 1 with Proposed Algorithm 

 

At the end of the steps shown in Table 3-13, the gap between upper and lower bounds 

is within the required tolerance of 3%, thus the iterations stop. The schedule obtained is 

shown in Figure 3-5 and compared with the optimal schedule of the original problem 

shown in Figure 3-6. Note that although these two schedules are slightly different in 

terms of the task assignments and timing, the two schedules are equivalent regarding the 

optimal production of the two products.  It should be pointed out that the proposed 

algorithm did not result in a decreased computational time compared with the original 

problem since this takes only 760.12 seconds to solve with the same objective value. 
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However, the efficiency of the algorithm is shown with Example 2 since in this case the 

original scheduling problem cannot be solved to optimality. The steps of the solution 

procedure are shown in Table 16. The time horizon under consideration is 18 hours and 

16 event points are used. All computations were performed on Sun Ultra 60 workstation 

with CPLEX6.6.  

 

Lower Bound Upper Bound 

 Solve the LP relaxation to optimality 

of 852366.80 in 0.74 seconds. 

Use upper bound to determine the 

required production amount, employ 

required production method to obtain a 

feasible solution of 680312.91 in 

120.46 seconds.  

 

 Using feasible solution as lower 

bound in Lagrangean decomposition, 

reduce the upper bound to 826382.35 

in 1.93 seconds. 

Applying required production method 

with updated upper bound, improve the 

lower bound to 707164.10 in 1517.04 

seconds. 

 

Identify Unit 3 as the critical machine 

in the Gantt Chart and use the critical 

unit method. This results in an 

objective value of 748568.08 in 

4083.29 seconds.   

 

 Incorporate the newest feasible 

solution as lower bound in 
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Lagrangean relaxation and generate 

the next upper bound of 770085.84 in 

599.57 seconds. 

 

Table 3-14: Solving Example 2 with Proposed Algorithm 

 

At the end of the iterations shown in Table 3-14, the gap between upper and lower 

bounds is 2.87%, satisfying the tolerance of 3%. The algorithm stops with total 

computation time of 6323.03 seconds. The optimal schedule obtained corresponds to the 

objective function value of 7.48E5 and is shown in Figure 3-7. Figure 3-8 shows the 

schedule obtained by solving the original problem after 10,000 seconds computation 

time. 
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Figure 3-4: Proposed Algorithmic Procedure 
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3.5 SUMMARY 

In this chapter a number of decomposition-based approaches have been proposed for the 

efficient solution of the short-term scheduling problem.  The heuristic-based approaches 

are shown to be very efficient resulting in up to one order of magnitude reduction of 

required computational time, thus allowing the solution of large-scale scheduling 

problem. The main advantages and disadvantages of all proposed approaches are 

presented and illustrated through a few example problems. Lagrangean relaxation and 

Lagrangean decomposition approaches are utilized to obtain an upper bound of the 

scheduling problem. A number of different constraints and variables to be decomposed 

are investigated in order to provide the tightest upper bound. Finally, an iterative 

algorithmic procedure is proposed exploiting the advantages of the heuristic-based 

approaches and the Lagrangean relaxation/Lagrangean decomposition procedure, 

resulting in refined schedules close to the optimal solution for realistic size scheduling 

problems. 

 

 

 

 

 

 

 

 

Figure 3-5: Schedule of Example 1 Generated by Implementing Proposed Algorithm 
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Figure 3-6: Optimal Schedule of Example 1 Generated by Solving the Original 

Problem 

 

 

 
 

Figure 3-7: Schedule of Example 2 Generated by Implementing Proposed Algorithm  
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Figure 3-8: Optimal Schedule of Example 2 Generated by Solving the Original 

Problem   

 

 

 



 

 

88

 

NOTATION � � � � � � �
i task 

j unit 

n event point representing the beginning of a task 

s  state � � � �
I tasks  

Ij          tasks that can be performed in unit j 

Is          tasks that process state s and either produce or consume 

J          units 

Ji         units that are suitable for performing task i 

N event points within the time horizon 

S states  � � � � � � � � � �
Vij

min
 minimum amount of material processed y task i required to start operating unit j 

Vij
max

 maximum amount of material processed by task i required to start operating unit j 

STs
max

 available maximum storage capacity for state s 

rs market requirement for state s at event point n 

ρ
p
si, ρ

c
si  proportion of state s produced, consumed from task i, respectively 

αij  constant term of processing time of task i at unit j 

βij variable term of processing time of task i at unit j 

H time horizon  

prices price of state s  

Ps
res
 required production of state s � � � � � � � � �

 

wv(i,n)  binary variables that assign the beginning of task i at event point n 

yv(j,n)  binary variables that assign the utilization of unit j at event point n 

B(i,j,n)  amount of material undertaking task i in unit j at event point n 

d(s,n)  amount of state s being delivered to the market at event point n  
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ST(s,n)  amount of state s at event point n 

STIN(s) amount of state s imputed initially 

T
s
(i,j,n) time that task i starts in unit j at event point n 

T
f
(i,j,n)  time that task i finishes in unit j while it starts at event point n 

P(s,n)  production of state s at event point n 
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CHAPTER 4 

SIMULTANEOUS APPROACH FOR PRODUCTION PLANNING 

AND SCHEDULING  

Planning problem with time horizon from few days to months usually results in expensive 

computational cost that prevents it from being solved to optimum, sometimes even a feasible 

solution. A periodical scheduling approach is proposed in this chapter. The mathematical model 

determines the optimal production schedule within a cycle as well as time length of the cycle such 

that it can in principle constitute a near optimal solution in reasonably small computational time 

for any large-scale planning problem. Thus the planning and scheduling problems are 

simultaneously tackled. 

 

4.1 INTRODUCTION 

In chemical industry, the production planning and short-term scheduling have played 

important roles. Production planning determines the optimal allocation of resources 

within the production facility over a time horizon of a few weeks up to a year. On the 

other hand, short-term scheduling provides the feasible production schedules to the plant. 

The integration of planning and scheduling usually leads to intractable model in terms of 

the required computational time. Thus one has to trade-off optimality with computational 

efficiency.  

A large number of publications are devoted to modeling and solution of the planning 

and scheduling problems. Early work has focused on the development of mathematical 

models based on discretization of time horizon into a number of intervals of equal 

duration (Kondili et al., 1993b).  Sahinidis and Grossmann (1989) presented a 
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multiperiod MILP model for long range planning. In order to reduce the computational 

expense, several strategies were investigated in their work, including branch-and-bound, 

the use of integer cuts, strong cutting planes, Benders decomposition and heuristics. Liu 

and Sahinidis (1996) reformulated this MILP and developed a solution approach based on 

constraints generation scheme and projection in conjunction with the strong cutting plane 

algorithm. Heever and Grossmann (1999) proposed a disjunctive Outer Approximation 

algorithm for the solution of a multiperiod design and planning problem, which is an 

extension of the logic-based Outer Approximation algorithm for single period MINLPs 

(Turkay and Grossmann, 1996). The main limitations of these time discretization 

methods are that (a) they require all the tasks to start and finish at the boundaries of time 

intervals, thus resulting in sub-optimal solutions and (b) they require a large number of 

binary variables due to unnecessary time discretization that results in large mathematical 

models difficult to be addressed. 

The solution methodologies of addressing planning problems can be distinguished 

into two main categories the simultaneous and the hierarchical approaches (Bose and 

Pekny, 2000). The hierarchical approaches involve consideration of planning and 

scheduling models which can be decoupled. A detailed review will be given in chapter 5. 

Following the simultaneous approach the whole planning and scheduling problem is 

considered and solved for the entire horizon. Papageorgiou and Pantelides (2000) 

proposed a single-level formulation for campaign planning problem. The algorithm 

determines the campaigns (i.e., duration and constituent products) as well as the 

production schedule simultaneously.  Bassett et al. (2000) presented a model that spans a 

longer time periods giving more details towards the intermediate future than distant 
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future. Orcun et al. (2001) developed a unified continuous-time model of MINLP for 

planning problem.  After the MINLP is reformulated as MILP by using linearization 

techniques, the problem is still addressed as “extremely difficult almost impossible” to 

solve. Similar computational barrier is met when the continuous formulation in section 

1.1 is applied to longer time horizon.  

Periodic scheduling is developed in the context of campaign-mode operation (Shah. et 

al. 1993 and Kondili et al. 1993a). Schilling and Pantelides (1999) presented a 

mathematical programming formulation which is based on a continuous representation of 

time. A novel branch-and-bound algorithm that branches on both discrete and continuous 

variables was proposed. This work was extended to multipurpose plants periodic 

scheduling problem. The proposed model resulted in the determination of both the 

optimal duration of the operating cycle and the detailed schedule in each cycle. The 

objective function was to minimize the average cost which corresponds to a nonlinear 

function. A relaxed form of the optimization problem was generated after replacing the 

definition of the objective function by a set of linear constraints. Castro et al. (2003) 

modified their short-term scheduling formulation to fit periodic scheduling requirements 

for an industrial application.  

In this chapter, a new model is proposed to address the planning and scheduling 

problem simultaneously based on the concept of periodic scheduling stated in section 4.2. 

This continuous-time representation is extended from that of the short-term scheduling 

for batch plants in section 1.1 and thus requires less number of variables and constraints 

compared to discrete time and other continuous-time formulations.  The mathematical 
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formulation is presented in detail in section 4.3 and applied to different examples in 

section 4.4. The results are compared with existing approaches.  

 

4.2 PERIODIC SCHEDULING APPROACH 

The planning problem that is considered in this work is defined as follows. Given are: 

(i) the production recipe (i.e., the processing times for each task at the suitable 

units, and the amounts of the materials required for the production of each 

product);  

(ii) the available units and their capacity limits;  

(iii) the available storage capacity for each of the materials;   

(iv) the time horizon under consideration;  

(v)     the market requirements of products.  

The objective is to determine the optimal operational plan to meet a specified 

economic criterion such as maximal profit or minimal cost while satisfying all the 

production requirements. It should be noted however, that the product demands are 

considered at the end of time horizon and all of the above constraints are fixed within the 

time horizon. 

The idea of periodic scheduling is frequently utilized for the solution of planning 

problem described above. The optimal solution of planning problem implies that the 

schedule does not exhibit any periodicity (Pantelides, 1994). However, one has to balance 

against the computational complexity of solving non-periodic schedules for a long time 

horizon. The presented periodic scheduling approach resides on the following 

assumption. For the case that the time horizon is long compared with the duration of 
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individual tasks, a proper time period exists, which is much smaller than the whole time 

horizon, within which, some maximum capacities or crucial criteria have been reached so 

that the periodic execution of such schedule will achieve results very close to the optimal 

one by solving the original problem without any periodicity assumption. Thus the size of 

the problem is reduced to a much smaller one that can be efficiently solved. Besides its 

computation efficiency the proposed operation plan is more convenient and easier to 

implement since it assumes repetition of the same schedule. In this approach, the 

variables include the cycle time length as well as the detailed schedule of this period, 

which are defined as unit period and unit schedule, respectively. Unlike the short-term 

scheduling where all intermediates other than those provided initially have to be 

produced before the beginning of the tasks, unit schedule can start with certain amounts 

of intermediates as long as storage capacity constraints are not violated. The initial 

amounts of intermediates are equal to the amounts stored at the end of unit period, so as 

to preserve the material balance across the boundaries as shown in Figure 4-1. 

It should be noticed that in periodic scheduling, each processing unit may have an 

individual cycle as long as the cycle time is equal to the duration of the unit period, so as 

illustrated in Figure 4-2a, all the units do not necessarily share the same starting and 

ending time points. This concept can be found in Shah et al. (1993) in their discrete time 

representations for periodic scheduling problem as “wrap-around”. Schilling and 

Pantelides (1999) incorporated the same concept into their continuous-time formulation 

based on the resource-task network (RTN) representation (Pantelides, 1994). In this 

work, the same concept is used together with the continuous-time representation using 

the idea of event points as will be explained in detail in section 4.3. 
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Figure 4-2a illustrates the unit schedule that corresponds to the periodic schedule of 

Figure 4-1. When a larger time period has to be scheduled using the unit schedule, 

overlapping is allowed in order to achieve better resource utilization. In this way the 

equivalent unit schedule is determined as shown in Figure 4-2b. Note that by using this 

idea better schedules are determined since tasks are allowed to cross the unit schedule 

boundaries. If time decomposition was applied even using the optimal cycle time length, 

the resulted schedule would be inferior since only small batches are allowed. 

