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ABSTRACT OF THE DISSERTATION 
 

MUTLI-SCALE MODELING AND ANALYSIS OF PHARMACEUTICAL 

MANUFACTURING 

by POOJA RAJENDRA BHALODE  

 

Dissertation Directors: 

Marianthi G. Ierapetritou and Fernando J. Muzzio 

 

With the recent technological advancements in digitization and Industry 4.0 practices, the 

pharmaceutical industry is moving towards integrating these advancements within the drug 

manufacturing. This integration is termed as ‘Pharma 4.0’. A crucial component of this integration 

involves the development of digital twins of the manufacturing lines. Regulatory agencies are 

collaborating with academic and industrial partners to develop digital twins and move towards 

Pharma 4.0, with the aim to develop robust, flexible, and agile manufacturing lines.  However, 

despite these efforts, there are some crucial aspects that need to be addressed to develop accurate 

and integrated digital twins. These include and are not limited to the accuracy of model prediction, 

computational time of process simulation, and handling and pre-treatment of experimental data 

from the manufacturing line. The work presented in this thesis focuses on these aspects, with the 

research goal being to develop computationally efficient multi-scale process models that 

incorporate detailed particulate dynamics for obtaining accurate process prediction along with 

statistical analysis and data pretreatment of experimentally obtained datasets. The research goal is 

aimed towards developing digital twin of the manufacturing lines and the respective objectives are 

outlined in chapter 2.  
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The first aim of this thesis focuses on developing high-fidelity particulate simulation of 

pharmaceutical unit operations to understand detailed particle-level mechanics. This is 

demonstrated for a powder feeder unit, being located at the top of the manufacturing lines and a 

key contributor to the observed variability in powder flow. Chapter 3 presents the simulation of 

powder feeder using discrete element modeling (DEM), along with calibration of DEM parameters.  

The second aim of the thesis is outlined in chapters 4 and 5, where the detailed particulate 

information is used to develop computationally efficient process models for digital twin 

applications, to improve the overall prediction of manufacturing lines. This is demonstrated for a 

continuous powder blender. This aim also includes a detailed review on mixing indices which are 

important to quantify the levels of mixing or blend uniformity within the blender system. 

Lastly, the third aim of the thesis focuses on the physical component of digital twin involving data 

pre-treatment and analysis. This aim includes two aspects, outlined in chapter 6. First aspect 

involves the statistical data handling and denoising strategies for experimental residence time 

distribution (RTD) of manufacturing lines, given the high degree of variability in the datasets, 

which can significantly affect the process understanding and lead to erroneous conclusions. The 

second aspect of this aim focuses on optimizing the efforts required to obtain RTDs experimentally. 

This is investigated by identifying the important features of RTD from a quality assurance 

perspective, followed by directing efforts to capture them accurately. The proposed approach thus 

optimizes the required experimental efforts while ensuring regulation compliant manufacturing of 

drug products.   
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CHAPTER I 

1. Introduction 

1.1. Pharmaceutical industry 

The global pharmaceutical industry accounting for research, development, production, and 

distribution of medications has been growing significantly over the past two decades, with revenues 

reaching to 1.27 trillion U.S. dollars in 2020 [1, 2]. Amongst all the geographies worldwide, North 

America holds a major share of pharmaceutical revenue, approximately equal to 49%[1]. A huge 

fraction of this revenue is allocated for research and development (R&D) of new drugs in the 

pharmaceutical industry [3]. Pharmaceutical R&D includes all steps involved in development of 

new drugs, starting from initial research of disease, selection, and formulation of drug substance 

for the disease, formulation of drug product, pilot plant testing, testing over pre-clinical and post-

clinical trials, manufacturing operations, and distribution of end drug product. During these stages, 

regulatory agencies such as U.S. Food and Drug Administration (FDA), Center for Drug Evaluation 

and Research (CDER), and European Medicines Agency (EMA) play a crucial role in regulating 

and approving the drug product to be distributed in the markets. Currently, the industry allocates 

roughly 200 billion U.S. dollars globally to the R&D sector [3]. These numbers have steadily 

incremented from a lower value of 137 billion U.S. dollars in 2012 [3]. There is a significant 

emphasis of R&D in the pharmaceutical industry given various factors such as the drive to 

manufacture innovative drugs, time-limitation of drug patents, threat of production of generic or 

biosimilar drugs that hamper market competitiveness, eventually affecting revenue of the drug 

product. These factors have led to a focus on R&D of new drug substances and specialty drugs 

along with emphasis on optimal ways to manufacture these drug products at a global scale. CDER 

approved 53 new drugs in 2020, with an average cost of 2.6 billion U.S. dollars required for 

developing a new pharmaceutical drug [4]. This trajectory of overall expenditure on R&D in the 
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pharmaceutical industry is predicted to be on the rise in the coming years and is estimated to amount 

to more than 250 billion U.S. dollars by 2026 [2, 3, 5]. To manage these expenses, pharmaceutical 

companies are coming up with innovative strategies to aid manufacturing and reduce overall costs. 

Some of these strategies include outsourcing large parts of R&D to other companies in partnership 

with the pharma companies focusing on manufacturing aspect of drug development and use of big 

data and machine learning strategies in clinical research to accelerate the discovery and 

identification of suitable drug substances as well as to aid in to develop robust manufacturing lines 

[6]. The introduction section focuses on providing a state-of-the-art literature review of the current 

practices being implemented and researched in the pharmaceutical manufacturing, aimed towards 

identifying the gaps and challenges currently encountered in the industry. 

 

1.2. Pharmaceutical manufacturing  

Pharmaceutical manufacturing is primarily divided into two main processes based on the desired 

end drug commodity – drug substance and drug product. Manufacturing of drug substance involves 

development of the active pharmaceutical ingredient (API) via synthesis, either in liquid or solid 

(granular) form, also known as upstream manufacturing. Following the development of API, the 

drug substance is combined with more pharmacologically inactive materials (known as excipients) 

to develop a drug product, aimed to ensure ease of administration of API for the patient, desired 

pharmacological availability of the drug substance within the patient’s body, and stability of the 

drug product during transportation to the desired geographical region. Manufacturing of drug 

product, also known as downstream manufacturing, is further classified into various types (such as 

oral solid drug products or tablets, injectables, spray, ointment) based on the intended method of 

administration. Among these types, oral solid drug products or tablets comprise most of the drug 

products, roughly around 60%, and it’s manufacturing commonly involves equipment capable of 

handling granular or powder flow [7]. Oral solid drug products have been traditionally developed 
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using the batch manufacturing route in the pharmaceutical industry. Batch manufacturing involves 

flow of material in disconnected batches where large number of laborers are required to move 

material from one unit to another in batches and ensure appropriate and timely discharge and 

cleaning of each unit operation used in the process. Due to a high degree of discontinuity in the 

manufacturing process, batch manufacturing often does not result in an efficient process for drug 

manufacturing given the number of disconnected processing steps, required interference of human 

efforts, difficulty in process automation and, need for scale up for satisfying the increasing demand 

of drug products [8-10]. Alternative to batch manufacturing, continuous mode of manufacturing 

involves manufacturing of drug products using an integrated series of unit operations, where the 

input material is continuously fed within the process and transferred from the upstream unit 

operations to downstream with continuous production of drug products [11]. Given the inherent 

process integrity within continuous manufacturing (CM), it has the potential to integrate process 

robustness within the manufacturing itself [8-10, 12-19]. CM technology has been applied for 

production of drug substance as well as drug products and integrated lines are labelled as end-to-

end (E2E) manufacturing [20-24].   

 

1.3. Progress of pharmaceutical manufacturing in the past decades 

Over the past two decades, the pharmaceutical industry has been on the path of modernizing drug 

product manufacturing to develop efficient, agile, and flexible routes for producing high quality 

drugs [8]. The revolutionary initiative can be traced back to the pivotal concept of Quality-by-

Design (QbD) initially developed by Dr. Juran in 1992 [25]. Janet Woodcock adopted the concept 

of QbD to the pharmaceutical industry, defining a high-quality product to be free of contaminants 

and manufactured with minimal regulatory oversight while delivering the desired therapeutic effect 

[26]. It has also been defined as the vision for U. S. FDA’s ‘Pharmaceutical Quality for 21st 

Century’ initiative [27]. The main motivation behind adopting QbD is to ensure that product quality 

can be designed within the manufacturing process itself and ensured without intensive product 
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testing, thus encouraging systematic scientific and risk-based approaches towards process design 

and manufacturing of pharmaceutical drug products. The concept of QbD further drove the shift 

from a batch mode of manufacturing to continuous, as it allowed QbD to be integrated within the 

process itself [8, 11, 28]. To motivate the adoption of QbD, FDA issued guidelines [29] for the 

pharmaceutical industry to adopt a science and risk-based approach for drug product 

manufacturing, which led to the foundation of adopting QbD within the pharmaceutical sector. ICH 

devised multiple standards, such as ICH Q8 (R2)[30, 31], ICH Q9[32], ICH Q10[33], ICH Q11[34], 

ICH IWG[35], ICH Q13[36], aimed towards providing high-level recommendations for QbD for 

CM within the pharmaceutical industry, known as pharmaceutical QbD. CM thus has the potential 

to integrate process knowledge and robustness within the manufacturing lines. Wahling (2021) 

provides an insightful review on continuous manufacturing of oral solid dosage drug products, 

outlining the technical and regulatory advantages, tax incentives, regulatory aspects, entire 

manufacturing end-to-end processes, current trends and industrial collaborations with academia 

and government agencies to progress the adoption of CM technologies in the pharmaceutical 

industry [12]. At the time of writing of this thesis, there exists 7 approved drug products 

manufactured using a CM route, approved by regulatory agencies such as EMA, FDA and PMDA 

[12, 13, 28]. A recent market research report indicated the market size of CM to grow at a potential 

rate of 8.8%, reaching 3.8 billion U.S. dollars in 2024 from the value of 2.3 billion U.S. dollars in 

2018 [5]. The reason behind such a high increment rate is the advantage that CM provides over the 

batch manufacturing route. These advantages include faster transition from development phase to 

commercial production phase, product benefits such as improved product quality, longer shelf life, 

enhanced product reliability, cost benefits such as lower production costs, low labor cost, smaller 

footprint, improved utilization of resources. It further provides avenues for patient benefits such as 

suitable for personalized medicines and alternative manufacturing routes, and societal benefits such 

as reduced risk of exposure to API, reduced waste and environmental impact, higher safety of 

operators, and process intensification [7, 8, 10, 12, 13, 20, 37-42].  
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Despite all these advantages, it has been challenging for the pharmaceutical industry to adopt CM 

over batch manufacturing. One of the key challenges is that the existing equipment and facilities 

are originally oriented towards batch mode of manufacturing and thus require additional capital 

investment for adoption of CM [12, 42]. Further, there exists a possibility that the existing 

equipment is depreciated so the incentive to invest the additional capital reduces [42]. Another 

challenge involves the lack of expertise and experience of plant operators with limited experience 

of drug product submissions using CM [12]. Industries are apprehensive about switching from 

batch to continuous mode of manufacturing given the differences in the drug approval requirements 

and approvals required for switch from batch to continuous, dearth of globally recognized CM 

approval process, need for expertise in on-line or in-line process monitoring using PAT, 

verification, control, and QbD quality assurance [37]. To overcome these challenges and allow a 

smooth transition from batch to continuous, regulatory agencies have outlined detailed guidelines 

over the years and regulatory incentives such as tax incentive, expedited approvals for products 

developed using continuous as compared to batch [8]. They have also encouraged active 

collaborations between industry, academia, and regulatory organizations to aid the industry in 

moving towards adopting CM practices that ensure consistency of product quality with reduced 

manufacturing costs [12, 43].  

 

1.4. Manufacturing routes in CM 

Continuous manufacturing of oral solid dosage drug products involves different routes of 

manufacturing based on the material and powder flow properties of the ingredient components. 

These routes include direct compaction, dry granulation, wet granulation, spray drying, and 

extrusion [7, 10, 12, 13, 41, 44]. Direct compaction involves direct compressing of ingredient 

powder blend into a tablet and include unit operations ranging from powder feeders to ensure 

consistent powder flow of ingredient powders, powder blender to ensure uniform mixing of 

powders and obtain desired blend uniformity, and tablet press with feed frame to transition the 
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powder blend into tableting cavities, to be compacted to develop tablets. Direct compaction is used 

for ingredient powders in the tablet formulation with good flowability. For formulations with 

ingredient powders having poor flowability such as cohesive powders and powders with non-

uniform particle size distribution (PSD), granulation routes including dry and wet granulation, are 

employed[45]. In dry granulation, powder feeders and blenders are used to obtain a homogenous 

powder blend (similar to direct compaction) [46, 47]. Following this stage, the powder blend is 

supplied as an input to a roller compactor where powder is compacted into ribbons and these 

ribbons are uniformly broken down into granules of equal sizes using a milling unit at the exit. 