 

 
 

 

Figure 4-1: Periodic Schedule  

 

 

 

 

Figure 4-2: Unit Schedule  
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4.3 MATHEMATICAL MODEL 

When large time horizon is considered (i.e. a few days), the size of the scheduling model 

becomes intractable. For example considering a time horizon of 24 hours, the formulation 

of Ierapetritou and Floudas (1998) involves 1517 constraints, 546 continuous variables 

and 156 binary variables using 13 event points. It takes 79551.29 CPU seconds on PIII 

500MHz using GAMS/CPLEX 7.1 to get a solution of 6036.491 objective function value 

which cannot be approved optimality since further increase of event points causes 

computational infeasibility. When the same formulation is used for a time horizon of 168 

hours, a feasible schedule cannot be obtained for the whole time horizon. These results 

point to the importance of developing a new approach for the simultaneous solution of 

planning and scheduling problem. 

 

4.3.1 FORMULATION 

In order to represent the features of periodic scheduling for planning, the following 

constraints are introduced that enforce the continuity in plant operation between cycles. 

 

Material Balances Between Cycles 

               (4-1) 

 

Constraints (4-1) represent the key feature of periodic scheduling. The intermediates 

stored at the last event point of the previous cycle should equal the amount of material 

needed to start the next cycle in order to maintain smooth operation without any 
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accumulation or shortage in between. Raw material and product are calculated based on 

the consumed or produced amounts in the first cycle. 

 

Demand Constraints 

 

       (4-2) 

 

where rs represents the average requirement. Constraints (4-2) express the 

requirement of meeting demand specifically for all products. Note that the requirements 

for the time horizon of planning problem are assumed to be evenly distributed to each 

cycle. 

 

Cycle Timing Constraints 

Unlike the sequence constraints (1-7)-(1-12) in the previous part which describe the 

sequence of tasks within the same cycle, cycle timing constraints express the timing 

relationship of the last task in the previous cycle and the first task in the current cycle so 

as to maintain continuity of operation between cycles. 

 

Cycle Timing Constraints: Task in the same unit 

   (4-3) 

 

where n0 stands for the first event point in the current cycle. T
f
(i,j,n)-H corresponds to the 

time of last event point in the previous cycle. Constraints (4-3) represent that task i' 

performing at the beginning of the cycle has to start after the end of task i  at the previous 



 

 

98

 

NniiIiiJjjH (i,j,n) – T),n,j(iT j
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NnJjIiHn)j(iT i

f ∈∈∈∀≤ ,,,2,,

cycle. Since only one task can take place in the same unit at each event point n, 

constraints (4-3) also express the correct recipe sequence for the same unit. 

 

Cycle Timing Constraints: Task in the different units 

           (4-4) 

 

Constraints (4-4) represent the requirement of the first task in a new cycle to start 

after the completion of the tasks in different units in previous cycle based on the recipe 

requirements. Similar to constraints (4-4), these constraints are written for the tasks that 

should take place consecutively in different units and ensure the correct sequence of tasks 

between cycles.  

 

Time Horizon Constraints 

           (4-5) 

           (4-6) 

 

Since the starting points of a cycle are not necessarily synchronized for all units, 

some units may start performing tasks later than others. The maximum idle time, 

however won't be greater than a cycle period given constraints (4-3), (4-4).  Therefore the 

time horizon constraints (4-5), (4-6) represent the requirement of each task i to start and 

finish before two cycle lengths 2H. 
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Cycle Length Constraints 

    (4-7) 

 

The cycle length constraints (4-7) state that the duration of all tasks performed in the 

same unit must be less than the cycle length H, which ensures that cycle of each unit 

cannot be longer than the cycle length. 

 

Objective: Maximization of average profit 

 

               (4-8) 

 

The objective function for the planning problem is to maximize the production in 

terms of profit due to product sales. Assuming periodic scheduling this objective is 

transformed to maximizing the average profit as shown in (4-8). The average profit is 

considered to express the dependence of the profit over the whole time horizon on both 

the production during each cycle and the cycle time. Note that the objective function 

involves fractional terms d(s,n)/H, thus giving rise to a MINLP problem. Alternative 

objectives can be also incorporated to express different scheduling targets such as cost 

minimization. 

 

4.3.2 PROPOSED DECOMPOSITION APPROACH 

In order to consider the whole planning problem the time horizon is divided into three 

periods, the initial period when the necessary amounts of intermediates are produced to 
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start the periodic schedule, the main period when periodic scheduling is applied and the 

final period to wrap up all the intermediates. The initial and final periods are bounded by 

a time range and solved independently. The sum of time lengths of all three periods 

equals that of the whole time horizon. Given the optimal cycle length resulted from 

solving the periodic scheduling problem described in section 4.2, the problem for initial 

period is solved first with the objective function of minimum make-span so as to ensure 

the existence of feasible solution in order to provide those intermediates for periodic 

scheduling. Then the same problem is solved with the objective of maximizing the profit 

with the time horizon as obtained from the first solution. The problem for the final period 

can be solved in parallel once the time horizon for the cycle length and the initial period 

are determined. The intermediates considered for the final period are obtained from the 

unit schedule and the time horizon is the time left for the planning problem. Both initial 

and final problems are using the same set of constraints presented in the previous section 

except that for the final period the time horizon is fixed. The overall approach is 

schematically shown in Figure 4-3. 
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Figure 4-3: Flow Chart of Proposed Approach  

 

 

4.4 CASE STUDIES 

4.4.1 EXAMPLE 1 

The model developed in section 4 corresponds to a mixed-integer non-linear 

programming (MINLP) problem. The nonlinearities appear only at the objective function 

as fractional terms of continuous variables. Thus using local optimization solvers such as 
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DICOPT or SBB global optimality cannot be guaranteed, however practically the 

solution often corresponds to global optimum as illustrated in the following examples. 

GAMS (GAMS Corporation Inc.)/DICOPT (DIscrete and Continuous OPTimizer) is used 

in this work that uses Outer Approximation/Equality Relaxation (Grossmann et al., 2002) 

as a MINLP solution procedure. 

The example 1 in section 1.2 is solved on a Linux system with processor Pentium III 

500MHz using DICOPT, CONOPT2 and CPLEX 7.1 as the MINLP, NLP and MILP 

optimization solver, respectively.  In order to determine the optimal schedule and cycle 

length, the following strategy is considered. Instead of considering the whole cycle time 

range, for example 2-24 hours, several sub-ranges are considered 2-6 hours, 6-10 hours, 

up to 24 hours and the resulting problems are solved independently. The advantages are 

that  

(i) each of the sub-period problem utilizes small number of event points, thus it 

speeds up the solution process;   

(ii) it generates a number of scheduling alternatives that can be beneficial to plant 

manager who has to consider additional requirements such as work shift 

constraints;   

(iii) each sub-problem can be solved independently and thus parallel computation 

can be implemented.   

As shown in Table 4-1, the optimal cycle length obtained is 23.790 hours with the 

objective value of 279.029 units. The optimal schedule is shown in Figure 4-4. Additional 

computational information is presented in Table 4-2 for the sub-model with cycle time 

range of 2-6 hours. 
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Cycle time 

range (h) 

Number of 

event points 

Objective 

function value 

Optimal cycle 

time (h) 

CPU time (s) 

2-6 hours 4 268.289 5.094 2.86 

6-10 hours 6 272.247 9.036 512.00 

10-14 hours 7 273.801 12.978 5365.74 

14-18 hours 9 276.447 14.407 305.88 

18-21 hours 11 277.363 19.709 545.83 

21-24 hours 12 279.029 23.790 2884.41 

 

Table 4-1: Solution for Example 1 

 

 

Relative optimality criterion 

Cycle time range (h) 

Number of event points 

Binary variables 

Continuous variables 

Constraints 

Optimal Cycle time (h) 

Objective function value 

CPU time (s) 

 

0.01 

2-6 

4 

48 

299 

530 

5.094 

268.289 

2.86 

 

Table 4-2: Computational Statistics for Example 1 
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Figure 4-4: Optimal Solution of Example 1 

 

As pointed out in section 4.3, if a time horizon of 168 hours is considered, the short-

term scheduling problem is computationally intractable. Therefore, the time horizon is 

divided in three periods as proposed in section 4.3.2, the initial period when the necessary 

amounts of intermediates are produced to start the periodic schedule, the main period 

when periodic scheduling is applied and the final period to wrap up all the intermediates.  

Applying this approach to the motivating example for a time horizon of 168 hours, the 

periodic scheduling problem was solved to optimality obtaining an average profit of 

279.029 in 2884.41 CPU sec in order to generate the unit schedule where the initial input 

of intermediates and difference of starting time of each unit were calculated. 6 cycles 

were then determined to leave enough time for the initial and final periods to cover the 

necessary production. The problem of make-span minimization was then solved for the 

initial period to obtain the shortest time in order to provide the intermediates to cyclic 

operation. The problem of production maximization for the initial and final period are 

then solved simultaneously based on the make-span calculated from the minimization 

problem. It required 1590.35 CPU sec to solve the minimization problem and 3187.21 

and 611.23 CPU sec to solve the maximization problems for the initial and final period 
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problems, respectively. The overall objective function value representing the total profit 

over the whole time horizon under consideration is 45698.90.  Figures 4-5, 4-6 illustrate 

the schedule for the period of [0,65] that involves the initial period of 12.47 hours 

together with two cycles of operations and for the period of [103,168] that involves two 

cycles and the final period of 12.79 hours. Note that the batch sizes in these figures are 

round off to the closest integer for clarity in presentation of the schedules. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-5: Schedule of Initial Period for 168 Hours of Example 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-6: Schedule of Final Period for 168 Hours of Example 1 
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Figure 4-7: Schedule of Final Period for 30 Days of Example 1 

 

A time horizon of 30 days is considered next for the same example. The proposed 

approach generates the initial and final periods and determines the optimal cyclic 

operation to be performed for the rest of the time horizon. The overall objective function 

value obtained is 1.998E5 corresponding to 29 cycles of operation. The schedule for the 

initial period is the same as obtained for a time horizon of 168 hours shown in Figure 4-5 

since the proposed approach does not consider the whole time horizon when generating 

the schedule for the initial period. The production maximization problem in the final 

period requires 6129.82 CPU sec. Figure 4-7 shows the schedule for the final period of 

[650,720] that involves two cycles and the final period of 17.62 hours. 

 

4.4.2 EXAMPLE 3 (MODIFIED EXAMPLE 1) 

This example was considered by Schilling and Pantelides (1999) and is similar to the 

motivating example except the following differences: 

(i)       there is no heating process in modified Example 1; 

(ii) Hot A has both storage capacity and supply for 1000; 

(iii) reaction 2 in reactor 1 produces Int AB only; 
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(iv) all the units have an identical maximum capacity of 80 and different minimum 

capacities as 20, 30, 40 for reactor 1, reactor 2 and still respectively; 

(v) the processing times of all tasks are those of  Example 1 multiplied by 10; 

(vi) the price for product 2 is 12 instead of 10 in motivating Example 1.  

 

It is denoted as Example 3 in this chapter. The proposed approach is applied to this 

example in order to compare the results with the results presented by Schilling and 

Pantelides (1999). In order to obtain the global optimized solution, GAMS/BARON is 

utilized as MINLP solver. BARON (Sahinidis and Tawarmalani, 2002) is based on 

conventional branch-and-bound algorithm and integrates range reduction techniques 

which contract the search space at each node together with a number of compound 

branching schemes that accelerate convergence of standard branching strategies. BARON 

guarantees to provide global optimality to the type of MINLP problems involving 

fractional terms. 