These granules are then compressed into tablets using a tablet press. Alternatively, wet granulation 

route uses a granulating liquid to obtain more uniform PSD and improve powder flowability [48-

52]. This route includes powder feeders and blenders to obtain a homogeneous powder blend, 

which is provided as an input to the granulator. Here, a wetting liquid (typically water and a high-

density polymer) is added to the system to improve the PSD via agglomeration[52, 53]. The wetting 

liquid is subsequently removed in the next unit operation – dryer and the PSD is reduced to the 

desired size range using a screen mill. The uniform milled powder blend is finally then compressed 

into tablets in the tablet press. Spray drying route is used for situations where the solubility of the 

formulation needs to be improved. Thus, this route involves the powder blend (after blender) being 

sent to homogenizing unit and spray dried using an air-drying system [54, 55]. The homogenized 

dried powder blend is then sent to a milling unit to be milled followed by a tablet press to compress 

and make tablets. Last route involves extrusion of powder blend using hot melt extrusion units such 

as single screw extruder and twin-screw extruder [56-58]. This route includes powder feeders being 

fed to an extruder unit wherein, the formulation ingredients are mixed with lubricant, melted, 

broken down into pellets to be transferred to a tablet press unit to formulate tablets or a capsule 

filling machine to develop capsules. All these routes for continuous manufacturing are outlined in 

Figure 1.1. Out of these different routes of manufacturing, direct compaction is the simplest (with 

minimum number of unit operations) and most energy efficient route of manufacturing as it does 
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not include any heating or cooling components, and wet granulation and spray drying tends to be 

the most energy intensive route with use of drying components [59]. Thus, direct compaction is 

commonly favored for situations where the ingredient powders inherently have good flowability. 

The manufacturing routes are also chosen in combination with the stage focusing on developing 

the formulation of the drug product where desired mechanical flow, pharmacokinetic, 

pharmacodynamic properties and the biological availability of the drug product inside the human 

body can be modified [44].  
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Figure 1.1: Different routes of continuous pharmaceutical manufacturing - direct compaction, wet 

granulation, spray drying, extrusion and roller compaction or dry granulation (Modified from 

Escotet-Espinoza et al.[44]) 

 

1.5. Current trends in pharmaceutical manufacturing 

Given the increasing level of digitization, digital advancements are currently being explored in the 

manufacturing sector to improve innovation, overall profitability, and productivity. Such 

advancements have given rise to applications of artificial intelligence, Internet of Things, and 

Industry 4.0 with technical and financial backings from academic and government organizations to 
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bring about the paradigm shift of digitization in the manufacturing sector [60-64]. This 

transformation is also being investigated for the pharmaceutical manufacturing industry with 

integration of various smart technologies such as cloud computing (CC), cyber-physical systems 

(CPS), and big data analytics with machine learning applications (BDA) within the drug 

manufacturing lines to transform the current routes of manufacturing towards smart manufacturing 

[65-67]. With these technologies, important manufacturing activities such as remote sensing, real-

time testing, process monitoring, and process visualization would become more accessible and 

easier to integrate within the current manufacturing platforms, aimed towards developing digital 

twins of the manufacturing lines to enable robust manufacturing for the pharmaceutical industry 

[65, 68-70]. Digital twins, first coined by Michael Grieves in 2002 [71], is essentially a digital 

construct of a physical system that operates on its own and is fully integrated with the physical 

system to ensure real-time representation of the physical system in the digital construct. Chen et al 

(2021) provides a detailed review of digital twins for pharmaceutical and biopharmaceutical 

manufacturing wherein, the authors show a schematic representation of the digital twin for these 

manufacturing lines [65]. The digital twin consists of two components - a virtual or digital 

component and a physical component (manufacturing plant) that are seamlessly interconnected 

with each other such that real-time system behavior observed in the physical component is captured 

in the virtual component and process predictions with control strategies are devised in the virtual 

component in real-time, to be implemented in the physical component. Digital twins thus utilize 

smart technologies such as real-time process data acquisition using advanced process monitoring 

strategies, integration of various sources of process data, cloud storage and computing, quick 

predictions of system behavior using predictive process flowsheets, identification of real-time 

process control in situations of process disturbances, instantaneous transfer of information from the 

virtual component to the physical plant, and implementation of control strategies to ensure robust 

manufacturing practices. To advance the adoption of these technologies and enable industries to 

manufacture regulation compliant drug products, regulatory agencies such as U.S. FDA and ICH 
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are collaborating with industries and academic institutions to realize their vision of the 

pharmaceutical industry for the 21st century. This move of process digitization towards smart 

manufacturing is coined as ‘Pharma 4.0’ [61, 62, 72, 73].  

 

To develop a true digital twin of the pharmaceutical manufacturing lines with a seamless transfer 

of information between the two components, there are critical challenges that need to be addressed. 

These are outlined in detail by Chen et. al (2021) and include the heterogeneity of sources from 

which process knowledge is obtained from the physical plant, development of predictive models 

that can be incorporated within the real-time, and accurate prediction framework of virtual 

component, and maintenance issues such as cyber-security [61]. Heterogeneity of sources 

generating data in the physical plant arises from different process analytical tools and the inbuilt 

incompatibility of the software within these tools. Several manufacturers are working towards 

ensuring this by utilizing the commonly used OPC interface. Recent efforts from academic 

institutions towards addressing this challenge involve the development of an inter-connected I4.0 

framework for data collection, transfer, and storage for enabling seamless connection with the 

virtual component [66]. Another significant challenge involves the need for development of 

predictive models that allow quick and accurate predictions in the virtual component for system 

analyses such as risk assessment, process control, diversion of material, system health monitoring, 

feasibility analysis, and optimization [65]. The predictive models of unit operations in the 

manufacturing lines need to be developed balancing the level of accuracy retained in the models 

and the computational time required for process simulation. The more accurate the predictive 

models are, longer is the associated computational time, making them incompatible with flowsheet 

models.  On the other hand, the predictive models that provide quick simulations lack the physical 

insight into the process dynamics making it hard to adapt to a new unforeseen situation in the plant 

operation. Thus, it is important to develop integrated process models that combine the mechanistic 

knowledge and enable process simulations within reasonable computational times such that they 
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are better equipped with handling variabilities and process fluctuations. The capability of ensuring 

reasonable computational time is especially crucial as the simulation time required for overall 

flowsheet increases incrementally with each unit operation present in the manufacturing line and 

can severely impact the real-time capabilities of the digital twin framework.  

 

1.6. Background of process modeling in pharmaceutical manufacturing 

Process models are essentially centric to the virtual component of the digital twin framework and 

useful to simulate and replicate the system dynamics as observed in the real physical system [65]. 

There exist various categories of process models based on the extent of mechanistic knowledge and 

data-driven learnings incorporated within the process model [7, 44, 74-76]. Mechanistic knowledge 

corresponds to the process information derived from first-principles or fundamental equations of 

motion. Data-driven models, on the other hand, correspond to empirical or surrogate models 

developed using machine learning techniques using the available datasets, to develop correlations 

between the input parameters with the desired output parameter. Such models do not incorporate 

or provide any mechanistic insight and are purely based on the available datasets. Between these 

two extremes, various process models have also been developed that lie within this spectrum and 

are outlined below. Readers are encouraged to explore recent review articles for in-depth 

description and application of these models in the pharmaceutical industry [41, 76, 77]. 

 

1.6.1. High-fidelity mechanistic models 

High-fidelity mechanistic models are models based on first-principle or fundamental equations. 

These models thus encompass detailed process physics observed in the system, using mechanistic 

equations to describe the movement of granular flow. Some examples of these models include 

discrete element modeling (DEM) and computational fluid dynamics (CFD) based on the discrete 

and continuum models. DEM has been widely used for modeling of pharmaceutical powder flow 

within unit operations to simulate free-flowing and cohesive powders [78, 79]. The workflow of 
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DEM is based on Newton’s laws of motion. Different contact models are used to simulate particle 

interactions in the system that further dictate the particle forces acting on the particles and motion 

of particles. Equations are written for each particle interaction in the system for each time step and 

thus such models can get quite expensive for simulation of realistic unit operations [80-82]. 

Alternatively, researchers have also explored mesh-based computational fluid dynamics (CFD) 

methods such as finite element method (FEM) and finite volume method (FVM) for simulation of 

pharmaceutical unit operations [83-93]. However, these methods can become challenging for 

simulation of free-surface fluids such as partially filled systems. Authors investigated sophisticated 

mesh refinements to address this challenge and simulate free-surface fluids [94]. Recently, 

smoothened particle hydrodynamics (SPH) has been shown to model particulate systems where, 

SPH fluid elements are simulated as Lagrangian elements [56, 95]. As SPH is mesh-free, partially 

filled systems can be simulated in similar computational times as filled systems, which otherwise 

become challenging using CFD and FEM approaches. Though these high-fidelity models can 

provide detailed mechanistic understanding of particle dynamics from a particle scale, they lead to 

huge computational times in the order of few hours making them difficult to be integrated within 

process flowsheet models.  

 

1.6.2. Multi-dimensional mechanistic models (PBM) 

Multi-dimensional mechanistic models that incorporate simulation of multiple dimensions in 

combination with the particulate flow. Population balance model (PBM) is an example of such 

models which combine external properties (particle locations, collision) with the internal properties 

of particles (particle size, attrition, moisture, porosity). PBM models have been widely used for 

particulate simulation of unit operations involving change of particle sizes such as granulators, 

dryers, and milling units [48, 49, 53, 90, 93, 96-99]. These models being computationally cheaper 

than DEM result in a smaller simulation time than DEM. The reduction in simulation time is 

achieved by grouping discrete systems and related mechanistic equations into groups and 
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considering their averaged values. Thus, discretized PBM models are developed with model 

parameters regressed using experimental datasets [100].  

 

1.6.3. Phenomenological or semi-empirical models 

Phenomenological or semi-empirical models are intermediate between mechanistic and data-driven 

models [44]. Developed based on the assumptions in the first-principle models, these models 

(commonly known as engineering models) are computationally quick to simulate for particulate 

systems. An example of such models includes low-dimensional PBM model, involving mass and 

energy balances to provide system behavior combined with empirical models to correlate process 

variables and process conditions to the desired process outputs. Residence time distribution (RTD) 

is an example of low-dimensional PBM models. RTD basically quantifies the probability 

distribution of time that a material spends or resides in the system under study [101]. RTD has been 

extensively used for understanding powder mixing and developing predictive models of unit 

operations and process flowsheets along with flowsheet applications such as quality assurance, 

material diversion, system health monitoring, and process control [102].  

 

1.6.4. Empirical or data-driven surrogate models 

Empirical models commonly known as data-driven or surrogate models are models developed 

purely to capture the correlation between process inputs including processing parameters and 

material properties to the process outputs. These models being purely statistical models, do not 

capture the underlying physics or mechanistic knowledge in the models and thus are low 

dimensional in nature and provide quick simulation times. Some examples of the methods used to 

develop empirical models include multivariate regression, principal component analysis, partial 

least squares, response surface, black-box modeling, artificial neural network, gaussian process 

regression, support vector machines, and kriging [103]. As these models are purely based on the 
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available data of inputs and outputs, these models are recommended to be strictly used within the 

defined domain and not for extrapolation outside of the explored input space. Such models have 

been extensively used to develop process models for unit operations with quick computation times 

to predict output parameters for a defined set of input variables. 

 

1.6.5. Hybrid models  

Hybrid modeling strategy essentially combines the empirical or data-driven modeling with the 

mechanistic models derived from first principles. Thus, hybrid modeling thus integrates the process 

knowledge based on the first principles as well as the available datasets. Chen et al. (2020) provides 

a detailed review of hybrid modeling in the pharmaceutical industry outlining the different 

structures for constructing a hybrid model [104]. The different structures include series, parallel 

and combined structure. Hybrid modeling has been very widely used in the pharmaceutical 

manufacturing sector as well as other sectors such as energy and chemicals, to utilize data for 

unknown process dynamics integrated with the known mechanistic knowledge [81, 84, 105-110]. 

Hybrid models thus utilize available process data to ensure sufficient degree of retention of process 

information in the predictive model along with reasonable simulation times and is further used for 

identification of plant-process mismatch and correction in real-time [104].  

 

1.6.6. Flowsheet models  

A manufacturing process has multiple units or equipment connected to each other in sequence with 

the input material being added at the inlet of the first unit and products obtained at the outlet of the 

last unit in sequence. Similar flow of unit operations is used for manufacturing of oral solid drug 

products as outlined above in Figure 1, wherein, each unit operation is connected to the next in 

sequence and there is a flow of material between the unit operations. Continuous manufacturing 

involves continuous flow of material whereas, batch manufacturing involves flow of material in 
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batches [8]. To develop an integrated process model for replicating the material flow behavior, 

process models for individual unit operations are also integrated together such that the model inputs 

are defined based on the outputs of the previous unit operation and the model outputs then define 

the inputs of the subsequent unit operation model. This connected network of unit operations 

resembles a flow of material as observed in the actual manufacturing process and is known as the 

flowsheet model. Flowsheet models are mathematical representations of series of unit operations 

connected in sequence that resemble the actual manufacturing process and have been widely 

applied for process analysis such as scenario, sensitivity, and feasibility analysis as well as process 

optimization and risk assessment [75, 111-119].   