In the cycle length range of 20–40 h considered by Schilling and Pantelides, the 

solution procedure results in approximately (with round off errors) the same objective 

value and schedule. The required computation is only 26.76 CPU seconds on PentiumIII 

750 MHz using GAMS/BARON. The optimal cycle length is 36.64 h with an objective 

value of 28.94 producing 61.714 units of product and 32 units of product 2 per cycle. The 

optimal Gantt-Chart is shown in Figure 4-8. Schilling and Pantelides used their own 

branch-and-bound algorithm and a parallel computation scheme due to the complexity of 

the linearized constraints. They implemented the parallel computing with a network of 

seven Sun ultra workstations and reported 81 CPU seconds for this example. In a recent 
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work Castro et al. (2003) presented a different RTN periodic continuous-time formulation 

and applied to this example. These results are compared in Table 4-3. Note that 

significant less number of variables are required using the proposed formulation. 

Castro et al. (2003) reported a computational time of 4.36 CPU seconds using 

DICOPT as MINLP solver on a PentiumIII 1 GHz machine. When a longer range of 20–

80 h is solved, they obtain a sub-optimal solution corresponding to an objective value of 

32.210 and cycle length of 63.708, compared to the optimal solution obtained using the 

proposed formulation that corresponds to an objective value of 32.893 and cycle length of 

62.540. 

Table 4-4 presents the optimal cycle lengths for different time ranges solved by 

GAMS/DICOPT. Although GAMS/DICOPT is only a local optimization solver, these 

results are proved to correspond to the global optimal solution obtained using the global 

solver GAMS/BARON. It should also be noticed that by confining the cycle time to be 

less than 40 hours a sub-optimal solution is obtained since the optimal cycle length is 

found to be 171.575 hours. This result highlights the advantage of the proposed approach. 

 

 

 

 

 

 

Figure 4-8: Optimal Solution of Example 3 
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Cycle time range (h) 

Event points or Time slots 

Binary variables 

Continuous variables 

Constraints 

Optimal Cycle time (h) 

Objective function value 

Proposed  

approach 

 

 

20-40 

3 

28 

112 

272 

36.64 

28.94 

Formulation of  

Schilling and 

Pantelides 

 

20-40 

6 

81 

437 

440 

36.81 

28.72 

Formulation of 

Castro et al. 

 

 

20-40 

3 

42 

127 

164 

36.87 

28.77 

 

* Parallel implementation using 7 Sun workstations 

 

Table 4-3: Comparison of Results of Example 3 

 

 

Cycle time 

range (h) 

Number of 

event points 

Objective 

function value 

Optimal cycle 

time (h) 

CPU time (s) 

20-40 hours 3 28.942 36.645 0.82 

40-70 hours 5 32.893 62.540 25.78 

70-100 hours 5 33.829 93.333 10.00 

100-140 hours 6 34.321 102.828 109.27 

140-170 hours 8 34.434 159.048 5601.49 

170-200 hours 10 34.957 171.575 312.67 

200-240 hours 11 34.725 223.240 6020.55 

 

Table 4-4: Solution for Example 3 
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4.4.3 EXAMPLE 2 

The proposed approach was applied on Example 2 which is stated in section 3.3.3 and the 

results are shown in Table 4-5. The optimal cycle obtained in 42.55 CPU sec corresponds 

to 10.667 hours with an objective value of 48946.324 and the optimal schedule shown in 

Figure 4-9. Considering a time horizon of 30 days for this example, the proposed 

approach determines 66 cycles of operation, schedules for an initial period of 4.59 hours 

and a final period of 11.41 hours as shown in Figure 4-10, 4-11 respectively. The overall 

objective function value is 3.503E7 and the CPU time for solving initial and final periods 

is 0.54 and 184.47 CPU sec, respectively. The proposed approach shows advantage both 

in optimality and computational tractability when solving the planning and scheduling 

problem simultaneously.  

 

Cycle time 

range (h) 

Number of 

event points 

Objective 

function value 

Optimal cycle 

time (h) 

CPU time (s) 

2-6 hours 5 48305.00 4.000 3.21    

6-9 hours      7 48671.471 6.667 10.51   

9-12 hours       10 48946.324 10.667 42.55   

12-15 hours        13 48871.364 14.667 12271.43    

15-18 hours        15 48840.611 17.333 3234.48 

18-21 hours        16 48750.000 18.667 1300.80   

21-24 hours 20 48946.324 21.333 900.94   

 

 

Table 4-5: Solution for Example 2 
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Figure 4-9: Optimal Solution of Example 2 

 

 

 

 

 

 

 

 

 

Figure 4-10: Schedule of Initial Period for 30 Days of Example 2 

 

 

 

 

 

 

 

 



 

 

112

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-11: Schedule of Final Period for 30 Days of Example 2  

 

 

4.5 SUMMARY 

This chapter presents a new framework for solving the planning and scheduling problem 

simultaneously based on a continuous-time formulation in order to determine the optimal 

periodic schedules as well as the optimal cycle length for multipurpose batch plant. 

Compared with existing approaches, the proposed formulation results in less number of 

variables and constraints. Although the proposed model corresponds to a nonconvex 

MINLP problem, it is shown that it can be solved efficiently to global optimality by 

GAMS/DICOPT. A hierarchical framework is proposed in the next chapter to enable the 

solution of the planning and scheduling problem when the demand and price vary within 

the time horizon. 
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NOTATION � � � � � � �
i task 

j unit 

n event point representing the beginning of a task 

s  state 

 � � � �
I tasks  

Ij          tasks that can be performed in unit j 

Is          tasks that process state s and either produce or consume 

J          units 

Ji         units that are suitable for performing task i 

N event points within the time horizon 

S states  

IS subset of all involved intermediate states s 

 � � � � � � � � � �
Vij

min
 minimum amount of material processed y task i required to start operating unit j 

Vij
max

 maximum amount of material processed by task i required to start operating unit j 

STs
max

 available maximum storage capacity for state s 

rs market requirement for state s at event point n 

ρ
p
si, ρ

c
si  proportion of state s produced, consumed from task i, respectively 

αij  constant term of processing time of task i at unit j 

βij variable term of processing time of task i at unit j 

U upper bound of cycle time length  

prices price of state s 

 � � � � � � � � �
 

H  cycle time length  

wv(i,n)  binary variables that assign the beginning of task i at event point n 
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yv(j,n)  binary variables that assign the utilization of unit j at event point n 

B(i,j,n)  amount of material undertaking task i in unit j at event point n 

d(s,n)  amount of state s being delivered to the market at event point n  

ST(s,n)  amount of state s at event point n 

STIN(s) amount of state s imputed initially 

T
s
(i,j,n) time that task i starts in unit j at event point n 

T
f
(i,j,n)  time that task i finishes in unit j while it starts at event point n 
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CHAPTER 5 

HIERARCHICAL APPROACH FOR PRODUCTION PLANNING 

AND SCHEDULING  

In this chapter, the solution of production planning and scheduling problem is addressed through 

a hierarchical framework. The planning problem aggregates orders in the planning period and 

considers uncertainty utilizing a multi-stage stochastic programming formulation where three 

stages are considered with increasing level of uncertainty. The planning model includes material 

balances and time horizon constraints which involve a sequence factor to reflect the recipe 

complexity. Using a rolling horizon strategy, the production for the current stage is provided to 

the scheduling problem, which is solved using a continuous-time formulation. A general 

framework is presented with a mechanism to converge the planning and scheduling results before 

solving for the next period. This proposed approach is illustrated with a planning example.  

 

5.1 INTRODUCTION  

As discussed in the previous chapter, the simultaneous approach emphasizes that 

planning and scheduling decisions need to be considered in a single model in order to 

achieve the optimality. A successful periodic scheduling formulation as well as the 

solution approach is presented in chapter 4. However, cyclic operation is more 

appropriate for plants operating under a stable demand conditions (Pantelides, 1994), thus 

limiting the applicability of the periodic scheduling. Uncertainty is also a concern when 

longer planning horizons are considered. While for a smaller time horizon demands and 

prices can be considered deterministic, this is not the case for a time horizon of a month 
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or larger. Additional disturbances may also upset the production schedule as for example 

rush order arrival and machine breakdown. 

The hierarchical approaches involve the problem decomposition into decoupled 

planning and scheduling level problems. McDonald and Karimi (1997) developed 

production planning and scheduling models for application of single stage processor. The 

planning model divides the time horizon into a number of time periods with demands due 

at the end of each time period and compares different time-scale cases of planning 

periods and individual production events. Two continuous-time formulations are 

presented for the short-term scheduling problem where discrete time events can be 

accommodated. Papageorgiou and Pantelides (2000) presented a hierarchical approach 

attempting to exploit the inherent flexibility with respect to intermediate storage policies 

and multi-usage of the equipment. A three-step procedure was proposed. First, a feasible 

solution to the campaign planning problem subject to restrictive assumptions is obtained. 

Second, the production rate in each campaign is improved by removing these 

assumptions. Finally, the timing of the campaigns is revised to take advantage of the 

improved production rates. Harjunkoski and Grossmann (2001) presented a bilevel 

decomposition strategy for a steel plant production process. In this approach, products are 

grouped into blocks and scheduling problems for each block are solved separately 

followed by solving a MILP to find the sequence of these blocks. The solution obtained is 

not guaranteed to be optimal although near optimal solutions can be determined. Other 

research includes Bose and Pekny (2000), who used model predictive control ideas for 

solving the planning problem. A forecasting and an optimization model are established in 

a simulation environment. The former calculates the target inventory in the future periods 
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while the latter tries to achieve such inventory levels in each corresponding period. The 

advantage of this approach is that fluctuation in demands and prices could be 

incorporated into planning level problem. Zhu and Majozi (2001) proposed an integration 

of planning and scheduling problems as well as a decomposition strategy for solving the 

planning problem. It is based on the idea that if the raw materials can be allocated 

optimally to individual plants, solving individual models for each plant can produce the 

same results as solving an overall model for the site. In the recent work, rolling horizon 

approach has been widely considered to reduce the computational burden (Dimitriadis et 

al., 1997, Sand et al., 2000 and Van den Heever et al. 2003). This approach makes 

decisions for a time period shorter than the planning time horizon and this time period 

moves forward as the model is solved. Dimitriadis presented RTN-based rolling horizon 

algorithms for medium-term scheduling of multipurpose plants. Sand et al. and Van den 

Heever employed rolling horizon as well as a Lagrangean type of decomposition for their 

planning and scheduling problems, while Sand et al. considered uncertainty in their 

planning model. Most of the existing approaches however have limitations due to overly 

simplified planning level problem, the lack of uncertainty and task sequence feasibility 

consideration. 

A general hierarchical framework for the solution of planning and scheduling 

problems is proposed in this chapter.  In the next section, a multi-stage planning model is 

presented which accounts for uncertainty. A parameter denoted as sequence factor is 

introduced to simplify the computational complexity and account for recipe time 

constraints. In section 5.3, a modified scheduling model is proposed to determine the 

production schedule following the basic ideas of the short-term scheduling formulation in 
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section 1.1. An overall solution framework is presented in section 5.4 and illustrated with 

a planning example in section 5.5. 

 

5.2 PLANNING MODEL 

5.2.1 CONCEPTUAL MODEL 

The overall decision process is based on the idea of rolling horizon strategy. The 

planning time horizon is decomposed into three stages with various durations based on 

the orders and market uncertainty. The first stage with the smallest duration is denoted as 

“current” period where operating parameters are considered deterministic. The second 

stage with larger duration is subject to small variability of demands and prices, and the 

final stage with largest duration has higher level of fluctuations regarding demands and 

prices. Uncertainty is modeled using the ideas of multi-stage programming (Dantzig, 

1955), where each planning period corresponds to a different stage. Uncertainty is 

expressed by incorporating a number of scenarios at each stage. More scenarios are 

considered towards the last stage in order to represent the increasing level of uncertainty. 

Each scenario is associated with a weight representing the probability of the scenario 

realization. Moreover, it is assumed that each unit will process a certain number of 

batches at a full capacity and a single batch at flexible size at every stage, which is a valid 

assumption for realistic case studies. Using this basic idea the following planning model 

is developed. 
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5.2.2 STOCHASTIC MULTI-PERIOD PLANNING-LEVEL FORMULATION 

Capacity Constraints   

      

  (5-1) 

   

 Constraints (5-1) enforce the requirement for minimum batch size, (Vij
min
)  in order for 

the batch to be executed and put a limit in the maximum batch size due to unit capacities 

when  task i is performed in unit j at period k under scenario q
k
.  

 

Material Balances          

        

(5-2) 

 

                          

           (5-3)                 

 

Material balances (5-2) state that the amount of material of state s at the end of period k is 

equal to that at period k-1 adjusted by any amounts produced or consumed between the 

period k and the amount delivered to the market in period k. Constraints (5-3) enforce the 

material balance at the initial period assuming that the initial input, Input
1
, is given. The 

objective of the planning-level problem is to determine the amount of materials after first 

period, Input
2
, for which the scheduling-level problem will generate an optimal 

production schedule in the next step. 
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Demand Constraints 

             

(5-4) 

 

Constraints (5-4) express the requirement to produce the maximum amount of state s 

towards satisfying the required demand, (r
k
s,q

k
). The amount that cannot be produced 

(sk
k
s,q

k
) is thus denoted as a backorder amount and is considered with an associated cost 

in the objective function.  

 

Duration Constraints          

            

                (5-5)  

 

Constraints (5-5) express the processing time of task i in unit j given the amount of 

material being processed. αij, βij are assumed the same value as in section 1.1. Note that 

these constrains are only enforced for one batch at each stage under each scenario q
k
. 

 

Time Horizon Constraints 

        

(5-6) 
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Time horizon constraints (5-6) require that all the tasks performed in unit j have to be 

completed within the time horizon of each stage H
k
. µk

 is the sequence factor, which is 

used to indicate the effects of the sequence constraints on makespan. The use of the 

sequence factor is considered to reduce the infeasibilities at the scheduling level where 

the detailed sequence constraints representing the production recipe are considered. A 

detailed explanation of the use of sequence factor is given in the next section. 

      

Objective:  Minimization of Cost 

The objective function consists of minimizing the overall cost during the whole time 

horizon including raw material cost, backorder cost and operating cost as given by 

equation (5-7).  

 

(5-7) 

 

 

In particular raw material cost is given by the following equation. 

 

(5-8) 

 

where w
1
=1 for the first stage where no scenarios are considered. 

The inventory cost represented by equation (5-9) express the cost of storing product at the 

end of the second and third period. Since in the planning level, it is hard to calculate the 
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exact inventory time due to aggregation of the orders, we use an approximation of half-

length of the consecutive periods to represent the inventory time. 

 

(5-9) 

 

 

 

 

where tiv
1
 and tiv

2
 is the time interval from period 1 to 2 and period 2 to 3, respectively 

equal to half of H
1 
+ H

2
 and H

2 
+ H

3
. 

Backorder cost given by equation (5-10) is considered to penalize the partial order 

satisfaction. 

 

           (5-10) 

 

Operating cost given by equation (5-11) considers the cost of equipment utilization which 

is related to a fixed cost f 
k
 and a varying cost v

k
. 

 

(5-11) 

  

∑∑ ∑
= ∈ ∈

××=
3

1

),(cos

k Ss Qq

kkk
s

k

q
kk

k qssktbwCostBackorder











 ++



 +××= ∑∑∑ ∑

= ∈ ∈ ∈

),,(),,(

)(),,(

3

1

max

kkk

ijq

kkk

ijq

k Ii Jj Qq

ij
k

ijq

k

ijq

kkk

q

qjiBvqjiwvf

VvfqjinwCostOperating

kk

i
kk

kkk

∑∑

∑

∈ ∈

∈

××

+×=

Ss Qq

sq

Ss

s

tivqsInputhinw

tivsInputhinCostInventory

11

1 21321

121

*),(

*)(



 

 

123

 

 

5.2.3 SEQUENCE FACTOR 

The sequence factor µk
 represents the effect of sequence constraints in the planning 

problem. Since the scheduling problem is not simultaneously solved with planning 

problem, the sequence factor is introduced such that the planning results are close to the 

scheduling solution. In this section, a general procedure is presented for estimating the 

sequence factor. However, realizing that a gap always exists between the planning 

problem solution involving the sequence factor and the short-term scheduling problem, 

an iterative procedure is developed within the planning and scheduling framework 

presented in section 4, which dynamically adjusts the sequence factor such that it always 

represents the best estimation.  

Thus the following procedure is developed that provides a reliable estimate. First the 

planning and scheduling problems are solved for a test case where the planning problem 

is solved using only one stage and one scenario. The ratio of the objective functions from 

the solutions of planning problem (Obj
k
plan) and the corresponding scheduling problem 

(Obj
k
sche), (Obj

k
sche/Obj

k
plan) is used as an approximation of the sequence factor. If the 

scheduling problem cannot be efficiently solved a smaller time horizon is considered 

which will provide a lower bound on the sequence factor since sequence constrains are 

increasingly more important as the time horizon decreases. Moreover, the LP relaxation 

can be used to estimate the sequence factor for two reasons: 1) the solution can be 

achieved very efficiently; 2) the ratio of the objective functions usually is larger than that 

from solving the original problems since the LP relaxation of the planning problem 
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produces a tighter relaxation. Based on these approximations, a good estimate of the 

sequence factor can be obtained. 

It should be noticed however that the target is not to obtain the exact value of µ
k 
since its 

value is updated within the overall proposed framework as explained in the next section.  

 

5.3 SCHEDULING MODEL 

The scheduling problem is solved after the solution of planning model to ensure a 

feasible production schedule for the current period given the production requirement 

determined by the planning problem. Since planning takes into consideration the future 

time periods, the production required by scheduling could exceed the orders imposed by 

the market. Assuming that parameters in the first stage are deterministic, the scheduling 

problem is solved using a continuous-time formulation introduced in section 1.1. In order 

to incorporate the planning considerations, constraints (1-6) as well as objective function 

(1-16) are modified as follows: 

 

Demand Constraints 

 

                        (5-12) 

 

The solution of scheduling problem is required to determine a feasible production 

schedule satisfying the planning production results. Thus, all the orders are required to be 

satisfied by their due dates as represented by constraints (5-12). According to these 

constraint, the production of material s by event point n should satisfy the individual 
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order of product s by the due date that corresponds to event point n
’
 (Ierapetritou et al., 

1999). Slack variables sk are considered to represent the amount of backorder that are 

penalized in the objective function. 

 

Required Production Constraints 

In order to consider the requirements imposed by the planning problem, additional 

production may be required at the current period. This requirement is considered 

separately in constraints (5-13).  

 

(5-13) 

 

where rps is the production requirement of material s obtained from the solution of 

planning model.  

 

Objective:  Minimization of cost 

The objective of the scheduling problem (5-14) is to minimize the slack variables of 

required production, slack(s) as well as all the production cost similarly to the planning 

model.  

 

 

                  (5-14) 
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The first term represents in (5-14) the cost of raw materials. The second and third terms 

consider inventory cost and backorder cost, respectively. Since the time length of storing 

the inventory in the next period is not known, tiv
1
 is used in the scheduling problem as 

well. Operating cost is involved in the fourth term. The last term enforces the 

consideration of the additional production, where plts is a penalty considered to indicate 

which products or intermediate materials are desired to be produced first. 

 

5.4. SOLUTION FRAMEWORK 

In this section, the overall hierarchical framework is presented that addresses the solution 

of planning and scheduling problem. An iterative procedure ensures consistent results 

between planning and scheduling stages. The overall flowchart is shown in Figure 5-1.  

The proposed framework is based on a rolling time horizon approach, which considers 

several periods of the entire planning horizon at a time. The optimal production schedule 

of these periods is determined and a new planning problem is formulated and solved 

following the same procedure. The advantages of rolling horizon approach are the 

following:  

1) It is adaptive to the dynamic production environment. Long term forecast 

usually suffers large uncertainty. Therefore when planning over a large time 

horizon, one may not be able to predict the fluctuating demands or price well and 

foresee all the disturbances such as machine breakdown or rush orders. 

Consequently the optimized results won’t represent the optimal schedule if these 

care.   
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2) Solving planning problem over a large time horizon is usually computationally 

expensive and the optimal solution is not guaranteed within the affordable 

computational time.   

At each decision-making point, the future periods are grouped into threes stages. 

Product demands are aggregated at each stage and a scenario tree is generated to 

represent uncertainty. The formulated planning model thus takes into consideration a 

number of periods although only the decisions for the current period (stage 1) are 

implemented. The planning model is solved as a MILP problem, or alternatively utilizing 

a heuristic by solving the LP relaxation of the original problem and fixing the number of 

full-size batches. The solution of the planning model could result in the following two 

cases: 1) the production for the current period could not satisfy the aggregated demand in 

this period; 2) the production meets or exceeds the aggregated demand.  

In the first case, we need to further identify if the shortage is due to capacity 

limitation or inaccurate parameters in the planning model. Therefore, the demands are 

disaggregated and the short-term scheduling problem is solved in order to obtain a 

feasible production schedule. If the scheduling problem generates an optimal schedule 

that satisfies all the orders, this means that the infeasibility of planning problem is due to 

an underestimated sequence factor. In this case, the sequence factor is increased and the 

problem is resolved until the convergence between planning and scheduling models is 

achieved. The sequence factor is updated according to the following equation: 

 

           (5-15) 

 . 
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where µ
k
 is the value of the sequence factor at iteration l, Psche, Pplan is the production 

determined by scheduling and planning models, respectively. Note that the sequence 

factor should not exceed the value of one since this would mean unrealistic production 

capacity. If the short-term scheduling solution cannot satisfy all the orders, this means 

that the problem is infeasible and thus backorders are allowed. The optimal solution is the 

best production schedule for the current period since the objective function minimizes the 

amount of backorders. Assuming we want to satisfy these backorders as early as possible, 

the amount of backorder is added into the market demands for the next period. In both 

cases, the inventory level at the end of current period is updated and the model is 

reformulated utilizing the rolling horizon approach so that the schedule of the following 

period can be determined.  

In the second case where the planning solution satisfies all the orders, it might result in 

additional production beyond the demands. In order to achieve the additional production 

as well as satisfy the orders, we incorporate constraints (5-12) and (5-13) into the 

scheduling model. The scheduling problem can lead to one of the following cases:  

a) the schedule meets the orders and the additional production requirements. In 

this case, the solution represents the optimal production schedule for the 

current period and the inventory at the end of current period is updated;  

b) the optimal production from the scheduling problem cannot satisfy the orders 

although the planning model suggest the opposite. This means that the 

sequence factor underestimate the effects of sequence constraints in production 

capabilities of the plant. Consequently in this case, the result of the scheduling 

problem is accepted as optimal allowing backorders adjusting the demand for 
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the next period. Since the results for this period reveals an underestimate of the 

sequence factor, to avoid such case in the future the sequence factor is updated 

following equation (5-15). The inventory is updated as well;  

c) the optimal production satisfies all the orders but not the additional production 

determined by the planning model. In this case, the sequence factor is adjusted 

following equation (5-15) and the planning model is resolved for the same time 

period to determine more realistic production targets.  

At each time point, this iterative procedure continues until convergence is achieved 

between the planning and scheduling problems. Demand and inventory are updated and 

the same procedure is followed for the next time period in the rolling horizon approach. 

Two examples are presented in the next section to illustrate the details of the steps of the 

proposed methodology. 



 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

                  

 

Solve scheduling model for current 

period, denote production as Psche. 

Aggregate demands in 

planning period; 

Generate scenario tree. 

Solve stochastic planning model., denote 

production of current period as Pplan 

 

Update inventory in 

planning problem. 

Go to next period. 

Pplan < Orders 

Psche = Orders 

 
Psche < Orders 

 

Pplan ≥ Orders 

Solve scheduling model for current 

period, denote production as Psche. 

Psche < Orders 

 
Psche = Pplan 

 

Increase sequence factor. 
Obtain optimized production 

schedule 

Incorporate backorder into the 

demands of the following period 

in planning model. 

Obtain optimized production 

schedule 

Incorporate backorder into the 

demands of the following period 

in planning model. 

Decrease sequence factor. 

Obtain optimized 

production schedule 

Decrease sequence factor. 