 

Such models can be developed using standard modeling languages such as MATLAB or Python 

and commonly used flowsheet software such as gPROMS, Aspen Plus and SimaPro [23, 75, 117, 

119-123]. Since flowsheet models include various unit operation models integrated together, it is 

important to consider the overall computational time required by each unit operation model. Thus, 

it can become challenging to incorporate high-fidelity models that are computationally intensive 

within flowsheet models leading to a simulation time in the order of days. To ensure reasonable 

simulation times of the process flowsheets, commonly low dimensional models are recommended 

for process flowsheets such as empirical or surrogate models and phenomenological or semi-

empirical models. Research efforts have focused on integration of multi-dimensional models such 

as PBM within process flowsheets to incorporate a higher degree of process knowledge with a 

simulation time of few hours [124]. However, currently flowsheet models are incapable of 

incorporating high-fidelity models that provide detailed mechanistic insight while ensuring 

reasonable simulation times. Thus, there is a need to balance the two aspects – incorporation of 

mechanistic knowledge within the flowsheet models to ensure accurate predictions and reasonable 

simulation times for its application for system analyses. Ensuring reasonable simulation time is 

quite important especially in digital twin applications where process predictions need to be made 
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in real-time in the virtual component along with recommendations for process correction to be 

supplied to the physical component for corrective action. This transfer must be quick enough in the 

digital twin for ensuring real-time process monitoring and control to avoid production of non-

regulation compliant drug product during manufacturing. 

 

1.7. Current challenges in the pharmaceutical manufacturing  

With the increasing encouragement from regulatory agencies and focus on development of digital 

twin applications for smart manufacturing of pharmaceutical drug products in collaboration with 

academic institutions, it is becoming important to address some of the inherent challenges outlined 

below.  

 

1.7.1. Capturing mechanistic insight in the process models to improve process 

predictability  

The unit operation models that are commonly developed for process flowsheets and flowsheet 

applications including system analyses and optimization utilize low-dimensional models to ensure 

quick simulation times. This is especially important for flowsheet applications where various unit 

operation models are integrated together sequentially which further increases the overall simulation 

time of the process flowsheet. However, the models severely lack information about the actual 

process physics observed within individual unit operations. As the details of powder dynamics is 

missing, the models essentially are limited to the variable space explored (which is normally devoid 

of process disturbances or uncertainties in manufacturing) and cannot confidently be extrapolated 

for uncertain situations. Furthermore, due to lack of physical insight into the operation of individual 

unit operations, the unforeseen aspects such as presence of dead zones developed dynamically 

within the unit operations can potentially hamper the level of accuracy of the developed predictions. 

These variabilities are further amplified with various powder properties of pharmaceutical powders 
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based on the external conditions such as humidity, pressure, and temperature. Such predictions 

when used for the correction of plant operations (as in the case of smart manufacturing for digital 

twin applications) can lead to erroneous conclusions and corrective actions, which can potentially 

be detrimental for production of regulation compliant drug products in the manufacturing lines. 

Thus, it is important to investigate and incorporate the details of particle-scale dynamics using high-

fidelity simulations, such as DEM and CFD, within process models aimed towards developing 

accurate predictive models for unit operations. An additional challenge while developing such 

simulations for understanding powder flow and dynamics for various unit operations is to ensure 

that an accurate representation of experimentally used material is developed within the simulation 

environment such that the bulk flow of material is captured correctly. This challenge, commonly 

known as calibration, has been attempted by several authors using bulk calibration tests aimed to 

correctly simulate the bulk flow of material as observed experimentally [82, 125-142]. However, 

the calibration approaches presented in literature cannot address the problem of solution 

multiplicity where multiple solutions are present [139-141, 143, 144]. Thus, it is important to 

identify a unique solution for the calibration, followed by developed calibrated high-fidelity 

simulations to accurately understand powder flow dynamics observed in the unit operations. This 

would eventually help develop mechanistically informed process models for accurate process 

prediction. 

 

1.7.2. Developing computationally efficient process models  

Despite use of high-fidelity models such as DEM and CFD to understand particle scale dynamics 

during simulation of unit operations, these models cannot be directly integrated within the 

flowsheet model due to the huge computational expense associated with such simulations ranging 

in the order of hours to days. Such models when integrated within the flowsheet models would 

substantially increase the flowsheet simulation time, making it incompatible for flowsheet and 

digital twin applications. Thus, there is a need to transform the high-fidelity models into 
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computationally efficient process models while retaining the intended degree of process 

information. These models need to be developed such that they retain the systemic (pertaining to 

the overall system) and local (pertaining to the particle scale) information systematically in a 

computationally efficient framework [145]. Systemic or global information commonly corresponds 

to the global information relating the inputs to the outputs and includes overall mass and energy 

balances, component mass balances, residence time distribution (RTD) for tracing. A common 

example of systemic model is representing unit operation by a network of ideal flow systems 

(continuous stirred tanks and plug flow systems) such that the bulk flow profile of the unit operation 

is replicated by the network. As systemic models mainly focus on capturing the bulk flow profile 

of the unit operation, local particle scale information such as velocity and concentration profiles, 

and phase fractions are not captured. Local models on the other hand, thus focus on capturing the 

detailed local information about the process from mechanistic simulations such as CFD and DEM. 

Normally, systemic information is used to obtain the degree of axial mixing in the system whereas, 

the local particle information is used to quantify the degree of radial mixing, especially for unit 

operations such as powder blenders. There exist various mixing indices that aim to quantify the 

degree of mixedness of particles in high-fidelity simulations [146, 147]. However, it can become 

confusing to identify the most appropriate mixing index based on the intended application. Thus, 

there is a need to compare the different mixing indices and identify the most appropriate index for 

local models to be used for developing process models of unit operations. Furthermore, there is a 

need for systematic integration of the systemic and local models, to develop computationally 

efficient process models. Such models would thus be applicable for quick process simulations with 

accurate predictions for integration within a digital twin framework. 

 

1.7.3. Statistical analyses for systemic information in manufacturing lines  

The unit operation models are integrated together to develop flowsheet models, which act as virtual 

component of the digital twin to replicate the process behavior of the entire manufacturing line. 
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The virtual component can further be used for applications such as system analysis, techno-

economic analysis, and optimization [75, 112, 117, 122, 148-150]. However, to develop digital 

twin, it is important to ensure the systemic information of process flowsheet match that of the 

manufacturing lines obtained experimentally. This is especially important for experimental 

component of the digital twin, as the experiments can get affected by unseen external noise and 

variability and can appear differently from the virtual component despite accurate characterization. 

External noise plays a significant role in the experimental measurements, coming from various 

sources such as environment, humidity, temperature effects, human disturbances, process 

disturbances, and external factors leading to disturbances during the experimental operation. These 

are specifically important and can severely impact the systemic knowledge of the unit operation 

under investigation. One such example involves experiments to obtain the residence time 

distribution (RTD) of the system under study. Along with the experimental disturbances, RTD 

being measured using process analytical technologies (PAT) further gets impacted based on the 

accuracy of the developed PAT models. As the PAT measurements are relative to each other, a 

variability or noise in the system can impact the overall RTD profile and subsequently affect the 

systemic information of the manufacturing line under study [151, 152]. Literature on RTD 

applications in the pharmaceutical industry currently lacks well-defined guidelines on handling 

such variabilities or noise captured in RTD profiles, obtained experimentally. Furthermore, 

obtaining RTD experimentally can become quite intensive in terms of the time and resources. This 

is especially pertinent for capturing the tail and baseline regions of RTD accurately, as there exists 

a high degree of variability or noise. Combined with the inherent noise present in the system, it 

becomes challenging and time intensive to obtain true RTDs of the system. Thus, there is a need to 

investigate if the important aspects of RTD are well captured, combined with the noise handling 

techniques, and subsequently identify ways to optimize the time and efforts required in obtaining 

RTD experimentally. 
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The above-mentioned challenges in the pharmaceutical manufacturing have motivated the research 

directions of the thesis and the research objective with specific aims are outlined in Chapter 2.  
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CHAPTER II 

 

2. Research Objectives 

2.1. Overall research goal  

The research presented in this thesis is motivated by the current directions for pharmaceutical 

manufacturing and the respective challenges as discussed in section 1.7. Thus, the overall research 

goal is ‘to develop multi-scale process models that incorporate detailed mechanistic insight and 

are computationally efficient for developing process flowsheets along with statistical analysis and 

data pre-treatment of experimentally obtained process knowledge, aimed towards developing a 

digital twin to incorporate smart manufacturing technologies.’ This goal is accomplished based on 

a series of research aims outlined below. 

 

2.2. Specific research aims  

2.2.1. Aim 1: Developing high-fidelity models for obtaining particle-level knowledge for 

pharmaceutical unit operations 

Aim 1 focuses on developing high-fidelity models to understand particle scale interactions and 

particle dynamics observed in pharmaceutical unit operations. 

To improve the process predictability of unit operation models for flowsheet applications, it is 

important to incorporate detailed understanding of the particulate mechanics observed in the system 

under study. However, the available process models for flowsheet applications being mainly 

limited to empirical or semi-empirical models, fail to capture the desired level of detail concerning 

particle mechanics [75]. To address this concern, high-fidelity simulations need to be developed 

for pharmaceutical unit operations. Such simulations thus are useful to develop accurate predictive 

models and are especially useful for understanding process behavior during uncommon processing 
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conditions such as process or external disturbances. An important challenge to develop detailed 

high-fidelity simulations such as DEM, involves ensuring the powder properties are well 

represented within the simulation environment to capture the true powder behavior as observed 

experimentally. Powder calibration though has been investigated widely in the field, identifying a 

unique solution to represent the powder system has been a challenge [129, 130]. This is important 

as the unique solution enables capturing similar powder behavior in situation of process 

disturbances.  

This research aim focuses on developing a unique solution for powder calibration, followed by 

investigation of powder mechanics for a pharmaceutical unit operation - powder feeder. Feeders 

are chosen as they are mainly the source of process fluctuations in powder flow and thus obtaining 

mechanistic understanding of powder flowability can aid in controlling the variabilities in powder 

flowrate [153]. This research aim thus attends to powder flow from a particle scale perspective and 

is outlined in Chapter 3. 

 

2.2.2. Aim 2: Process modeling of unit operations using DEM  

Aim 2 focuses on developing computationally efficient process models using the high-fidelity 

models developed in Aim 1 to be incorporated within process flowsheets for digital twin 

applications.  

Though high-fidelity simulations can provide detailed particulate insight into the powder 

mechanics, they lead to huge computational costs in the range of hours to days. This limits the 

application of such models in process flowsheets, where quick process assessments are desired to 

devise corrective actions or control strategies for the overall process operation. Thus, a synergistic 

approach is required which ensures quick process simulation with retention of sufficient degree of 

mechanistic knowledge about the particulate system. Thus, this aim focuses on developing 

computationally efficient process models using high-fidelity simulations such as DEM. To develop 

such models for integration within process flowsheet, it is crucial for them to incorporate systemic 
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or global information about the process as well as local (or particle scale) information about the 

powder mechanics. Thus, this aim focuses on developing of compartment models integrating 

systemic and local level knowledge. Such modeling approach is demonstrated for development of 

process model for continuous powder blender which is widely used in all manufacturing routes for 

CM production. The first part of this aim deals with developing mixing indices to characterize the 

systemic information – blend uniformity based on local information of particle positions in the 

blender. A detailed literature review of mixing indices is performed and guidelines for selection of 

appropriate index is outlined based on end application. Following this, the compartment model is 

constructed for continuous powder blender which ensure reasonable computational cost along with 

retention of important process knowledge. Thus, this aim focuses on model development at a unit 

operation level and is outlined in Chapters 4 and 5. 

 

2.2.3. Aim 3: Data pre-treatment and analysis of manufacturing lines   

Aim 3 focuses on experimental data pre-treatment and analysis of manufacturing lines. This aim is 

divided into two sub-aims outlined below. First sub-aim focuses on data handling and analysis of 

systemic process knowledge obtained experimentally from the manufacturing lines. Systemic RTD 

obtained experimentally commonly encounters noise fluctuations and variabilities in the RTD 

profile given environmental, human, and external factors. As it is almost impossible to eliminate 

all these factors to avoid noise in the captured RTD profiles, there is a need to devise appropriate 

noise characterization and noise handling strategies to address the additional noise added in the 

system. This is important as noise present in the RTD profiles used for RTD-based applications of 

manufacturing line can impact the process characterization and lead to erroneous conclusions of 

the overall system dynamics. Such datasets when used in digital twin applications can further lead 

to ill-defined process control and corrective measures for the physical plant, gravely affecting the 

production of drug products. Thus, the first part of the aim deals with devising appropriate noise 

handling and denoising strategies for RTD datasets whereas, the second part addresses the aspect 
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of optimizing experimental efforts to obtain the RTD. This is performed by understanding the 

impact of different aspects of RTD (by truncation of RTD) on end RTD-based application – quality 

assurance. Based on this understanding, the efforts to characterize the RTD experimentally can be 

directed to focus on capturing the important features of RTD more prominently, thus optimizing 

the overall experimental efforts. This would also reduce the effects of environmental and external 

noise being captured in the RTDs and prevent erroneous conclusions in RTD-based applications 

such as quality assurance. These sub-aims are outlined in Chapter 6.  
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CHAPTER III 

 

3. Aim 1: Developing high-fidelity DEM simulation for obtaining particle-

level knowledge with calibration for pharmaceutical unit operations 

 

 

3.1. Introduction  

Due to the increasing attention towards regulation compliant continuous production in the 

pharmaceutical industry [42], there has been a surge of research efforts focusing on efficient 

modeling of continuous pharmaceutical unit operations [7, 16, 17]. In order to provide accurate 

predictions for implementation in accurate ‘digital-twin’ framework, the models need to be 

constructed based on detailed process understanding and knowledge of process operation [10, 46, 

75, 116, 117, 120, 154-156] including the effects of powder material properties on process 

operation. The inclusion of material properties is of extreme importance as it has been observed 

that pharmaceutical powders can have erratic fluctuations in powder flowability like rat-holing and 

dynamic powder behavior like sticking to the walls of the unit. These fluctuations can disrupt the 

downstream tablet content uniformity, if not considered and can seriously undermine the predictive 

ability of the developed process models.  