Pplan >Psche ≥ Orders 
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5.5 PLANNING EXAMPLE 

In this example (section 1.2), a planning problem with time horizon of 10 days is 

considered where thirty 8-hour schedules need to be determined dynamically. The actual 

demand is shown in Figure 5-2. In this example all the orders have the due dates at the 

end of 8-hour period. The planning model involves three stages corresponding to 8, 16 

and 48 hours, respectively. Three demand scenarios are considered for each branch of the 

scenario tree corresponding to high, average and low level of product demand based on 

demand forecasting. Therefore, there are 3 scenarios for stage 2 and a total of 9 scenarios 

for stage 3.  

 

 

 

 

 

 

 

 

 

 

Figure 5-2: Demand of Planning Example 
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leverage the storage capacity such that a smooth production schedule can be generated 

for the entire time horizon with the minimum amount of backorders.  

Following the proposed approach, first we aggregate the orders for each stage. In the 

first planning model, the demands of the second and third 8-hour periods are aggregated 

for stage 2 and those of the next six 8-hour periods are aggregated for stage 3. Table 5-1 

shows the market demands and aggregated demands for the first two planning problems. 

Note that in the second planning problem, the demand of stage 1 should also consider the 

backorder resulted from the previous period. Uncertainty is considered using the 

introduced scenarios. For example, in the first planning problem we use forecasts for 

three demand scenarios of stage 2 with values of 142, 147 and 152, respectively; while 9 

demand scenarios are created for stage 3. Figure 5-3 shows the aggregated demands and 

their variation range of scenarios for the first planning problem. 
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Market 

demand 

Aggregated demands for 

the first planning 

problem 

Aggregated demands for the 

second planning problem 
8-hour 

period 

P1 P2 P1 P2 P1 P2 

1 60 80 60 80   

2 95 125   95+ backorder 125+backorder 

3 52 74 147 199   

4 46 82   98 156 

5 58 86     

6 63 90     

7 50 76     

8 49 85     

9 62 89 328 508   

10 48 76   330 502 

 

Table 5-1:  Aggregated Demands for Planning Problem 
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Figure 5-3:  Aggregated Demands of First 72 Hours 

 

The next step involves the evaluation of an initial value of the sequence factor for 

each stage in order to solve the planning problem. As presented in section 5.2.3, a test 

problem is used for an 8-hour time horizon and the planning and scheduling problems are 

solved to minimize a makespan required to fulfill the orders. The optimal makespan are 

6.25 and 7.85 hours for the planning and scheduling problem, respectively. The ratio of 

these values is considered to represent the difference of production capacity between 

planning and scheduling models. Therefore a value of 0.80 is used as an initial 

approximation of the sequence factor for the current period (stage 1). Similarly the 

sequence factors for stage 2 and stage 3 are determined. The sequence factor for stage 2 

is initialized with a value of 0.90. Since it is computationally expensive to solve the 

short-term scheduling problem for 48 hours, the LP relaxation is solved for stage 3 
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providing an approximation of 0.99 for the sequence factor for this stage. Thus for stage 

3 a value of 0.95 is used as the initial sequence factor. It should be pointed out that since 

stages 2 and 3 represent the future for the current decision, the accuracy of sequence 

factor doesn’t play an important role in the framework.  

     The planning problem is then solved resulting in an optimal production for the first 8-

hour period of 30.51 units of IAB, 7.27 units of IBC, 61.82 units of P1 and 80 units of 

P2, although the product demands only require 60 units of P1 and 80 units of P2. The 

additional production can be perceived as the response to forthcoming demand peak in 

the second 8-hour period. These production requirements are considered into the 

scheduling model as additional production and the problem is solved to optimality as a 

MILP problem. The results satisfy the required production as well as the market 

demands. Therefore, the optimal schedule is obtained and the excessive production is 

considered as initial inventory for the next period. Before rolling into the next planning 

period, the newest data and information such as forecast scenarios and machine 

availability are incorporated. Assuming all the operating conditions remain the same, we 

have a demand of 95 units of P1 and 125 units of P2 for the second 8-hour period (stage 1 

in the new planning problem).  The optimal solution of the planning model however, 

results in a production of 12.72 units of IAB, 54.78 units of P1 and 125 units of P2 that 

doesn’t satisfy the demands. The short-term scheduling problem is then solved which 

determines a production of 39.80 units of IAB, 63.72 units of P1 and 107.43 units of P2. 

A shortage of 31.28 units of P1 and 17.57 units of P2 are considered as backorders and 

added into the market demands in the next period (the third 8-hour period).  Since a 

relatively high backorder cost is used in this example, the objective functions of both 
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planning and scheduling problems result in minimizing the backorders. Thus the resulted 

production schedule represents the optimal decisions. The inventory is thus updated for 

intermediate IAB at the beginning of the next period with a value of 39.80 units and the 

planning horizon is updated to include the next 8-hour period and a new planning 

problem is solved. This process continues until the whole time horizon of 30 periods is 

considered. Backorders are obtained at period 2, 3, 24, 25 and 26. The production 

schedule of the first sixteen hours are shown in Figure 5-4 and the demands and 

inventory level as well as backorders of the entire planning horizon are shown in Figure 

5-5, where an effort of increasing inventory against the demand peak is clearly illustrated.  

 

 

 

 

 

 

 

 

 

 

Figure 5-4:  First 16 Hours Production Schedule of Planning Example 
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Figure 5-5:  Demand, Inventory/Backorder of Planning Example 

 

  These results are compared with two other approaches. In the first approach, only 

short-term scheduling model is used to solve for each 8-hour production schedule. This is 

the case where scheduling cannot foresee the future demand and it is only trying to 

satisfy the order for the current period. There are total twelve periods that encounter 

backorders (period 2, 3, 21, 22, 23, 24, 25, 26, 27, 28, 29 and 30). The second 

approach uses short-term scheduling model as well, however it considers two 8-hour time 

periods although only the decision for the first 8-hour period is implemented. This 

approach exploits the same idea of planning model but it cannot involve more than two 

periods due to the complexity of the short-term scheduling problem. The production 

schedule has nine backorder periods (period 2, 21, 22, 23, 24, 25, 26, 27 and 28) and the 

computation CPU time is two orders of magnitude larger than the proposed approach. 
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Consequently the overall production schedule exhibits higher backorder cost while it 

decreases the less expensive inventory cost. Table 5-2 summaries these results.  

 

 One-period 

scheduling approach 

Two-period 

scheduling approach 

Proposed 

approach 

Num. of backorder periods 12 9 5 

Obj. 112,011.9 46,002.8 28,804.1 

CPU (sec.) 836.8 111,104.5* 1,016.9 

 

* computational limit is 5,000 CPU sec. for each MILP problem 

 

Table 5-2:  Results Comparison 

 

 Although the results depend on the choice of the initial sequence factor, the iterative 

process in the proposed approach can prevent from using an impractical sequence factor. 

In the following case, an initial sequence factor for stage 1 with value of 0.50 is used in 

the planning model, which obviously underestimate the production capacity.  As a 

consequence, the planning model can only achieve 32.50 units of P1 and 62.68 units of 

P2 at its optimum, thus resulting in a backorder of 27.50 units of P1 and 17.32 units of 

P2. The scheduling model, however is able to generate a production schedule that 

satisfies the market demand (60 units of P1 and 80 units of P2) with an additional 27.78 

units of IAB as side product. The discrepancy is due to the value of sequence factor and 

thus the planning model needs to be revisited. We compare the production of the final 

products as well as intermediates for both planning and scheduling models, and use the 

ratio as an adjustment to the original sequence factor. Therefore a new sequence factor of 
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0.74 is used in the planning model.  The new optimal solution of the planning problem 

increase the production due to the updated sequence factor, but there is still a shortage of 

12.12 units of P1 although the scheduling problem shows no backorder. The sequence 

factor is updated again with the new production ratio of 1.09 and obtains a value of 0.82. 

In the new iteration, planning results satisfy all the market demand and require an 

additional production of 12 units of IAB, 4 units of IBC, 8.75 units of IE, 4 units of P1 

and 19 units of P2. The scheduling problem however cannot make all of these additional 

requirements. Again this indicates that an optimistic sequence factor is used in the 

planning model. Following the same adjustment, the sequence factor is brought down to a 

value of 0.79 by using the new production ratio of 0.96. With the new sequence factor, 

the planning and scheduling results become consistent and the approach moves to the 

next planning period. In the next case, a sequence factor of 0.95 is initially considered for 

the stage 1 of the planning problem. The optimal solution requires an additional 

production of 4.78 units of IAB, 4 units of IBC, 17.78 units of IE, 4 units of P1 and 19 

units of P2 on top of the market demand. Due to the overestimated sequence factor, the 

scheduling problem couldn’t achieve this production although it can satisfy the market 

demand. The sequence factor is then adjusted to 0.85 based on the production and the 

planning model is resolved. Same iterative process continues until the planning and 

scheduling results converge with a final sequence factor of 0.80. As shown from these 

cases, the mechanism in the proposed approach can effectively adjust the sequence factor 

to a reasonable value that reflects the real production capacity. 

  From the solution of this example, it is illustrated that the proposed framework can 

effectively considers a long-term trend in the planning model while optimizing the 
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detailed production schedule for the current period. The communication between 

planning and scheduling problem in the framework ensures consistent results.  

 

5.6 SUMMARY 

This chapter presents a hierarchical solution approach for solving the dynamic production 

planning and scheduling problems. The planning model involves a scenario-based multi-

stage formulation while the scheduling model generates detailed schedule for the first 

planning period using a continuous-time formulation. A discounted parameter, sequence 

factor, is used in the planning model and an iterative process is developed in the proposed 

framework that ensures the consistency of the optimality of planning and scheduling 

problems.  



 

 

141

 

NOTATION 

 

Planning model � � � � � � �
i task 

j unit 

q
k
 scenario at period k 

s  state 

 � � � �
I tasks  

Ij      tasks that can be performed in unit j 

Is      tasks that process state s and either produce or consume 

J      units 

Ji     units that are suitable for performing task i 

Q
k
 scenarios at period k 

S states  

 � � � � � � � � � �
Vij

min
 minimum amount of material processed y task i required to start operating unit j 

Vij
max

 maximum amount of material processed by task i required to start operating unit j 

r
k
s,q

k
 market requirement for state s at the end of period k under scenario q

k
 

ρ
p
si, ρ

c
si  proportion of state s produced, consumed from task i, respectively 

αij  constant term of processing time of task i at unit j 

βij variable term of processing time of task i at unit j 

H
k
 time horizon of period k 

price
k
s price of state s at period k 

f
k
ij,q

k
 fixed cost of task i at unit j at period k 

v
k
ij,q

k
 variable cost of task i at unit j at period k 

cost
k
s  cost of state s at period k 

bcost
k
s backorder cost of state s at period k 
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hin
k
s inventory cost of state s at period k 

Inits initial input of state s at the first period 

wkq
k
 weight coefficient of scenario q

k
 at period k 

µ
k
 sequence factor for period k 

 � � � � � � � � �
wv

k
(i,j, q

k
) binary variables that assign task i in unit j at period k 

b
k
(i,j q

k
) amount of material undertaking task i in unit j at period k 

d
k
(s, q

k
) amount of state s being delivered to the market at period k 

Tp
k
(i,j, q

k
) processing time of task i in unit j at period k 

Input
k
(s, q

k
) input of state s at period k 

sk
k
(s, q

k
)  backorder of state s at period k 

n
k
(i,j, q

k
)  number of full batches of task i in unit j at period k  

 

Scheduling model � � � � � � �
i task 

j unit 

n event point representing the beginning of a task 

s  state 

 � � � �
I tasks  

Ij     tasks that can be performed in unit j 

Is     tasks that process state s and either produce or consume 

J     units 

Ji    units that are suitable for performing task i 

N event points within the time horizon 

S states  

IS subset of all involved intermediate states s 
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� � � � � � � � � �
Vij

min
 minimum amount of material processed y task i required to start operating unit j 

Vij
max

 maximum amount of material processed by task i required to start operating unit j 

STs
max

 available maximum storage capacity for state s 

rs,n market requirement for state s at event point n 

rps required production for state s from planning results 

ρ
p
si, ρ

c
si  proportion of state s produced, consumed from task i, respectively 

αij  constant term of processing time of task i at unit j 

βij variable term of processing time of task i at unit j 

prices price of state s  

fij, fixed cost of task i at unit j  

vij variable cost of task i at unit j  

costs  cost of state s  

bcosts backorder cost of state s  

hins inventory cost of state s  

plts penalty term for the slack variable of required production 

 � � � � � � � � �
H  time horizon  

wv(i,n)  binary variables that assign the beginning of task i at event point n 

yv(j,n)  binary variables that assign the utilization of unit j at event point n 

B(i,j,n)  amount of material undertaking task i in unit j at event point n 

d(s,n)  amount of state s being delivered to the market at event point n  

ST(s,n)  amount of state s at event point n 

STIN(s) amount of state s imputed initially 

T
s
(i,j,n) time that task i starts in unit j at event point n 

T
f
(i,j,n)  time that task i finishes in unit j while it starts at event point n 

Slack(s) slack variable of required production for state s 

sk(s)  slack variable of orders for state s 
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CHAPTER 6 

LAGRANGEAN DECOMPOSITION USING AN IMPROVED 

NELDER-MEAD APPROACH FOR LAGRANGEAN MULTIPLIER 

UPDATE  

Lagrangean decomposition is critically dependent on the method of updating the Lagrangean 

multipliers. This chapter presents a Lagrangean decomposition approach based on Nelder-Mead 

optimization algorithm to update the Lagrangean multipliers. The main advantage of the 

proposed approach is that it results in improved objective function values for the majority of 

iterations. The efficiency of the proposed approach is illustrated with solution of scheduling 

problems. 

 

6.1  INTRODUCTION 

The complexities of realistic problems require the use of large-scale models that often 

prevent the convergence to the optimal solution. Lagrangean relaxation and Lagrangean 

decomposition are promising decomposition techniques that reduce the problem size and 

achieve solution in affordable computational time as shown in chapter 3. As an extended 

research to the previous scheduling work, this chapter discusses in depth the Lagrangean 

technique and presents an alternative Lagrangean multiplier updating method.  

Lagrangean relaxation was original developed by Held and Karp (1970) and 

successfully applied to many optimization problems such as production scheduling 

(Fisher, 1973), planning (Graves, 1982 and Gupta and Maranas, 1999) and lot-sizing 

problems (Thizy, 1985 and Diaby et. al. 1992). The idea of Lagrangean relaxation is 

based on the characteristic that mathematical problem formulations involve “hard” 
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constraints, the existence of which increases the complexity of problem. As shown in 

Figure 6-1 assuming that the first set of constraints are the complicating (“hard”) 

constraints, Lagrangean relaxation proceeds by relaxing these constraints and penalizing 

the constraint violation in the objective function thus reducing the computational 

complexity of the solution since the problem with the remaining constraints is easier to 

solve.  

 

 

 

 

 

Figure 6-1:  Lagrangean Relaxation 

 

Since the set of Lagrangean multipliers are chosen to be non-negative (u ≥ 0), for every 

optimal solution x of the original optimization problem (P) we have 

V(LRu)  ≥ V(LR) ≥ V(P) 

where the operator V(.) denotes the optimal value. Therefore the resulting objective 

function from Lagrangean relaxation is an upper bound of the original optimization 

problem. Let operator Co(.) denotes the convex hull and P
*
 represents the following 

problem: 

 

 

 

It can be further shown that (P*) and (LR) are duals (Geoffrion, 1974). Thus: 
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V(LP) ≥V(LR)  = V(P*
) ≥ V(P) 

where (LP) is the LP relaxation of problem (P). If the multipliers of the complicating 

constraints from the optimal LP relaxation solution are used to solve (LRu), the solution 

corresponds to an upper bound of the original problem at least as tight as tight as the 

bound from (LP), i.e. V(LP) ≥V(LRu). The integrality property is stated as follows: the 

optimal value of (LRu) is not changed by dropping the integrality condition on the x 

variables, i.e. Co{Cx≤ d, x∈X}={Cx≤ d, x∈X}. Geoffrion (1974) proved that only when 

this property holds, the following equalities hold. 

V(LP) =V(LR)  = V(P
*
) ≥ V(P) 

However for practical problems, this integrality property usually doesn’t hold, thus 

allows the application of Lagrangean relaxation to provide a tighter bound.  

   A drawback of the Lagrangean relaxation is that the problem loses its original 

structure since the complicating constraints is removed from the constraints set and 

embedded into the objective function. As a method to avoid this, Lagrangean 

decomposition is presented by Guignard and Kim (1987). It can be regarded as an 

extension of the Lagrangean relaxation since instead of relaxing constraints it is based on 

the idea of relaxing a set of variables responsible of connecting important model 

components. Considering the problem (P) shown in Figure 6-2 the set of variables x that 

connect the set of constrains are duplicated by introducing an identical set of variables y 

and an equality constraint x=y as shown in Problem (P
’
). Lagrangean relaxation is then 

applied to the new set of equality constraints resulting in problem (LDu) which can be 

further decomposed into two subproblems (LDu
1
) and (LDu

2
) as shown in Figure 6-2.  

 



 

 

147

 

 

 

 

 

                               

   

 

 

Figure 6-2:  Lagrangean Decomposition 

 

Denoted u° as the optimal Lagrangean multiplier to (LR). Let v°=u°A and x°, y° be the 

optimal solution of (LDu), then 

 

 

 

 

 

 

 

 

 

 

 

Therefore V(LD) ≤ V(LR), which means that the upper bound generated from 

Lagrangean decomposition is always at least as tight as  that from Lagrangean relaxation. 
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V (LP) 

V (LR) 

V (LD) 

V (P) 

{x | Ax ≤ b} 
{x | Cx ≤ d} 

f 

Co {x∈ X | Ax ≤ b} Co {x∈ X | Cx ≤ d} 

Similarly, if integrality property holds in one of the subproblems, for instance, Co{Cx≤ d, 

x∈X} = {Cx≤ d, x∈X},  then (LD) is equivalent to (LR) and V(LD) = V(LR). If integrality 

property holds in both subproblems, i.e. Co{Ax≤ b, x∈X} = {Ax≤ b, x∈X} and Co{Cx≤ d, 

x∈X}={Cx≤ d, x∈X}, then (LD) is equivalent to (LP) and V(LD) = V(LP). Otherwise 

(LD) is strictly tighter than (LR) as is usually the practical case. Adding surrogate 

constraints, which means both subproblems have overlapped constraints, can further 

tighten the bound of Lagrangean decomposition. However, this increases the problem 

complexity and thus the solution computational time. Figure 6-3 provides a geometric 

interpretation of the Lagrangean decomposition (Guignard, 1987).  

 

 

 

 

 

 

 

 

 

 

Figure 6-3:  Geometric Interpretation of Lagrangean Decomposition 

 

The main difficulty in optimizing Lagrangean decomposition is that it is non-

differentiable since the inner maximization problem generally has multiple optimal 
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solutions. The most common approach to deal with this lack of differentiability is the 

subgradient method (Polyak, 1967, Marin and Pelegrin, 1998, Equi et. al. 1997 and Rana 

and Vickson, 1991). The subgradient method utilizes the distance between the objective 

value at the current iteration Z
k
 and the estimated optimum Z* to calculate a step size t

k 

which is used to update the Lagrangean multipliers as follows:   

 

           (6-1) 

           

(6-2)  

 

where superscript k corresponds to the iteration number and λ is a scaling factor of the 

step size to control the convergence, normally considered to be between 0 and 2.  

A number of problems however arise with the use of subgradient method. Lagrangean 

decomposition is based on duality theory, and theoretically the method converges the 

dual variables to the same value (more generally, u(x-y)=0 ), which results in the optimal 

solution of the original optimization problem. However, in practice using subgradient 

method is reported to have unpredictable convergence (Guignard, 2003).  

For some problems, subgradient method generates monotonic improvement in 

Lagrangean objective function and the convergence is quick and reliable. While other 

problems result in erratic multiplier sequence and the Lagrangean function value keeps 

deteriorating. According to the complementary slackness condition, subgradient method 

updates the Lagrangean multiplier u until the convergence of the dual variables. The gap 

between the decomposition variables x and y may exist even when the (LD) converges to 

the optimal objective value of the original optimization problem. We will illustrate this 
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case in the following section through solution of an example problem. Other drawbacks 

of subgradient method are (a) the lack of convergence criterion, (b) the lack of estimate 

of the optimal objective Z* and (c) dependency to the heuristic choice of the step size 

sequence (Crowder, 1976). Due to these problems the subgradient method is not stable 

when applied to large-scale problems. Another issue related to Lagrangean 

decomposition is that the dualized variable set must be appropriately chosen so that the 

resulting subproblems are easy to solve and the solution converges fast, which is case-

dependent (Orero and Irving, 1997, Gupta and Maranas, 1999).  

Bundle method is an extension of subgradient method presented by Lemarechal 

(1974) and Zowe (1985). This method considers improving Lagrangean function as well 

as staying close to the approximated optimal solution. At each iteration the method either 

update the Lagrangean multipliers or improves the function approximation. A trade-off 

exists in the small region within which the bundle method allows to move and the small 

size of the bound improvement. 

Realizing these deficiencies a number of techniques have been developed to update 

the Lagrangean multipliers. Constraint generation method (Kelly, 1960) considers a 

family of k existing solution (x
k
, y

k
) and generates a new Lagrangean multiplier u by 

solving a restricted LP master problem MP
k
: 

 

 

 

The resulting u is then used in the LDu and a new cut of (x
k+1
,y

k+1
) is obtained from 

solving LDu, which is added into the master problem (Guignard, 1995). The process 

terminates when V(MP
k
)=V(LDu). However there is no guarantee that the new 
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Lagrangean multiplier will generate an improved solution, thus the problem of cycling 

needs to be resolved. This method also depends on the cuts of (x
k
, y

k
) in the master 

problem.  

Multiplier adjustment method, also referred as dual ascent/descent algorithm was 

presented by Bilde and Krarup (1977) and reported successful application by Erlenkotter 

1978), Fisher and Hochbaum (1980), Fisher and Kedia (1990) and Guignard and 

Rosenwein (1990).  This method generates a sequence of u
k
 by using the following 

relationship: 

           (6-3) 

 

where t
k
 is a positive scalar and d

k
 is a descent direction. d

k
 is usually determined from 

form a finite set of directions by evaluating the directional derivative of (LDu). Typically 

the direction of the steepest descent is chosen and the step size t
k 
is chosen to minimize 

V(LDuk+tdk).  Although this method is reported to work better than the subgradient method 

for some problems (Erlenkotter, 1978), the set of directions to choose from may involve 

specific knowledge of the problem such that the number of directions is minimized but 

still contains direction to descent. A good review of the methods solving for Lagrangean 

multipliers is given by Guignard (2003).  

These considerations initiate our efforts towards an improved method for updating the 

Lagrangean multipliers based on a direct search in Lagrangean multiplier space. In the 

next section a motivating example illustrates the need for an improved updating method 

for the Lagrangean multipliers. In section 6.3, the proposed modified Lagrangean 

decomposition method is presented whereas examples are given in section 6.4.  

kkkk dtuu +=+1
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6.2 MOTIVATING EXAMPLE 

The following mixed integer linear programming problem is considered in Wu and 

Ierapetritou (2003). 
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The optimum objective value is 26 that corresponds to two equivalent solutions 

(x1,x2,x3,x4) = (5,0,4,0) and (x1,x2,x3,x4) = (3,0,4,1). Subgradient method is used for the 

solution of this problem with the initial value of λ equal to 2. The updating strategy 

halves λ when the objective value is not improving for 5 iterations. As described in 

previous section, the choice of the decomposing variables is case dependent and affects 

the convergence of the Lagrangean decomposition. Table 6-1 shows the results for this 

example when different variables are used for the decomposition.  
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Decomposing variables x1 , x2 x2 , x3 x1 , x4 x3 , x4 

Optimal solution 

(x1 , x2 , x3 , x4) 

(5,0,4,0) (5,0,6,0) (0,0,4,0) (5,0,4,0) 

Dual variables y1 , y2 y2 , y3 y1 , y4 y3 , y4 

Dual variable values (0,4) (0,4) (3,1) (6,0) 

u1, u2 (0.00, 0.00) (3.37, 4.00) (2.00, 4.37) (0.00, 0.00) 

Optimal objective function 

value using subgradient 

method 

26.012 26.000 26.279 26.000 

CPU (sec.) 1.19 0.27 2.40 0.12 

 

Table 6-1:  Subgradient Method Results of Motivating Example 

 

Although the Lagrangean decomposition converges to the optimal solution, the 

primary variables are not guaranteed to be optimal. For example, the Lagrangean 

decomposition returns the optimal objective function value of 26 when x2 and x3 are 

decomposed, the solution of Lagrangean decomposition however, corresponds to (x2,x3) = 

(0,6) whereas (y2,y3) = (0,4). The subgradient method terminates since Z
k 
= Z

*
.  Therefore 

we obtain an upper bound, which converges to the optimal objective function of the 

original problem but the variables do not converge to the optimal values and a gap 

between the dualized variables exists. When x1 and x2 are used for decomposition as 

follows:   
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Lagrangean decomposition converges to a suboptimal solution of 26.012. This results 

from the fact that subgradient method use step size tk to calculate the updated Lagrangean 

multiplier. So when the solution of (x1, x2, x3 , x4, y1, y2) = (5, 0, 4, 0, 0, 4) is generated, 

the duality gaps of x1,y1 and x2,y2 forces u1 and u2 in the area where the same solutions are 

always generated until the step size becomes too small and the algorithm terminates. 