Acknowledgement of publication status:  

Entire sections of this chapter have been published in a scientific journal written by the author 

of this thesis with the title: Discrete element modeling for continuous powder feeding 

operation: Calibration and system analysis. This article was accepted in the International 

Journal of Pharmaceutics on 9th May 2020.  
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Process models that have been developed so far, do not incorporate a complete material property 

dependence accompanied with mechanistic understanding of observed powder behavior. In 

absence of this understanding, the developed process models might fail to predict accurate powder 

behavior for a new powder material. To address the above-mentioned issue, this article focuses on 

the detailed process modeling of feeder units to gain insight into the effects of material properties 

on process operation.  

 

Continuous pharmaceutical manufacturing lines consist of feeder units placed at the top, to obtain 

a consistent powder flow for the downstream unit operations. To ensure this with minimum 

fluctuations, a loss-in-weight feeding operation is used [157]. The loss-in-weight feeder consist of 

a hopper and a twin-screw section with a bridge-breaking impellor near the entrance of screws 

[158, 159]. Weighing scales kept below the feeder unit allows for continuous monitoring of the rate 

of change of feeder weight. As the powder leaves the unit, the difference in feeder weight amounts 

to the output flowrate. This measurement is sent to a PID controller to adjust the screw speed of 

the feeder unit. Before the start of the operation, the feeder unit is filled with powder. During the 

operation, screw speed is controlled using the PID controller, and powder is dispensed from the 

feeder outlet. If the powder bed height reduces beyond a certain set level, a refill system is used to 

supply more powder into the feeder system. Based on the refill and screw speed of the feeder unit, 

there are two operating modes – volumetric and gravimetric which are used to control powder flow. 

Volumetric mode works as an open loop, where screw speed is set to a certain value and the 

flowrate is not controlled by adjusting the screw speed. Gravimetric mode is a closed loop operation 

wherein the screw speed is adjusted to control the flowrate at the feeder outlet. The feeder flowrate 

(𝐹(𝑡)) is evaluated as a function of time (𝑡) from screw speed (𝑤(𝑡)) and feed factor (𝐹𝐹(𝑡)) as 

shown in Eq. (1).  
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 𝐹(𝑡)  =  𝑤(𝑡)  ∗  𝐹𝐹(𝑡) (1) 

 

Feed factor corresponds to the amount of powder present in one screw pitch which gets dispensed 

by the feeder in one screw revolution [157, 159]. Thus, it depends on the compressibility of the 

powders at the screw section since the larger the compressibility, the more powder gets compressed 

within the screws and the higher is the observed feed factor at the outlet. Since powder 

compressibility affects the relative bulk density of powder, feed factor also relates to the relative 

bulk density of the powder under compression in the screw section. Based on this relationship, 

Escotet-Espinoza et al. developed and verified the feed factor model based on Heckel’s equation 

experimentally, as shown in Eq. (2) [44, 75, 160]. 

 

 𝐹𝐹(𝑡)  =  𝐹𝐹𝑚𝑎𝑥(𝑡)  − (𝐹𝐹𝑚𝑎𝑥(𝑡) −  𝐹𝐹𝑚𝑖𝑛(𝑡)) ∗  𝑒𝑥𝑝 (−𝛽𝑊(𝑡)) (2) 

 

where, the physical meaning associated with the feed factor model parameters (𝐹𝐹𝑚𝑎𝑥, 𝐹𝐹𝑚𝑖𝑛  and 

𝛽) can be derived from Heckel’s equation. 𝐹𝐹𝑚𝑎𝑥 corresponds to the maximum relative bulk 

density within the screws, attained with maximum compression when the feeder hopper is full of 

powder, whereas 𝐹𝐹𝑚𝑖𝑛 corresponds to the minimum relative bulk density or powder 

compressibility within the screws, when the feeder is almost empty i.e., feeder weight approaches 

zero. Lowest value of feed factor is not physically observed during feeder experiments since, the 

refill system is set in place to add more powder to the feeder unit when the fill height of powder 

goes below a certain set level. Also, during experiments when the feeder unit is almost empty, there 

is still some amount of powder present in the hopper and screw section which does not exit the unit 

even when the flowrate is zero. Thus, feeder weight needs to be extrapolated to zero, to obtain the 

feed factor parameter – 𝐹𝐹𝑚𝑖𝑛. 𝛽 on the other hand, is related to the relative difference 

between 𝐹𝐹𝑚𝑎𝑥 and 𝐹𝐹𝑚𝑖𝑛. In other words, 𝐹𝐹𝑚𝑎𝑥  and 𝐹𝐹𝑚𝑖𝑛 can be interpreted as maximum and 
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minimum quantity of powder present in one screw pitch of the feeder unit whereas, 𝛽 corresponds 

to the rate at which amount of powder present in the screw pitch decreases with respect to decrease 

in feeder weight. Escotet-Espinoza (2018) performed experimental studies to determine how 

powder properties affect the feed factor parameters and developed regression models for the feed 

factor parameters as a function of process and powder material properties [44]. To obtain a detailed 

understanding of the powder behavior during the feeder operation, in this article we aim to explore 

the mechanics of powder flow using particle-scale simulations and obtain physical insight into the 

correlations of powder properties using the feed factor parameters.  

 

Particle-scale simulations like Discrete Element Modeling (DEM) have been widely used to obtain 

first-principle understanding of powder behavior within process operation. These simulations focus 

on particle level mechanics including particle-particle and particle-wall interactions influencing the 

forces acting on each particle through contact models, which eventually dictate the particle 

trajectories. First proposed by Cundall and Strack in 1980 [161], DEM provides an insight into 

particle movement and powder mixing within the unit operation, thus reducing the need for 

expensive experimental studies. The reason behind the choice of DEM methodology is that DEM 

allows the user to create desired unit geometry and define particle material parameters. Once 

completed, the simulation allows for extraction of detailed powder properties like velocity and 

internal stresses. Thus, application of DEM can provide a detailed insight into analysis of powder 

behavior which would not be feasible using an experimental approach. Another advantage of using 

DEM over experimental approaches is that there is no loss of actual powder, which can be 

expensive especially for pharmaceutical APIs. Despite the above advantages, one of the drawbacks 

of using high-fidelity models like DEM is the associated computational requirements. Focusing on 

particle-level mechanics can get computationally intensive as the simulation needs to evaluate all 

the particle interactions and forces for all particles at each time step. Different research articles [49, 

79, 96, 162-170] have described DEM simulations ranging from a few hours to few days extending 
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almost to a month using high computational resources, simulating anywhere from 10,000 to a few 

million particles. 

 

Material calibration can greatly improve the prediction accuracy of the DEM simulation as it allows 

to evaluate input DEM material parameters which replicate experimentally observed nature of 

powder. It involves linking experimentally measurable material properties to input DEM material 

parameters like static friction and rolling friction. There are multiple authors [126-130, 132, 135, 

136, 138, 170-175] who have attempted to improve material calibration, but it is still a developing 

area. Overall, there are mainly two approaches for material calibration [131] namely the direct 

measurement and bulk measurement. Direct measurement [176, 177] uses actual measurements for 

DEM parameters like static friction, rolling friction, shear modulus and coefficient of restitution. 

These measurements are obtained from specialized experimental tests like direct shear and particle 

impact and can get very expensive. Bulk measurement, on the other hand, is a preferred option 

[131, 135, 138, 140, 174] wherein simple bulk powder measurements like bulk density and angle 

of repose are obtained experimentally. Similar geometry setup is created in DEM and the bulk 

calibrations are matched to the experimentally obtained values by adjusting the DEM material 

parameters. Thus, DEM material parameters corresponding to the actual bulk properties are 

calibrated. Although there is a substantial volume of research in this area, the issue of solution 

multiplicity still persists wherein, multiple material properties are related to few bulk measurements 

[82]. These bulk measurements when used to estimate multiple DEM material parameters, can lead 

to multiple solutions as the corresponding system of equations is under-determined. In other words, 

the problem of evaluating a unique solution [82, 140] for material calibration still needs to be fully 

addressed. Considering all the above concerns, this article proposes application of DEM with 

material calibration for studying powder behavior during process dynamics of feeder unit as shown 

in Figure 3.1.  
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Figure 3.1: Proposed framework for calibration and application of DEM for powder feeder 

 

The chapter is arranged as follows. Section 1 provides a detailed background and introduction to 

the problem statement. Section 2 highlights the methods implemented in this article including 

Discrete element modeling (DEM) applied for material calibration and feeder simulation with 

relevant information regarding the simulation setup within DEM. To understand effects of powder 

behavior on process dynamics, authors implement design of experiments for DEM simulations for 

material calibration and feeder simulation. Details of DOE used in this article is provided in section 

2. Section 3 illustrates the results based on the simulation results for material calibration and feeder 

simulation. Material calibration is performed using a bulk measurement test to correctly represent 

powder properties within DEM. To provide insights into the feeder dynamics, refill studies are also 

simulated. Following this, the DOE results are highlighted to analyze correlations of material 

properties with the process operation. Following this, section 4 provides a discussion of the 

obtained results with implementation of calibration results for identifying a unique set of material 

parameters. For feeder unit, additional verification runs are performed and analyzed to confirm the 

previously obtained correlations of material properties and process operation. This concludes with 
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section 5 providing a summary and conclusion of the proposed work along with identification of 

possible avenues for enhancement of proposed work.  

 

3.2. Materials and methods 

3.2.1. Discrete element modeling (DEM) 

DEM methodology has been widely used for particle-scale process understanding in 

pharmaceutical industry [178]. It involves evaluation of particle forces acting on each particle 

because of its interaction with other particles and the unit geometry. Normal and tangential forces 

are evaluated along with corresponding stresses for all particle which dictates the particle motion. 

Normal force on the particle contributes to the forward movement of the particle whereas tangential 

forces contribute to the particle rotation. The equations of particle motion need to be solved for all 

particles at each time step. For a DEM simulation, the required geometry is set up along with the 

selection of equipment and material parameters. User defined particle properties including particle 

size and shape, and number of particles to be added to the system are selected. Once the simulation 

starts, the particles are added to the geometry which interact with each other as well as the 

equipment geometry. During such interactions, equation of motion governs the motion of 

individual particle (i) when in contact with another particle or equipment (j) as shown in Eq. (3).  

 

 𝑚𝑖𝑑𝑣𝑖

𝑑𝑡
=  ∑(𝐹𝑖𝑗

𝑛 + 𝐹𝑖𝑗
𝑡 ) + 𝑚𝑖𝑔 

(3) 

 

As illustrated in Eq. (3), normal (𝐹𝑖𝑗
𝑛) and tangential interaction forces (𝐹𝑖𝑗

𝑡 ) affect the velocity (𝑣𝑖) 

of particle with mass (𝑚𝑖) where 𝑔 corresponds to the gravitational constant (𝑔 =  9.81 𝑚/𝑠2). 

The normal and tangential forces are dependent on the contact models chosen in the DEM 

simulation. In this study, Hertz-Mindlin contact model is selected where the forces are calculated 

based on Hertzian contact theory [179] and Mindlin-Deresiewicz model [180, 181]. Since this 
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model provides accurate calculation of particle forces, it is used as default contact model. The 

equations associated with evaluation of normal and tangential forces are shown below using Eq. 

(4-7) which are functions of normal (𝛿𝑛) and tangential particle overlap (𝛿𝑡). Tangential force is 

evaluated based on the tangential stiffness (𝑆𝑡) of the particle.  

 

 
𝐹𝑛 =

4

3
𝐸∗√𝑅∗𝛿𝑛

3
2 

(4) 

 

 𝐹𝑡 =  −𝑆𝑡𝛿𝑡 (5) 

 

 𝐸∗ = 2𝐺∗(1 + 𝜈∗) (6) 

 

 𝑆𝑡 = 8𝐺∗√𝑅∗𝛿𝑛 (7) 

 

In the above equations, equivalent Young’s modulus (𝐸∗), particle radius (𝑅∗), shear modulus (𝐺∗) 

and poisson’s ratio (𝜈∗) are evaluated as a weighted average based on the particles in contact. Along 

with the translational motion, the rotational motion is governed by radial torque (𝜏𝑖𝑗
𝑟 ) exerted on 

the particle (𝑖) during an interaction with particle (𝑗) as shown in Eq. (8) where moment of inertia 

(𝐼𝑖) of the particle (𝑖) is used to evaluate angular velocity (𝑤𝑖). 