Table 6-2 lists the details for each iteration. 

 

Iteration (x1 , x2, x3 , x4, y1 , y2) (u1 , u2) t
k
 (LDu) 

1 (0 ,0 ,4 ,2 ,8 ,0 ) (1.000, 1.000) 1.0000  32.000 

2 (5 ,0 ,4 ,0 ,0 ,4 ) (0.000, 1.000) 0.1875 30.000 

3 (0 ,0 ,4 ,2 ,8 ,0 ) (0.976, 0.220) 0.1951 31.805 

4 (5 ,0 ,4 ,0 ,0 ,4 ) (0.000, 0.220) 0.1814 26.878 

5 (5 ,0 ,4 ,0 ,8 ,0 ) (0.214, 0.048) 0.0428 26.642 

6 (5 ,0 ,4 ,0 ,0 ,4 ) (0.000, 0.048) 0.1428 26.193 

7 (5 ,0 ,4 ,0 ,8 ,0 ) (0.024, 0.029) 0.0047 26.071 

8 (5 ,0 ,4 ,0 ,0 ,4 ) (0.000, 0.029) 0.0078 26.118 

… … … … … 

32 (5 ,0 ,4 ,0 ,0 ,4 ) (0.004, 0.008) 0.0000 26.012 

 

Table 6-2:  Intermediate Results from Iterations 

 

However the performance of Lagrangean decomposition depends on the value of Z* 

used as shown in Table 6-3 where the results of this example are illustrated using Z*=27.  

Let’s consider the case where x3 and x4 are dualized using Z*=27, the Lagrangean 

decomposition results in an objective function value of 26.462 compared to the optimal 

value of 26 when Z*=26 is used (Table 6-1).  In the same example when Z* is estimated 

as 25, the Lagrangean decomposition converges to the optimal value of 26 as the lowest 



 

 

155

 

upper bound but requires 85 iterations compared to 4 iterations required when Z*=26 is 

used.  Table 6-4 illustrates the results for Z*=25. 

 

 

Decomposing 

variables 

Optimal objective function 

value using subgradient method 

x1 , x2 26.816 

x2 , x3 26.500 

x1 , x4 27.000 

x3 , x4 26.462 

 

Table 6-3:  Lagrangean Decomposition Results Based on Estimation of � � =27  
 

Decomposing 

variables 

Optimal objective function 

value using subgradient method 

x1 , x2 26.00 

x2 , x3 26.00 

x1 , x4 26.00 

x3 , x4 26.00 

 

Table 6-4:  Lagrangean Decomposition Results Based on Estimation of � � =25 
 

Such behavior is observed also with initial λ equal to 1 when subgradient method is 

used to update the Lagrangean multipliers, therefore the need of alternative methodology 

becomes imperative for the efficient utilization of Lagrangean decomposition in large-

scale problem describing realistic case studies.  
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6.3 PROPOSED APPROACH 

The proposed approach uses a direct search method to update the Lagrangean multipliers 

in order to improve the performance of the Lagrangean decomposition. The main idea is 

that given a fairly good estimation of Lagrangean multipliers, only the promising 

directions need to be searched. Thus the computational complexity decreases and the 

objective of the Lagrangean decomposition is improved at each iteration.  

Nelder-Mead method (Nelder and Mead, 1965) is used to determine the promising 

search directions since it is proven to be very efficient direct search algorithm. For a 

function of n variables, the algorithm maintains a set of n+1 points forming the vertices 

of a simplex or polytope in n-dimensional space. The result of each iteration is either (1) 

a single new vertex which replaces the one having the worst function value in the set of 

vertices for the next iteration, or (2) if a shrink is performed, a set of n+1 new points 

form the simplex at the next iteration. Four scalar parameters must be specified to define 

a complete Nelder-Mead method: coefficients of reflection, expansion, contraction, and 

shrinking. As every direct search method Nelder-Mead method has the advantage of not 

requiring derivative computations, but they tend to be efficient in relatively low 

dimensions. The details of Nelder-Mead algorithm are given in the appendix.  

In order to be able to efficiently use Nelder-Mead method we need to determine a 

good initial set of Lagrangean multipliers in order to reduced the search space. Moreover, 

the promising new search directions should be easily determined. These two questions 

are addressed as follows. As a common practice an effective way to generate an initial set 

of Lagrangean multipliers for integer linear problems is to use the dual values of LP 
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relaxation. This is because the Lagrangean decomposition problem is equivalent to LP 

relaxation if we drop the integrality constraints, thus most of these values are already near 

the optimum and we only need to examine the reduced Lagrangean multiplier space for 

the next update. The second question is most critical to the proposed algorithm. 

Promising search direction is defined as the direction resulting in improvement of the 

objective function. In order to adjust the Lagrangean multipliers independently, the axes 

in the Lagrangean multiplier space are used as the possible directions. Thus we have n 

orthogonal directions to search where n is the number of Lagrangean multipliers and at 

each iteration we should choose among the directions that lead to the objective function 

improvement. In practice the directions examined are much less than the actual number 

of Lagrangean multipliers because of their good initial values. 

 The steps of the proposed approach are shown in Figure 6-4. In particular first the LP 

relaxation of the original optimization problem is solved and the Lagrangean multipliers 

are initialized as the dual values of the corresponding dual equality constraints. Assuming 

that there are n pairs of dual variables, the Lagrangean multiplier space has n dimensions. 

To generate the initial points for Nelder-Mead algorithm, we fix the n-1 variables at their 

original values and change only one dimension by a value of ±∆u, which is α times the 

original value ∆u = α*u0. In this way two new points are generated. We apply the same 

procedure for all dimensions and generate 2n points. Each point corresponds to a set of 

Lagrangean multipliers. The next step is to solve 2n+1 Lagrangean decomposition 

problems associated with these points and sort them based on their objective values of 

Lagrangean decomposition problem. Although this might be a time-consuming step, a 

potential advantage is that such multi-direction search can be computed in parallel since 
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these problems are completely independent of each other. Those with improved objective 

values are selected to form the reduced space where Nelder-Mead algorithm is applied. 

The final point is guaranteed to be at least as good as the previous best point, and thus it 

is used as the new starting point to generate the next 2n neighboring points. The iterations 

continue until the difference in the objective function values is within tolerance or the 

number of iterations reaches a limit.  

 

 

 

 

 

 
Figure 6-4:  Proposed Approach for Lagrangean Decomposition Using Nelder-Mead 

Algorithm 

 Initialize: 
Solve LP relaxation problem; 
Use the dual value of constraints x1=y2 as u0; 

Calculate 2n new points of u such that uk= u0+∆u and un+k= u0-∆u at kth 
dimension,  ∆u = u0*α  (0 < α ≤ 1)  if u0≠0. 

Solve 2n+1 LD problems and sort the objective values 

Is  k ≥ K or  

Vworst – Vbest ≤  tolerance 

No 

Yes 

Find all the ui such that LD(ui) is better than LD(u0); 
Let m denote the number of these uis. Set these m points and u0 as initial 

points and apply Nelder-Mead method on these m dimensions. 

Output u0 and 
LD(u0). 

Let ubest = u0; 

Calculate 2n new points of u such that uk= u0+∆u and un+k= u0-∆u at kth 
dimension,  ∆u = u0*α  (0 ≤ α ≤ 1)  if u0≠0. 

Solve 2n LD problems and sort the 2n+1 objective values; 
k = k + 1. 
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Since each Nelder-Mead iteration returns a new point with equal or better objective 

function than the previous point, convergence is guaranteed. However the algorithm’s 

efficiency depends on the value α. A large value of α gives more emphasis in the most 

promising directions in Lagrangean multiplier space and results in larger changes; while 

small values of α concentrates on small areas and attempts to find all promising 

directions although it may result in slower convergence. An adaptive strategy is thus 

proposed starting with a value of α at the initial iterations in order to improve the values 

of the Lagrangean multiplier faster, and reducing α when no new improving directions 

can be found. This strategy will be illustrated in the following section where first the 

motivating example of section 6.2 is revisited using the proposed approach and the 

performance is compared with the subgradient method. An additional example and case 

studies in the area of process operation are considered to illustrate the importance of the 

proposed approach in the solution of large- scale problems. 

 

6.4 CASE STUDIES 

6.4.1 MOTIVATING EXAMPLE 

Unlike the subgradient method, the proposed approach based on Nelder-Mead algorithm 

is not sensitive to the selection of the decomposition variables since it has the advantage 

of searching for the optimal direction in the Lagrangean multiplier space. As shown in 

Table 6-5 the proposed algorithm converges to the optimal solution despite of the choice 

of the decomposing variables. The CPU time in most of the cases is much better than that 

of the subgradient method. The results are obtained on Pentium 1200 PC with CPLEX 

7.5. 
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Dual variables Subgradient method Proposed algorithm 

 Obj. CPU (sec.) Obj. CPU (sec.) 

x1, x2 26.012 1.19 26.000 0.10 

x2, x3 26.000 0.27 26.000 0.33 

x1, x4 26.279 2.40 26.000 0.73 

x3, x4 26.000 0.12 26.000 0.10 

 

Table 6-5:  Comparison of Results and CPU Times for Motivating Example 

 

The optimal solutions in terms of primal and dual variables, Lagrangean multipliers 

and number of iterations of the proposed algorithm are listed in Table 6-6. The α 

parameter is fixed to correspond to 0.1% of the original values. When α is used with 

value of 1% and 0.05%, the algorithm converges to the same solution, however the 

corresponding numbers of iterations (Table 6-7) are different as discussed in the previous 

section.  

 

Decomposing 

variables 

(x1, x2, x3, x4) u1, u2 Dual 

variables 

Dual variable 

values 

Iterations 

x1, x2 (5,0,4,0) (0.00, 0.00) y1, y2 (0,0) 5 

x2, x3 (5,0,0,0) (3.00, 4.00) y2, y3 (0,4) 21 

x1, x4 (0,0,4,0) (2.00, 4.00) y1, y4 (5,0) 34 

x3, x4 (5,0,4,0) (0.00, 0.00) y3, y4 (0,0) 5 

 

Table 6-6:  Solution of Motivating Example 
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Decomposing 

variables 

α = 1% α = 0.1% α = 0.05% 

x1, x2 5 5 5 

x2, x3 13 21 21 

x1, x4 20 34 39 

x3, x4 5 5 5 

 

Table 6-7:  Number of Iterations Using Different α 

 

6.4.2 EXAMPLE 4 

Guignard and Kim (1987) used the following example to illustrate that Lagrangean 

decomposition generates a bound at least as good as Lagrangean relaxation:   

 

  

 

 

In this example, the optimal objective value is 4 with the solution of {x1,x2,x3) 

={0,0,1}. The authors stated that with Lagrangean multipliers of u1=2, u2=0.5 and u3=1.5, 

Lagrangean decomposition can achieve an upper bound of 4.5, tighter than the upper 

bound of 5.84 obtained by Lagrangean relaxation. Using the LP relaxation to initialize 

Lagrangean multipliers of u1,u2,u3, subgradient method converges to the optimal value of 

4.5 in 39 iterations; while the proposed approach reduces the number of iterations by 

25% (29 iterations vs. 39 iterations). The α parameter is set to an initial value of 1 and 

reduced to 60% of its value when promising new directions cannot be obtained. 
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6.4.3 SCHEDULING PROBLEM 

The proposed Lagrangean decomposition approach is used for example 1 in section 1.2. 