  

𝐼𝑖 ∗
𝑑𝑤𝑖

𝑑𝑡
=  ∑(𝑅𝑖 ∗ 𝐹𝑖𝑗

𝑡 −  𝜏𝑖𝑗
𝑟 )  

(8) 

 

These equations are solved for each particle interaction within the DEM simulation at each time 

step. The time step is selected based on the Rayleigh time step (𝑇𝑅) as shown in Eq. (9) where 

multiple particle properties including particle radius (𝑅), particle density (𝜌), shear modulus (𝐺) 
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and Poisson’s ratio (𝑣) govern 𝑇𝑅. The time step (∆𝑡) is recommended to be 20% of Rayleigh time 

step (𝑇𝑅) to maintain accuracy of the DEM simulation. If the selected time step is significantly 

higher than the recommended value, the DEM simulation can miss some interactions and lead to 

inaccurate results. Hence, the time step chosen for all the DEM simulations performed in this article 

is set to be 20% of 𝑇𝑅. 

 

∆𝑡 < 𝑇𝑅 =
𝜋𝑅√𝜌𝐺

0.01631 𝜈 + 0.8766
 

(9) 

 

Commercial DEM software EDEM® (DEM Solutions Inc.) incorporating all the above-mentioned 

equations (Eqs. 3-9) is used for performing the DEM simulations mentioned in this article.  

 

3.2.2. Material bulk calibration using Drawdown test 

Material calibration is a widely studied area in the field of particle-scale simulations, to obtain 

accurate material parameters corresponding to the actual powder system [130]. Direct and bulk 

measurements are two approaches used for material calibration. Direct measurements include 

powder measurements at the particle level. These measurements include static and rolling friction, 

shear and Young’s modulus, which are directly related to the DEM parameters. The drawback for 

this approach is the need for specialized and expensive experimental setup for particle-level 

measurements. Authors have demonstrated material calibration using direct measurement tests by 

replicating FT4  [173, 182-184] and shear cell experiments [171, 185] within DEM framework. 

Bulk measurements, on the other hand are powder properties measured for a bulk mass of powder. 

These include bulk density, angle of repose, shear angle which are indirectly related to particle-

level measurements. Since these measurements are more generic in comparison to direct 

measurements, this approach can make use of simple experimental setups like hourglass test, ledge 

test  [132], conical pile [138], sandpile test [82, 140, 174, 175] and drawdown test. Amongst direct 
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and bulk measurement approaches, bulk measurements are preferred as they are easier, cheaper, 

and computationally efficient due to the simplified experimental set up.  Further, bulk 

measurements focus on bulk powder interactions which are more prominent in the system to be 

studied using DEM. For these reasons, we use bulk measurement approach in this study, focusing 

on calibration using a drawdown test.  

 

Drawdown test is applied in this study for its simplicity and ease of application. This test permits 

evaluation of multiple bulk measurements using a single test, allowing for a robust calibration [140, 

141]. The drawdown test is performed as shown in Figure 3.2, where the drawdown system consists 

of a frame separated into two compartments with an opening in the middle.  Particle factory for 

particle generation is created within the top compartment as shown in Figure 1. A plate is used to 

close this opening, which prevents the particles from falling directly into the bottom compartment 

at the start of the operation. For this study, 50,000 particles of 1 mm are added to the system with 

dimensions X – 224.4 mm, Y – 51 mm, and Z – 306 mm. The drawdown test is operated as follows. 

Initially, particles are generated and allowed to settle using the particle factory for 1 second. After 

particles have settled in the top compartment, the plate blocking the opening is removed and 

particles fall into the bottom compartment. Particles settle in the bottom compartment and system 

attains a steady state after 10 seconds. Following this, bulk measurements like mass in lower 

container, angle of repose, shear angle and maximum flowrate are measured. Powder flowrate is 

monitored during the entire operation and maximum flowrate is determined based accordingly, 

whereas other bulk measurements are measured after 10 seconds. DEM simulation runs presented 

in this article are completed using commercial software (EDEM® 2019) utilizing an Intel Xeon ® 

E5-2650 v4 2.2 GHz (2 processors) with 128 GBs of RAM. On an average, the computational time 

required for simulation of drawdown test is 3.5 hours with 6 cores. 
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Figure 3.2: Drawdown test for material calibration 

 

Thus, the drawdown test is used to measure 4 bulk properties focusing on real material properties 

including mass in lower container, angle of repose, shear angle and maximum flowrate. Mass in 

lower container corresponds to the overall powder mass obtained after steady state is reached. 

Angle of repose is the angle formed by the powder in the top compartment whereas, shear angle is 

the angle formed by powder heap in the bottom compartment. Flowrate at the opening is tracked 

during the entire simulation and maximum flowrate is evaluated. Application of these bulk 

measurements towards material calibration and addressing the problem of solution multiplicity is 

highlighted in section 3.1. 

 

3.2.3. DEM simulation of powder feeder  

The feeder unit geometry is constructed as shown in Figure 3.3 [186] and imported within the DEM 

framework. The geometry consists of a virtual plate for particle factory positioned at the top, hopper 

section, screw section consisting of twin screws and a bridge-breaking impellor to sweep powder 
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into the screw section. The virtual plate for particle factory is constructed to generate particles 

within the system. Spherical, cohesion-less particles with standard rolling friction models are 

selected in this study. Particles of radius 1.0 mm and density of 1500 𝑘𝑔/𝑚3 [187] are added to the 

system for 1 second and allowed to settle. In order to obtain a complete operating profile of the 

feeder unit, 150,000 particles are added to the system. The feeder unit is simulated for 20 seconds 

within which the feeder runs out of powder. Impellor speed and screw speed are maintained 

constant at 25 rpm and 100 rpm for all simulation runs. The overall dimensions of the feeder unit 

are 20.4 cm, 20.4cm and 26.3 cm in X, Y and Z directions. The feeder equipment is assumed to be 

made of steel [187] and the equipment material properties are assigned accordingly. Though the 

overall simulation time depends on the material properties selected within DEM and the number of 

computational cores used, the feeder DEM simulation presented in this article approximately 

requires 17 hours with 8 computing cores. 

 

 

Figure 3.3: Feeder geometry in DEM 
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3.2.4. Design of experiments (DOE) 

To develop material calibration studies and understand effects of material properties on feeder 

operation, a parametric study is performed. Different material properties are considered for the 

parametric study including properties affecting particle-particle (PP) and particle-wall (PW) 

interactions, shown in Table 3.1. We select a three-level parametric design where the lower, 

middle and upper bounds are selected based on previous literature [49, 168, 175, 187-190]. 

 

Table 3.1: DEM material properties for parametric study 

Material property Nomenclature Bounds Units 

Lower  Middle Upper  

Coefficient of Static Friction PP_SF 0.1 0.3 0.6 - 

Coefficient of Rolling Friction PP_RF 0.01 0.04 0.1 - 

Coefficient of restitution PP_COR 0.1 0.4 0.7 - 

Coefficient of Static Friction PW_SF 0.1 0.3 0.6 - 

Coefficient of Rolling Friction PW_RF 0.01 0.04 0.1 - 

Coefficient of restitution PW_COR 0.01 0.1 0.2 - 

Shear Modulus (Pa) SM 1E6 5E6 1E7 Pa 

Poisson’s ratio PR 0.2 0.35 0.5 - 

 

Authors have demonstrated that other material properties like shear modulus (SM) have 

insignificant effect on powder behavior within the DEM framework  [82, 175]. Furthermore, SM 

being associated with evaluation of Rayleigh time step (Eq. (9)), higher values of SM can lead to 

huge increments in the overall simulation time. Hence, the parameter bounds considered for SM 

are [1E6, 1E7] as shown in Table 1 which are more compact than those used in literature  [82, 175]. 
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Since the proposed DEM simulations are computationally intensive, appropriate design of 

experiments (DOE) needs to be chosen to ensure that we can evaluate the main effects of these 

parameters as well as their interactions while maintaining reduced number of runs. DOE based on 

Definitive Screening Design (DSD) is chosen, requiring low number of simulations runs for 

evaluating the following attributes [191-193]: 

a) Main effects independent of interactions. 

b) Two-factor interactions not completely confounded with each other.  

c) Quadratic effects not confounded with other two-factor interactions.  

 

These attributes of resolution 5 designs can be validated using the correlation plot shown in Figure 

3.4 where, correlations between main and corresponding two factor interactions are evaluated using 

the correlation matrix |𝑟|. If two factors are correlated, it is difficult to identify which of those 

factors affect the outcome. Hence, these designs are chosen as they allow for lower correlation 

between factors, given the low number of runs. 
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Figure 3.4: Correlation plot for DSD DOE 

 

There are certain limitations of DSD embedded within the design, including the heredity and 

sparsity assumption. Heredity assumption focuses on the heredity of the observed significant 

interaction. It states that specific interaction is observed to be important if and only if the 

associated parents are also important. Sparsity assumption on the other hand, focuses on three 

of less parameters being identified as important. Since the validity of these assumptions cannot 

be confirmed at the start of the study, Jones and Nachtsheim, 2017 recommend incorporating 4 

additional runs within the DOE [191-193]. Thus, the overall number of runs equals 2*n + 1 + 4 

where, 2*n correspond to the fold-over pairs associated with each parameter (n) in the DOE and 

one center run. Jones and Nachtsheim, 2017 have proven that this modified design can be applied 

successfully in the presence of the above limitations [191-193]. Thus, this design is adopted for 
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the parametric study presented in this article and the randomized DOE consisting of 8 material 

properties is shown in Table 3.2. 

 

Table 3.2: DSD for DEM material parameters 

Run PP_SF PP_RF PP_COR PW_SF PW_RF PW_COR SM PR 

1 0.6 0.1 0.7 0.1 0.1 0.01 1E+07 0.2 

2 0.1 0.1 0.7 0.35 0.01 0.01 1E+06 0.2 

3 0.1 0.01 0.7 0.1 0.1 0.01 5E+06 0.5 

4 0.35 0.01 0.1 0.1 0.01 0.01 1E+06 0.2 

5 0.1 0.1 0.4 0.6 0.01 0.01 1E+07 0.5 

6 0.1 0.01 0.1 0.6 0.01 0.2 1E+06 0.5 

7 0.6 0.1 0.1 0.6 0.1 0.01 1E+06 0.35 

8 0.1 0.1 0.1 0.1 0.04 0.2 1E+07 0.2 

9 0.6 0.04 0.1 0.1 0.01 0.01 1E+07 0.5 

10 0.6 0.01 0.7 0.6 0.01 0.1 1E+07 0.2 

11 0.1 0.01 0.1 0.6 0.1 0.01 1E+07 0.2 

12 0.35 0.04 0.4 0.35 0.04 0.1 5E+06 0.35 

13 0.6 0.1 0.1 0.6 0.01 0.2 5E+06 0.2 

14 0.6 0.01 0.7 0.6 0.04 0.01 1E+06 0.5 

15 0.1 0.1 0.1 0.1 0.1 0.1 1E+06 0.5 

16 0.6 0.1 0.7 0.1 0.01 0.2 1E+06 0.5 

17 0.6 0.01 0.4 0.1 0.1 0.2 1E+06 0.2 

18 0.35 0.1 0.7 0.6 0.1 0.2 1E+07 0.5 

19 0.6 0.01 0.1 0.35 0.1 0.2 1E+07 0.5 

20 0.1 0.04 0.7 0.6 0.1 0.2 1E+06 0.2 
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21 0.1 0.01 0.7 0.1 0.01 0.2 1E+07 0.35 

 

 

3.3. Results 

This section highlights the results obtained for different methods proposed in section 2. Material 

calibration is performed using the drawdown test and calibration results are obtained based on bulk 

measurements obtained from DSD DOE of drawdown test. These are highlighted in subsection 3.1. 

Section 3.2. discusses the results of the feeder simulation with refill studies, followed by DOE of 

feeder simulation to explore the correlations between the DEM material parameters and feeder 

operation. 

 

3.3.1. Material calibration 

 

Material calibration efforts using a drawdown test are proposed to identify a unique set of DEM 

material parameters which represents bulk nature of powder accurately within DEM framework. 

For this, DSD based runs are performed for drawdown test to obtain bulk measurements. This is 

followed by model development for bulk measurements. This system of equations is later 

implemented to address the question of solution multiplicity. 

 

3.3.1.1. Results for DOE of the Drawdown test 

The drawdown test is performed using DEM for all the runs in the DOE highlighted in section 2.4. 

These DEM simulations are processed using image analysis tools to obtain the bulk measurements, 

shown in Table 3.3. The measurements for angle of repose and shear angle are obtained by 

averaging the values obtained on both sides of the drawdown test.  
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Table 3.3: Bulk measurements using DEM drawdown test 

Runs AOR Angle (o) Shear Angle (o) Mass in lower 

container (kg) 

Max flowrate 

(kg/s) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

31.951 

22.266 

19.495 

15.543 

23.606 

19.362 

20.705 

18.845 

30.998 

28.681 

19.673 

30.800 

35.171 

28.580 

12.914 

32.295 

27.755 

35.071 

28.152 

21.358 

19.510 

22.3 

23.52 

12.07 

11.99 

23.59 

12.05 

35.79 

11.92 

16.21 

26.77 

19.79 

31.09 

37.37 

27.24 

10.87 

19.42 

13.12 

42.84 

27.16 

24.5 

8.451 

0.1718 

0.2224 

0.2649 

0.2679 

0.2180 

0.2750 

0.1935 

0.2639 

0.2476 

0.2116 

0.2324 

0.1854 

0.1499 

0.1613 

0.2680 

0.2423 

0.2525 

0.1303 

0.1994 

0.2113 

0.2829 

0.1736 

0.1842 

0.2086 

0.1773 

0.1865 

0.2015 

0.1387 

0.1961 

0.1652 

0.1599 

0.1954 

0.1806 

0.1462 

0.1626 

0.2034 

0.1563 

0.1784 

0.1536 

0.1726 

0.1839 

0.2074 
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3.3.1.2. Calibration based on the bulk measurements 

After evaluating the bulk measurements, we aim to develop predictive models for the bulk measurements. 

To correctly implement this, we check for correlations with DEM material properties using a two-step 

regression approach [191-193]. First step involves identification of important main effects. After 

the important main effects are identified, second step involves identification of important two-

factor interaction effects. These steps are followed to ensure all effects are correctly captured 

without overfitting the data. Identification of important effects is completed by using Akaike 

information criteria (AIC) [194], Bayesian information criteria (BIC)[195] and p-values. These are 

used to identify important DEM properties and screen out the effects which are not correlated to 

the bulk measurements. This two-step process is demonstrated for shear angle as shown below. 

Initially, important main effects are identified using stepwise regression. Figure 3.5 illustrates the 

model fit for shear angle measurement using main effects, where particle static friction, rolling 

friction and particle-wall static friction are identified to be important. These results seem 

appropriate from a physical point of view as friction parameters – static friction and rolling friction 

control the powder-wall interaction affecting the formation of shear angle. In second step, the 

important main effects with the corresponding two-factor interactions are combined for model 

building. The model fit results including main and interaction effects are shown in Figure 3.6 and 

the corresponding response surface model (RSM) is shown in Eq (10) with 𝑅2 = 0.90. The details 

of the model fit including parameter estimates and analysis of variance are provided in section 8.1.1. 
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Figure 3.5: Model fit for shear angle using main effects 

 

 

Figure 3.6: Model fit for shear angle using main and interaction effects 

 

𝑆ℎ𝑒𝑎𝑟 𝐴𝑛𝑔𝑙𝑒 = 12.07512 + 17.47 ∗ 𝑃𝑃_𝑆𝐹 + 84.0688 ∗ 𝑃𝑃_𝑅𝐹 + 27.4642

∗ 𝑃𝑊_𝑆𝐹 − 113.98 ∗ (𝑃𝑃_𝑆𝐹 − 0.35)2 − 80.78 ∗ (𝑃𝑊_𝑆𝐹 − 0.35)2 

 

(10) 

Following a similar methodology for other bulk measurements including the mass in lower 

container, angle of repose and max flowrate, RSM equations are shown in Eq. (11-13) with an 𝑅2 
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value of 0.9, 0.72 and 0.92 correspondingly. Given the RSM equations resulted in statistically good 

model fits, complex models have not been implemented for model construction.  

 

𝑀𝑎𝑠𝑠 𝑖𝑛 𝐿𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟

= 0.29688 − 0.08876 ∗ 𝑃𝑃𝑆𝐹 − 0.40432 ∗ 𝑃𝑃𝑅𝐹 − 0.03561

∗ 𝑃𝑃𝐶𝑂𝑅 − 0.11142 ∗ 𝑃𝑊𝑆𝐹 − 0.2474 ∗ 𝑃𝑊𝑅𝐹 + 13.378

∗ (𝑃𝑃𝑅𝐹 − 0.0538)2 − 1.787 ∗ (𝑃𝑃𝑅𝐹 − 0.05287)

∗ (𝑃𝑃𝐶𝑂𝑅 − 0.4) + 0.257626 ∗ (𝑃𝑃𝐶𝑂𝑅 − 0.4)2 − 0.47643

∗ (𝑃𝑊𝑆𝐹 − 0.35) ∗ (𝑃𝑃𝑆𝐹 − 0.35) − 0.7473 ∗ (𝑃𝑃𝐶𝑂𝑅 − 0.4)

∗ (𝑃𝑊𝑅𝐹 − 0.05286) 

(11)  

 

𝐴𝑂𝑅 = 16.5772 + 19.39 ∗ 𝑃𝑃𝑆𝐹 + 7.0079 ∗ 𝑃𝑃𝐶𝑂𝑅 + 4.7239𝐸−7 ∗ 𝑆𝑀 − 2.20842

∗ (𝑆𝑀 − 5428571.4286)2 

(12) 

 

𝑀𝑎𝑥 𝐹𝑙𝑜𝑤𝑟𝑎𝑡𝑒 = 0.21327 − 0.0697 ∗ 𝑃𝑃𝑆𝐹 − 0.1527 ∗ 𝑃𝑃𝑅𝐹 − 0.03064 ∗ 𝑃𝑊𝑆𝐹

+ 0.143184 ∗ (𝑃𝑃𝑆𝐹 − 0.35)2 

(13) 

 

This system of equations (Eq. (10-13)) for evaluation of bulk measurements can be combined to 

identify unique set of DEM parameters for a given set of bulk measurements. The details of the 

model fits are provided in section 8.1.1. 

 

3.3.2. Simulation of feeder unit 

3.3.2.1. Simulation results  

The feeder simulation is set up and simulated as illustrated in section 3.2.3. The simulation 

time is set to 20 seconds which encompasses enough time for a feeder run out simulation. Once the 
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feeder simulation is completed, a few checks are performed to ensure the validity of the DEM 

simulation. First check includes particle overlaps not exceeding 4% along the normal and tangential 

directions [189]. Second check is based on mass balance of particles entering and leaving the feeder 

system. This is performed to ensure particles are not exiting the system from an unknown location. 

Once these checks are verified, the simulation results are obtained and processed as described 

below.  

 

Using data analysis within DEM, the particles exiting the feeder unit are tracked along time 

to evaluate the feeder flowrate and weight of the feeder unit is measured based on the number of 

particles present in the unit along time. Following this, the feed factor is evaluated using Eq (1). 

Feeder weight considers the amount of active powder present in the system, i.e., the amount of powder 

which participates in the powder feeding. The stagnant powder present in the feeder unit is not accounted 

for as it does not contribute towards the flowrate of the unit. The stagnant powder corresponds to the 

powder left in the hopper section after feeder run out simulation. This further ensures that the feeder 

measurements obtained in this study are similar to those obtained from GEA scale in feeder experiments 

[44]. After obtaining all these variables, the feed factor vs feeder weight profile can be plotted as 

shown in Figure 3.7. This plot is used to regress the feed factor parameters as shown in Eq. (2) 

using SciPy curve-fit in Python.  
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Figure 3.7: Profile of feed factor vs feeder weight 

 

3.3.2.2. Feeder refill studies 

DEM simulation of feeder unit mentioned in section 2.3 is modified to include refills and 

the effects of these refills are examined on the flowrate profiles of the feeder unit. Refills are added 

by generating two different types of particles are generated within the DEM framework. Particles 

of type 1 are added during the original fill of the feeder unit, whereas particles of type 2 are added 

during refill. Different feeder refill runs are simulated where refill particles of type 2 are added to 

the feeder unit at approximately 20%, 40%, 60% and 80% of fill-level of the hopper attained during 

the original fill of type 1 particles. These refill studies are performed as a sensitivity study to analyze 

effects of different refills on powder flow. It should be noted that these studies need to be modified 

to include more powder to develop a true representative of real powder feeder operation. The 

proposed aim is to explore powder flow and mixing within the presented studies and understand 

powder feeding from a conceptual point of view. In the presented study, the total number of 

particles is balanced such that it is large enough to simulate powder flow dynamics while 

maintaining the computational costs.  
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During the feeder DEM operation, when the powder fill-level within the hopper reaches 

the refill set value, the particle factory adds new particles of type 2 to the system which have the 

same material properties as the original particles. Figure 3.8 shows these refill runs where effects 

of refill on the flowrate of the feeder are observed as a function of time.  

 

Figure 3.8: Profile of flowrate vs time with feeder refills 

 

The refill at 8 seconds corresponding to 20% fill level is shown in Figure 3.8(A), 5.69 seconds 

corresponding to 40% shown in Figure 3.8(B), 4.13 seconds corresponding to 60% shown in Figure 

3.8(C) and 2.6 seconds correspond to 80% shown in Figure 3.8(D). The fill-level corresponds to 

the fill-level attained by the original fill of particles rather than the complete hopper height. This is 

performed to explore refill situations whilst keeping the computational cost low. The slight 

differences in different profiles shown in Figure 3.8, can be accounted to the time of refill and the 

number of particles added during the refill. For 2.6 second refill run, 40,000 particles are added 

whereas for other runs, 100,000 particles are added to the system. Higher the number of particles 

added to the system, wider is the observed flowrate profile.  
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Following this, the modified DEM simulations of feeder units with refills are used to explore 

particle mixing within the unit. The effects of powder mixing are observed from the feeder flowrate 

profiles. This is an important aspect as feeders are meant for dispensing powders, not mixing. If 

mixing is identified within the unit, it needs to be taken into consideration through mixing models 

or residence time distribution models for accurate material tracking and lot-to-lot delineation. For 

mixing evaluation, two types of particles are created within the DEM framework and particles of 

type 1 are added during the initial fill of the feeder unit (indicated by yellow particles), whereas 

particles of type 2 are added during the refill (indicated by orange particles) as shown in Figure 3.9. 

These particles only differ in color to help visualize and evaluate mixing. This can further be 

illustrated as shown in Figure 3.10 where the total number of particles of type 1 and 2 are plotted 

along time axis with a refill of type 2 particles at 4.13 seconds.  

 

 

Figure 3.9: Image of the left shows refill particles of type 2 (highlighted as orange particles) 
being added to the feeder unit at 4.13 sec whereas image on the right indicates particles mixing 

during feeder operation 
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Figure 3.10: Total number of particles present in the feeder unit. Particles added at time = 0 

seconds indicated in yellow whereas, particles added during refill at time = 4.13 seconds are 

indicated in orange. 

 

Flowrate of the feeder unit is measured near the feeder outlet using a rectangular grid as shown in 

Figure 3.7 which measures the number of particles exiting the unit as a function of time. To evaluate 

particle mixing within the unit, fraction of each particle type observed at the feeder outlet is 

measured as a function of time. This is shown in Figure 3.11 , where initially, fraction of particles 

of type 1 exiting the unit correspond to 1. This eventually reduces with addition of particles of type 

2. After addition of type 2 particles, it is observed that both types of particles exit the feeder unit, 

instead of particle 1 exiting earlier.  

 



 

 

51 

 

Figure 3.11: Fraction of particles at the feeder outlet 

 

This illustrates the two types of particles getting mixed during the feeder operation and a mixture 

of particles being observed at the outlet. Though these studies are useful in identifying mixing 

within the DEM simulation, it is important to note that the experimental set up for feeder refills can 

show slightly different profiles than the DEM simulation. Experimental set up for feeder refills 

includes powder filling up majority of the hopper section and powder refills are initiated when 

powder level present in the hopper reduces below a set fill-level limit. This limit is based on the 

total hopper height of the feeder unit. As hopper section acts more like a plug flow, the 

experimentally observed mixing profiles of refill particles exhibit more delayed response. This is 

not included within the DEM simulation study presented here, as adding enough powder to fill up 

the hopper would immensely increase the computational time required for feeder simulations. Thus, 

the DEM feeder simulations presented here are portrayed as conceptual studies to help identify 

mixing within the feeder unit. Such mixing studies can further be combined with a plug flow regime 

and used to develop residence time distribution or mixing models for accurate material tracking 

and lot-to-lot delineation of the feeder unit.  
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3.3.2.3. Results for DOE of feeder simulation 

Following the evaluation of feed factor vs feeder weight plot based on DEM simulations illustrated 

in section 3.2.1, this section focuses on a parametric study of DEM material parameters to explore 

their correlations with regressed feed factor parameters. Definitive screening designs (DSDs) is 

applied for the parametric study. 