The schedule considered in this section spans over three time periods of 8, 8 and 12 

hours, respectively. Simultaneous solution of this problem is computationally expensive 

mainly due to the large number of binary variables involved. With Lagrangean 

decomposition, the problem is decomposed into 3 subproblems by dualizing the storage 

variables at the end of each time period.  

Both subgradient method and the proposed algorithm are utilized to obtain an upper 

bound whereas a lower bound is generated by fixing the binary variables for the first 

period from the Lagrangean decomposition solution. The results are obtained on Sun 

Ultra 60 workstation using CPLEX 7.5. Table 6-8 compares the results of simultaneous 

solution, subgradient method and the proposed algorithm for a maximally allowable 

computation time of 10,000 sec.  

 

 
Simultaneous 

solution 

Lagrangean 

decomposition with 

subgradient method 

Lagrangean 

decomposition with the 

proposed algorithm 

Lower bound 

(feasible schedule) 
7067.90 7115.31 7115.31 

Upper bound 

(LD Obj.) 
7220.79

1
 7185.78 7176.11 

Relative gap (%) 2.16% 0.99% 0.85% 

 

1
 the upper bound provided by the solver at the time of termination. 

 

Table 6-8:  Comparisons for Scheduling Example 
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For maximum computation time of 20,000 sec, the proposed approach results in an 

improved upper bound of 7174.93 and lower bound of 7165.74 with 0.13 % gap, while 

the simultaneous solution and subgradient method provide no improvement in the 

solution.  

 

6.4.4 SCHEDULING PROBLEM WITH UNCERTAINTY 

Uncertainty receives lots of attention in the research of scheduling and planning 

problems. A commonly used approach is a multi-period optimization that utilizes a set of 

scenarios to represent the possible parameter values (Dantzig, 1955). This however, 

increases the problem size due to the scenarios introduced. Lagrangean decomposition is 

thus an ideal technique to use in order to efficiently address the problem of scheduling 

under uncertainty.  

The problem in section 3.2.3 is considered here. Two periods are considered, a first 

period of 6 hours where the parameters are assumed deterministic and a second period of 

6 hours with uncertainty in demand. In this example, 3 scenarios are used for the second 

period to describe the uncertain demands corresponding to high, medium and low 

probability of occurrence. The objective function combines the profit of both periods and 

thus determines the optimal production schedule of the first period that will benefit most 

the entire time horizon under consideration. The mathematical formulation of this 

problem corresponds to a MILP problem, which was solved on Sun Ultra 60 workstation 

using CPLEX 7.5. The branch-and-bound algorithm is not efficient for this problem as 

shown by the results presented in Table 6-9. We thus applied the proposed Lagrangean 

decomposition approach for solving this problem. First the original planning problem is 
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decomposed into 4 subproblems by dualizing the storage variables between the first and 

second periods. The objective function of Lagrangean decomposition corresponds to an 

upper bound of the original optimization problem while a lower bound is generated by 

fixing the binary variables of the first period at the values of the Lagrangean 

decomposition solution and solving the original problem. Table 6-9 compares the 

objective value, upper bound and relative gap obtained using the proposed approach and 

solving the original problem using branch-and-bound.  

 

 
Directly solving the 

problem 

Proposed Lagrangean 

decomposition approach 

Iteration 
7
th
  Feasible 

solution 
2 

CPU (sec.) 30,000 
1
 17,995 

Objective function value 4.131E5 4.148E5 

Upper bound 4.740E5 
2
 4.329E5 

Relative Gap 14.7% 4.4% 

 

1 
Computational time limit

 

2
 the upper bound provided by the solver at the time of termination. 

 

Table 6-9:  Results of the Scheduling Problem with Uncertainty 

 

It should be pointed out that the upper bound is improving with the number of 

iterations. For example the Lagrangean decomposition value is reduced to 4.300E5 with a 

relative gap of 3.7% at iteration 9. However we need to balance the tradeoff between the 

objective function improvement and the computational efficiency. Note that for this 
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problem the subgradient method could not get an improved solution after the first 

iteration resulting in a Lagrangean decomposition value of 4.347E5.  

 

6.5 SUMMARY 

This chapter presents a Lagrangean decomposition scheme using a modified Nelder-

Mead algorithm to search for promising directions in Lagrangean multiplier space. At 

each iteration the proposed method provides a solution at least as good as that of the 

previous iteration, thus enabling better convergence. Focusing only on promising 

directions prevents the algorithm from evaluating large number of points, which is the 

main disadvantage of direct search algorithms. The case studies illustrate that the 

algorithm can be utilized as an alternative for the problems where subgradient method 

performs poorly. It can also be employed in combination with subgradient method in a 

scheme where this method was only utilized when subgradient stops improving the 

objective function. Special emphasis has been placed in the performance of the proposed 

approach to scheduling problems where promising results are obtained.  
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CHAPTER 7 

DISCUSSION AND FUTURE DIRECTIONS 

 

7.1 COMPREHENSIVE MODELS FOR SHORT-TERM SCHEDULING 

APPLICATIONS 

In the proposed hierarchical approach for production planning and scheduling described 

in chapter 4, a continuous-time formulation is presented for the scheduling problem 

which utilizes less number of variables especially binary variables and constraints. This 

model works efficiently as illustrated with the case study in chapter 4.  However, 

scheduling is a complex problem in practice which involves many considerations such as 

profit, staffing and safety. The solution of our model is only economically justified as the 

optimum, but it may not be the best choice when evaluated from all perspectives of a 

plant. Ideally we would like to model every constraint and solve for a solution balancing 

all considerations. Unfortunately this is not the case for realistic industry problems due to 

the following reasons. First, modeling all the considerations is an elaborate work. Due to 

the management policies and other ad-hoc situations, the constraints are unique for every 

plant, which makes the problem case-dependent. Thus it is hard to utilize a general short-

term scheduling model for all production problems. Second, it is not easy to set priority 

for all these considerations. For example, some are hard constraints while the others can 

be relaxed under certain circumstances. This will be translated into the mathematical 

model using a large number of binary variables, which dramatically increase the 

complexity of the problem solving. Third and most importantly, current optimization 

techniques are still far from being able to handle large-scale MILP and MINLP problems. 
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Comprehensive models do not necessarily result in good solutions in an affordable time 

using the available commercial solvers. All these limitations bring us a question: how can 

we make the scheduling model take part in business decisions for realistic industry 

problems.  

Short-term scheduling problems share some common characteristics such as material 

flow and sequencing requirements, which are usually the core consideration for a 

production schedule. This suggests us to design a solution framework that considers 

different type of constraints hierarchically. In a higher level (or core model), a 

generalized mathematical model can be used to optimize the production economic goal 

such as the proposed scheduling formulation and those by other authors. In other levels, 

different consideration can be modeled separately.  For example, staffing requirements 

can be considered in an independent model. The solution process can employ different 

strategies in order to obtain the decision.  It may make the decisions flow from most 

important levels to less important ones. For example, the optimal production schedule as 

well as the second optimal and other alternative schedules obtained from the core model 

can be considered by the staffing model, where their feasibility are evaluated in terms of 

staffing requirements. The main reasons of adopting a hierarchical solution strategy are to 

1) decompose the entire large problem into smaller models that can be solved separately; 

2) keep core model as general as possible and make the rest models interchangeable such 

that the modeling time for a new application can be largely reduced; 3) make the data 

collection easier when dealing with different function groups in a plant. The hierarchical 

structure can also rely on the nature of industry and require experience in decision-
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making. However the anticipated big savings by utilizing optimization techniques 

motivate the introduction of short-term scheduling optimization to industry applications.  

 

7.2 SUPPLY CHAIN MANAGEMENT  

In a highly integrated global market, supply chain management becomes extremely 

important in order to meet the requirements of fast response to custom demands, optimal 

resources allocation, development of new product and survival from competitors. An 

efficient management of supply chain will result in significant savings to the enterprises’ 

investing capital in inventory and logistics costs, which makes a distinguished impact on 

business in today’s highly competitive environment.  

         A typical supply chain involves a number of plants, product warehouses, product 

distribution centers and retailers.  Decisions that are optimized independently for each 

site do not guarantee the optimum of overall objective for the global supply chain.  Thus 

an approach needs to be developed to integrate local decision-making tools such as 

planning and scheduling, inventory management, transportation optimization, trading 

optimization in order to model and analyze the whole supply chain, determine the optimal 

production and transportation plan as well as the detailed schedules of production and 

storage with given conditions.    

         The books by Handfielf and Nicholos (1999), and Shapiro (2001) are great reviews 

of this field. In addition, an extensive literature review of supply chain models was 

presented by Vidal and Goeschalckx (1997). Among the various industrial applications, 

Schenk (1998) and Dempster et al. (2000) presented a supply chain model for oil 

company. Kafoglis (1999) addressed the application of supply chain management in 



 

 

169

 

refinery operations. Other work includes Bodington and Shobys (1996) and Zhou et al. 

(2000) for petrochemical industry, Papageorgiou et al. (2001) for pharmaceutical 

industry, Philpott and Everett (2001) for paper industry and Escudero et al. (1999) for 

automotive sector. Edgar et al. (2001) presented a novel approach for supply chain 

management. In their proposed framework, they capture the dynamic property of 

decentralized supply chain and they compare different control laws to improve the 

performance of the supply chain. However, most of the existing approaches lack of an 

integrated dynamic procedure that considers the entire supply chain, especially the 

production scheduling, a very important factor for chemical industry.  For example, 

Edgar’s model only considers single-stage multi-product batch reactor such that one kind 

of product can be produced at a time.  Production optimization was proven to be a critical 

bottleneck in chemical industry, which directly influences the performance of the entire 

supply chain. Therefore, a supply chain management model needs to address the 

complexity of production planning and scheduling and thus involve the results from the 

previous chapters.  

        The following assumptions are considered in supply chain modeling.  

i) The supply chain contains several independent nodes as plants, product 

warehouses, distribution centers and retailers. 

ii) Instead of having a centralized system to make decisions for all levels, all the 

decisions are made locally although they are highly related to the overall 

optimum of supply chain.  

iii) Order is received by retailers first, then comes to the nodes which they are 

connected, i.e. orders are placed from node to node inside the chain.  
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iv) Each node makes decisions only when it has been assigned an order for 

processing.    

        We are interested in how the supply chain satisfies orders while minimizing the cost 

or maximizing the profits, how they are acting when unexpected events happen such as 

rush orders or order cancellations and how production planning affects the performance 

of supply chain.  This involves the determination of amount, location and timing to buy 

raw materials, production planning decisions, products transportation and inventory 

policies. There are a number of challenges in addressing this problem.  

(1) It is a highly dynamic problem. Orders occur frequently and there is a great 

degree of freedom in operating conditions of each node.  

(2) The hierarchical structure is more complicated than planning problems since 

decisions at one level may impact those at level above and beneath. For 

example, poor production planning in one plant results in backorders and thus 

impact the ability of the whole supply chain to satisfy orders. On the other hand, 

excessive production causes overstock which increases the inventory cost. 

Therefore, nodes interaction is a crucial part aiming at improving the 

performance of the whole supply chain. 

(3) At each stage, the optimal solution of large-scale problems is required which 

calls for efficient solution methodologies. 

       A hierarchical approach with bottleneck identification can be adopted. The idea is to 

identify the bottlenecks in production, inventory management and transportation before 

making top-down decisions. These bottlenecks can be translated to operating constraints 

and added in the decision model at top level so that the solution brings reasonable results 
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to the lower level. In other words, this approach attempts to provide a better initial point 

for the following recursive decisions. The bottleneck identification decomposes the 

overall problem into smaller ones that can be solved simultaneously. Future work 

includes the development of a recursive mechanism and building of mathematical models 

at all levels.  
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