 

DEM simulations are performed based on the DSD shown in Table 3.2 and simulation runs are 

analyzed as illustrated in sub-section 3.2.1. Based on the feed factor vs feeder weight profiles, feed 

factor parameters are regressed for all the parametric runs (shown in section 8.1.2). The physical 

understanding associated with each feed factor parameter [44, 186] is outlined as follows, where 

𝐹𝐹𝑚𝑎𝑥  is the maximum value of feed factor observed in the feed factor vs feeder weight plot. This 

value depends on the feeder hopper geometry and the type of screws selected. 𝐹𝐹𝑚𝑖𝑛   indicates the 

lowest value of feed factor obtained when the feeder weight is extrapolated to zero. Since this 

parameter is not observed during the feeder operation, there is a higher likelihood of uncertainty 

associated with evaluation of 𝐹𝐹𝑚𝑖𝑛. Lastly, 𝛽 depends on the rate of feed factor decay as shown 

feed factor vs feeder weight profiles. These parameters are obtained using curve-fit in python. To 

provide a comprehensive idea of the goodness of the fit, two simulation runs with the highest 𝑅2 

value (0.978 for Run 4) and lowest 𝑅2 value (0.769 for Run 7) is shown in Figure 3.12. 
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Figure 3.12: Feed factor vs feeder weight curve-fit for the feed factor parameter 

 

3.3.2.4. Developing correlations based on the DOE 

After obtaining the regressed feed factor parameters for all runs in the DSDs, this section focuses 

on the identification and evaluation of correlations between DEM material and feed factor 

parameters (𝐹𝐹𝑚𝑎𝑥 , 𝐹𝐹𝑚𝑖𝑛 and 𝛽). This is explored using stepwise regression. Initially, main 

effects are identified using stepwise regression combined with Akaike information criteria (AIC) 

and Bayesian information criteria (BIC). Following this, important two factor interactions are also 

evaluated using least square regression. A response surface model is created for each feed factor 

parameter including important main and two-factor interaction effects. This analysis allows for a 

thorough assessment of correlations between DEM material and feed factor parameters. JMP® 

(SAS) software (SAS Institute Inc.) is used to perform the above analyses for all feed factor 

parameters. 
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Model results of least-square regression for all feed factor parameters - 𝐹𝐹𝑚𝑎𝑥 , 𝐹𝐹𝑚𝑖𝑛 and 𝛽 are 

shown in the section 8.1.2, including an actual vs predicted plot with important main and interaction 

effects. The goodness of the obtained plots is verified by the 𝑅2 values and ANOVA test, wherein 

a probability < 0.0001 indicates that the models are significant for all feed factor parameters. It is 

observed from Figure 8.6 that particle static friction (PP_SF), rolling friction (PP_RF) and particle 

wall static friction (PW_SF) are significant for 𝐹𝐹𝑚𝑎𝑥. This makes physical sense because 𝐹𝐹𝑚𝑎𝑥 

is observed when the maximum amount of powder is present in the feeder hopper. During this time, 

there is a significantly higher likelihood of bulk powder particles interacting with each other and 

the walls causing the static friction and rolling friction to mainly influence the particle flow within 

the feeder unit. Similarly, Figure 8.7 illustrates particle-wall static friction (PW_SF) and particle-

particle static friction (PP_SF) to be important for 𝐹𝐹𝑚𝑖𝑛. Evaluation of 𝐹𝐹𝑚𝑖𝑛  corresponds to the 

time when the feeder is almost out of powder. During this time, majority of powder present in the 

feeder exits the unit and remainder of powder is left in the screw section. Powder particles present 

in the screw section interact with the walls of the screw and other particles causing the above 

parameters to appear significant for 𝐹𝐹𝑚𝑖𝑛. For coefficient 𝛽, it is observed that particle static 

friction (PP_SF), particle-wall static friction (PW_SF), particle coefficient of restitution 

(PP_COR), particle rolling friction (PP_RF) and particle coefficient of restitution (PP_COR) are 

significant as observed from Figure 8.8. As 𝛽 relates to the profile of feed factor decay with respect 

to feeder weight, it depends on the curvature of the feed factor vs feeder weight profile. 

Correspondingly, it would depend on all the DEM material properties identified to be important for 

𝐹𝐹𝑚𝑎𝑥 and 𝐹𝐹𝑚𝑖𝑛,. Further, during the feeder operation, powder particles are pushed by the 

impellor into the screw section, causing the coefficient of restitution to affect the 𝛽 parameter, as 

corroborated from the results observed in Figure 8.8. Furthermore, a close insight into the 

relationships between individual DEM material properties and feed factor parameters can be 

obtained using prediction profile plots as shown in Figure 8.9-Figure 8.11  
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Following the regression analyses of all feed factor parameters, response surface models are 

constructed as shown below (Eqs. 14-16) to evaluate feed factor parameters for different values of 

DEM material properties.  

 

 𝐹𝐹𝑚𝑎𝑥 = 0.06856 − 0.050247 ∗ 𝑃𝑃_𝑆𝐹 − 0.131 ∗ 𝑃𝑃_𝑅𝐹 − 0.0303 ∗

𝑃𝑊_𝑆𝐹 + 0.1176 ∗ (𝑃𝑃_𝑆𝐹 − 0.35)2 − 0.1723 ∗

(𝑃𝑃_𝑆𝐹 − 0.35) ∗ (𝑃𝑃_𝑅𝐹 − 0.05287) + 0.1182 ∗

(𝑃𝑊_𝑆𝐹 − 0.35)2   

(14) 

 

 𝐹𝐹𝑚𝑖𝑛 =  −0.0033 + 0.00749 ∗ 𝑃𝑃_𝑆𝐹 + 0.00792 ∗ 𝑃𝑊_𝑆𝐹 + 0.019

∗ (𝑃𝑊_𝑆𝐹 − 0.3456) ∗ (𝑃𝑃_𝑆𝐹 − 0.3456) + 0.02398

∗ (𝑃𝑊_𝑆𝐹 − 0.3456) 

(15) 

  

 𝛽 = 0.595 + 9.735 ∗ 𝑃𝑃_𝑆𝐹 + 26.79 ∗ 𝑃𝑃_𝑅𝐹 + 1.717 ∗ 𝑃𝑃_𝐶𝑂𝑅 + 3.37

∗ 𝑃𝑊_𝑆𝐹 − 1297.39 ∗ (𝑃𝑃_𝑅𝐹 − 0.0526)2 + 113.7

∗ (𝑃𝑃_𝐶𝑂𝑅 − 0.3978) ∗ (𝑃𝑃_𝑅𝐹 − 0.0526) + 26.425

∗ (𝑃𝑊_𝑆𝐹 − 0.3456) ∗ (𝑃𝑃_𝑆𝐹 − 0.3456) + 51.215

∗ (𝑃𝑊_𝑆𝐹 − 0.345)2 

(16) 

 

Based on this analysis, it can be confirmed that the particle static friction (PP_SF) and particle-wall 

static friction (PW_SF) are significant for all feed factor parameters and overall feeder operation. 

Particle rolling friction (PP_RF) is observed to be important for 𝐹𝐹𝑚𝑎𝑥 corresponding to the initial 

phases of feeder operation when hoper is filled with powder whereas coefficient of restitution 

appears significant when powder falls from the hopper to the screw section due to impellor 
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rotations. Thus, it can be concluded that only a small subset of DEM material properties is important 

for the feeder operation. This finding is significantly important and helpful in concentrating 

material calibration efforts to few DEM material parameters which are important for the system in 

consideration. Other DEM parameters like shear modulus are confirmed to be insignificant as 

identified earlier by (Yan et al., 2015) for a powder discharge system. The proposed work assumes 

negligible backpressure for in-flowing powder from material already residing in the screws. 

Additional feeder simulations with longer screw section can be performed to confirm these results. 

 

3.4. Discussion 

This section focuses on application of the results obtained for material calibration for 

identification of unique set of DEM material properties for a given set of measurements based on 

bulk powder behavior, highlighted in 3.4.1. Section 3.4.2 provides verification studies for the 

results obtained in section 3.3.2 for predictive models developed for feed factor parameter using 

feeder DEM simulations. 

 

3.4.1. Material calibration results 

This section highlights application of material calibration, wherein, we can estimate the DEM 

material parameters for a given set of bulk measurements. Bulk measurements obtained from 

drawdown test have been identified to depend on 6 DEM material parameters. To illustrate the 

proposed application of material calibration, authors focus on estimating 4 DEM material 

parameters based on 4 bulk measurements from drawdown test. The DEM material parameters to 

be estimated are particle static friction (PP_SF), rolling friction (PP_RF), coefficient of restitution 

(PP_COR) and particle wall static friction (PW_SF). These parameters are chosen as they are 

comparatively difficult to obtain from direct measurements as compared to other parameters 

including shear modulus (SM) and particle coefficient of restitution (PP_COR). Thus, the other 
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parameters are obtained from the literature [187]. The predictive models for bulk measurements 

(Eq. 10-13) are used to estimate DEM material parameters for a chosen set of bulk measurements, 

as shown in Table 4 to illustrate material calibration. This system of equations is solved by 

minimizing the sum of squared errors using GAMS/BARON [196]  with an objective function 

value equal to 4.2E-14. The obtained values of DEM material parameters are also shown in Table 

3.4.  

Table 3.4: Estimation of DEM material parameters for a given set of bulk measurements 

Bulk measurements Values DEM material parameters DEM 

Values 

Angle of repose 30o Particle static friction 0.4931 

Mass in lower container 0.22 kg Particle rolling friction 0.0383 

Shear angle 25o Particle coefficient of restitution 0.1851 

Max flowrate 0.17 kg/s Particle wall static friction 0.195 

 

To obtain a visual understanding of the relationship of the bulk measurements with DEM 

parameters, contour plots are shown for the bulk measurements on static friction vs. rolling friction 

space, shown in Figure 3.13. These plots can be used to identify allowable values of static and 

rolling friction for specified values of bulk measurements. These further highlight the problem of 

unique solution in material calibration where multiple sets of DEM parameters can correspond to 

the same value of bulk measurements. The authors address this problem by developing a well-

determined system of equations where the number of DEM material parameters equals the number 

of bulk measurements. This can be further improved by inclusion of all DEM material parameters 

with additional bulk measurements.  
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Figure 3.13: Contour plots of bulk measurements obtained from the drawdown test 

 

3.4.2. Verification studies for feeder simulation 

Following the predictive models developed for the feed factor parameters in section 3.3.2.4, 

verification runs are performed at different settings to corroborate the above models and to access 

the lack of fit of the developed empirical models for feed factor parameters. These settings are 

selected such that they are different from those included in model construction. The model 

verification runs with parameter sets are shown in Table 3.5. The parameter values are chosen such 

that they lie within the parametric bounds of DEM parameters highlighted in Table 3.2 and do not 

match the ones selected earlier in the DOE. This way, the verification runs can be used to access 

the developed feed factor models.  

 

Table 3.5: DEM parameter settings for model verification runs 

Parameters 1st verification run 2nd verification run 

PP_SF 0.2 0.4 
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PP_RF 0.03 0.07 

PP_COR 0.25 0.5 

PW_SF 0.2 0.4 

PW_RF 0.03 0.07 

PW_COR 0.07 0.15 

PR (Pa) 3E6 8E6 

SM 0.3 0.4 

 

Feeder DEM simulations and analyses are performed in a similar manner as illustrated in section 

2.3. Regressed feed factor parameters are added to the overall datasets and previously developed 

predictive models are updated. The parity plots as shown below in Figure 3.14-1.16 where the 1st 

verification run is marked by circled orange ‘’ and 2nd by circled green ‘’.  

 

Figure 3.14: Parity plot for 𝐹𝐹𝑚𝑎𝑥 including verification runs 
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Figure 3.15: Parity plot for 𝐹𝐹𝑚𝑖𝑛 including verification runs 

 

 

Figure 3.16: Parity plot for 𝛽 including verification runs 

 

Parity plots highlighted in Figure 3.14-1.16 show good model fits after incorporating the new 

verification points based on goodness of model fits and 𝑅2 values. Slight differences observed in 

Figure 3.14 (Run 1- highlighted by orange) and Figure 3.15 (Run 2 – highlighted by green) between 

predicted and actual values for verification studies, can be attributed to the inherent variability in 
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the data used for model construction. Thus, the above verification runs confirm the predictability 

of feed factor models developed in section 4.2.2. 

 

3.5. Conclusions 

This article presents an integrated approach of material calibration and DEM simulation to 

represent bulk powder behavior within DEM framework for detailed process understanding and 

assessment of effects of DEM material properties on feeder operation. Material property related 

inputs of DEM simulations cannot be easily obtained as it involves measurement of particle scale 

properties. This is especially challenging and expensive for pharmaceutical powders given the 

small particle size. To address this issue, material calibration is implemented using a bulk 

calibration approach to evaluate the DEM material parameters which are provided as inputs to the 

DEM simulations. By developing a correlation between the DEM material parameters and 

experimentally measurable bulk properties, bulk calibration is used to obtain the DEM material 

parameters which best represent the true bulk nature of powder behavior. For bulk calibration 

approach, a drawdown test is simulated within DEM, followed by bulk measurements including 

angle of repose, shear angle, mass in lower container and maximum flowrate. Definitive screening 

designs (DSDs) are chosen for the parametric study needed for bulk calibration. After evaluating 

the DEM simulations runs in the parametric study, the observed bulk measurements are checked 

for correlations with the DEM material parameters and a response surface model is created for each 

bulk measurement from the drawdown test. It was identified that only few DEM material 

parameters are important for bulk measurements. The system of equations, thus developed, can be 

applied to identify DEM material parameters for a new powder material based on the bulk 

measurements observed in the drawdown experiment which are then, supplied as inputs to the DEM 

simulation of the process under study.  
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After material calibration, DEM simulations of feeder unit are performed for detailed process 

understanding, focusing on powder flow, and mixing within the unit. The flowrate and feed factor 

profiles obtained from DEM simulations, are used to explore particle movement for different refill 

and mixing studies. For powder mixing studies, two different types of particles are added during 

original and refill stages of DEM simulation, monitoring the fraction of each type of particles 

exiting the unit as a function of time. This demonstrates the mixing within the feeder unit as a 

mixture of particles is observed at the outlet. Since the presented study focuses on tank section 

mixing based on the level of powder present in the hopper, it can be integrated with hopper mixing 

models. to characterize the overall mixing levels within the feeder unit for accurate material 

tracking or lot-to-lot delineation. 

 

DEM simulations of feeder unit are also applied to understand the effect of material properties on 

feeder operation. For this study, feed factor parameters are regressed from the feed factor vs feeder 

weight profiles. The simulation results obtained from the DSD parametric study are used to explore 

correlations between DEM material parameters and regressed feed factor parameters - 

𝐹𝐹𝑚𝑎𝑥 , 𝐹𝐹𝑚𝑖𝑛 and 𝛽. These studies reveal that only a subset of DEM material properties is 

important for feed factor parameters, also observed for material calibration. This is an important 

finding as it allows to narrow down the list of material properties important for powder feeding and 

allows to focus on the reduced material subspace thus, accelerating the overall material calibration 

process.  

 

In conclusion, this article focuses on material calibration and DEM simulation of feeder unit for 

enhancing process understanding and analyzing effects of DEM material properties on process 

operation. Material calibration efforts currently focus on a parametric study for reduction of total 

number of runs. This can be made more robust and accurate by performing space-filling design like 

Latin hypercube sampling (LHS). The material calibration process can also be automated (Orefice 
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and Khinast, 2019) for evaluation of bulk measurements from DEM simulations to minimize user 

efforts, followed by experimental validations. The feeder DEM studies mentioned in this article 

can further be improved by addition of larger number of particles with reduced particle size with 

experimental validation of feeder operation. This would allow the simulation to move closer to the 

actual pharmaceutical process where particle size is in microns. However, the smaller the particle 

size, the larger the number of particles required to simulate the process and hence, the larger the 

computational requirement associated with such DEM simulations. To incorporate the increased 

computational requirement, parallel computing GPUs can also be implemented within DEM 

framework. Integral techniques like smoothened particle hydrodynamics would also be helpful 

towards building a continuum field replicating powder behavior with low particle sizes [56, 95]. 

The contact models accounting for powder cohesion and non-sphericity of particles with particle 

size distributions can also be added to depict a wider range of pharmaceutical powders within the 

DEM framework applied for feeder unit.  
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CHAPTER IV 

 

4. Aim 2: Process modeling of unit operations using DEM – identifying 

mixing indices for continuous blending operations 

 

 

 

4.1. Introduction  

U.S. FDA’s QbD initiative [1] recommends a systematic approach towards pharmaceutical 

development and manufacturing based on risk-management. It focuses on continuous improvement 

through detailed understanding of effects of process design and operation on overall process 

performance. Thus, CM operation aims for process improvement through steady increment in 

process understanding [2]. All the unit operations contained within these lines are studied using the 

same philosophy, including blender units. Blending has been widely studied [3] and though there 

exists vast literature [4-6] focusing on blending or powder mixing, there still exists a huge gap in 

process understanding and its implementation towards process improvement. Thus, there exists a 

need for detailed understanding and evaluation of powder mixing within these units. Another 

reason which supports the above claim, is the focus of CM lines on maintaining content uniformity 

of tablet products. Content uniformity is measured at the end of the CM lines and depends on the 

blend uniformity evaluated at the blender outlet [7]. Blend uniformity refers to the homogeneity of 
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powder blend in a tablet manufacturing process [8]. If blend uniformity is identified to be off-limits 

with coefficient of variation higher than 5% as recommended [9], the operators can devise 

rectification measures before the powder blend exits the line and off-spec product tablets are 

formed. These rectification measures can be implemented in real-time to correct the uniformity of 

the powder blend and correspondingly the content uniformity of tablets, such that the end-product 

adheres to the regulatory requirements.  

  

Blend homogeneity needs to be measured in radial and axial direction. Uniformity along 

the radial direction refers to the cross-sectional blend homogeneity whereas, uniformity along the 

axial direction refers to blend homogeneity along the length of the blender. Authors have 

successfully developed and illustrated experimental approaches to quantify axial mixing through 

the implementation of residence time distribution (RTD) [10,11] models. RTD models are mainly 

used to approximate the dampening coefficient of blender units given upstream variability in inlet 

flowrates. This is observed in actual CM lines where feeder flowrate variability is transferred to the 

blender units, and blender reduces this variability before transmitting it to downstream unit 

operations. Radial mixing on the other hand, has been evaluated for batch blender [12] units through 

slicing of the powder bed and calculated positioning of sampling locations [13]. However, for 

continuous blender units, this is cumbersome to evaluate, due to the difficulty and inaccessibility 

of sampling locations along the radial directions in continuous blender units. Alternative to the 

sampling approach are other methods like image analysis and near-infrared spectroscopy (NIR). 

Image analysis focuses on use of Positron emission particle tracking (PEPT) techniques [14] for 

non-invasive analysis of blend homogeneity. Such techniques require specialized equipment set up, 

making them quite expensive for process design and understanding. NIR techniques focus on 

placement of NIR probe [15] within the blender or at the outlet to measure mixing [7,16]. The 

correct placement of the probe becomes challenging as it needs to measure the true homogeneity 

without running into issues like probe coating [17] and powder inaccessibility.  
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Computational approaches can be used for analysis of radial mixing within the blender 

through the implementation of Discrete Element modeling (DEM). Gao et al. [18,19] focused on 

this idea to simulate blender dynamics within DEM platform with periodic section modeling (PSM) 

to analyze radial mixing levels as function of process design and operating conditions. PSM 

approach results in reduction of overall computational costs by simulation of blender section 

instead of complete blender. This is used for radial mixing through implementation of relative 

standard deviation (RSD) index [20,21]. Though radial mixing seems comparably easier to measure 

within DEM simulations, the challenge lies in appropriate selection of measurement metric for 

mixing evaluation. The main reason underlying this, is the vast plethora of proposed mixing indices 

available in literature. Computational metrics for mixing evaluations has been proposed since early 

1950s, including variance reduction in 1953 [10] and Lacey’s index in 1973 [22]. Since then, there 

have been many derivations and modifications of these indices, resulting in new indices, including 

Kramer’s index [23], non-sampling mixing index [24], Lacey, Weidenbaum, and Bonilla index 

(LWB index) [23], along with development of new indices like Average height, Nearest neighbors, 

Neighbor distance [4], Particle scale [25], Segregation index [26], Mixing entropy [27], Degree of 

mixedness [28], Variance amongst bimodal bin counts  [29], Variance reduction ratio [10], mixing 

segregation index, Index of Segregation [30], Co-ordination number [31], Siiria index [32] and 

more. Fan et al. [4] attempted at providing a thorough list of some of these indices, applied to 

various blending studies conducted independently. Due to this vast availability of indices for 

mixing, it becomes challenging to identify appropriate mixing index for specific applications. 

Furthermore, due to the application of different indices, it becomes strenuous to utilize the available 

literature using different metrics for measurement of powder mixing towards enhancement of 

process understanding of the blender unit. Wen et al. and Deen et al. [33,34] have previously 

attempted to compare these indices with their applications on different blending operations like 
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fluidized bed, blender and spouted bed. However, they only consider a small subset of the 

exhaustive list of indices mentioned above.  

 

This chapter thus aims to address the issue of overabundance of mixing indices, by 

providing a detailed review, classification, and comparison of these indices. To highlight the 

variations between these indices, specifically focusing on methods used for mixing evaluation, a 

PSM section of blender is simulated using DEM based on previous literature [18]. Mixing indices 

are implemented for evaluation of mixing as a function of time for qualitative comparison. For 

quantitative comparison, a 𝑇95 mixing time is calculated for each index [34] which illustrates the 

time required to reach 95% of total mixing within the system. Effects of blender operating 

parameter – blade speed on the mixing times are also assessed for different indices. The rest of the 

chapter is organized as follows. Section 2 details the DEM methodology, followed by PSM blender 

simulation details. This section also addresses data extraction strategies for the DEM simulation. 

After defining the system of study, section 3 focuses on the review of existing mixing indices, 

enlisting respective details and equations used for mixing evaluation. It further includes 

classification and comparison of these indices for providing an overview picture of similarities and 

differences between these indices. Section 4 focuses on the application of the mixing indices on the 

PSM blender simulation wherein, the effects of operating parameter - blade speed are evaluated 

using the 𝑇95 mixing times of the blender system. This section further highlights the considerations 

required for appropriate selection of mixing index based on the powder system under study. Lastly, 

section 5 provides a summary and conclusion with additional work that will be pursued in the 

future.  
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4.2. DEM simulation of blender unit  

In this work, EDEM® 2019 commercial software is used for DEM simulations. Initially, 

Gericke convective continuous blender unit geometry is created within EDEM. AUTOCAD 

geometry can either be imported or created within EDEM. The blender geometry is created as 

shown in Gao et al. [41]. The unit dimensions are selected according to the standard manufacturing 

size. Dynamic parts of the geometry including mixing blades are identified, and the rotational or 

translational velocities are defined accordingly. Additional virtual plates can be added near the inlet 

of the blender to represent particle factories for particle generation. Within EDEM, particles with 

user-defined properties are generated using the virtual particle factories. Particles representing 

cohesionless, mono-disperse spheres are generated for the simulations mentioned in this article. 

After particle generation, particle contacts are detected using Hertz-Mindlin [42,43] contact model. 

Details of the numerical equations involved in DEM simulations are provided in the EDEM 

documentation [44] and implemented by other articles [36,37]. Due to the large size of the unit, 

huge computational costs are associated with the overall blender simulation along with the 

inherently complex DEM simulations. Boukouvala et al. [20] reports the overall simulation time of 

3-7 weeks for a single blender simulation for the same specifications. To avoid such high 

computation costs, a periodic section modeling (PSM) approach is implemented for blender 

modeling [18]. Periodic section modeling has been successfully implemented for blender systems 

[20,21] and shown in Figure 4.1. Using this approach, a section of blender is simulated using 

periodic boundaries instead of the complete blender. The periodic section is selected as a central 

section of the blender instead of the entry or exit sections which allows it to accurately represent 

majority of the blender section. 
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Figure 4.1: DEM simulation and PSM of blender (Printed from Gao et al. [41] with permission 

from authors) 

 

Periodic boundaries are assigned on both sides of the periodic section where, if particles 

exit from the left due to particle dynamics, they re-appear on the right and continue interacting with 

the system dynamics. PSM can be extended for obtaining complete blender dynamics with the time 

scale in PSM translating to the length of blender axis. This correlates to the powder mixing along 

time in PSM to the powder mixing in the complete blender along the axial direction. Thus, periodic 

section simulated for the residence time of the blender, can approximately represent powder system 

at the exit of the complete blender simulation.  

 

 

Figure 4.2: PSM geometry for blender simulation - A) PSM dimensions, B) Components of PSM 
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PSM for blender, is constructed and implemented as shown in Figure 4.2. The PSM 

geometry dimensions are defined as 40x80x80 mm in X, Y and Z directions where, particles of size 

1.5 mm are added. 3,000 particles are added for each particle type, resulting in the total number of 

particles to be 6,000 within the periodic section. DEM material properties for these particles are 

chosen based on Gao et. al [41]. The number of particles is chosen such that it achieves a fill-level 

of approximately 50% within the blender. The geometry consists of the blender section with 

rotating blades attached to the central shaft. Two types of particles are added to the system using 

separate particle factories located at the top section. These particles are defined to have same 

properties, differing only in color (red and blue) to assist in mixing evaluation. A plate is added 

near the bottom of the unit to separate the two types of particles during particle addition. This 

ensures the measurement of mixing starting from a completely segregated state. This plate is 

removed after particle addition, and the central shaft along with the blades is rotated at a specified 

blade speed to simulate blender motion. Particles get mixed within the periodic section, following 

which, the blender dynamics are stopped after a mixing time of 20 seconds. The mixing time is 

determined based on the rate of mixing when it reaches a steady value, as observed from the mixing 

evaluations highlighted in this article. The PSM blender simulation demonstrated in this article, is 

performed using EDEM® 2019 on a desktop computer with Intel Xeon ® E5-2650 v4 2.2 GHz (2 

processors) and 128 GBs of RAM with the computational time approximating to 8 hours while 

using 4 CPU cores. DEM simulation, defined above, is used for mixing evaluation and comparison 

of above-mentioned mixing indices.  

 

4.3. Indices for mixing evaluation 

4.3.1. Review of mixing indices 
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This section focuses on a detailed review of above-mentioned mixing indices considered 

in the study. These include Lacey’s index (LI), Variance amongst bimodal bin counts (VBBC), 

Variance reduction ratio (VRR), Relative standard deviation (RSD), Mixing segregation index 

(MSI), Intensity of segregation (ESI), Mixing entropy (ME), Segregation index (SI), Degree of 

mixedness (DM), Co-ordination number (CN), Average height (AH), Siiria method, Particle-scale 

mixing index (PSI), Nearest neighbor method (NNM) and Nearest distance method (NDM). Apart 

from these, there exist other mixing indices like Kramer’s index and WLB index, which are derived 

from the ones mentioned above. To avoid comparison of correlated indices, the derived indices are 

not considered in this review. Following section enlists each of the above-mentioned indices with 

respective details on methodology and numerical equations used for mixing evaluation.  

 

4.3.1.1. Lacey’s index (LI) 

 

LI is one of the earliest mixing indices, developed by Lacey in 1954 [22]. Since then, there have 

been many derivatives of this index, which include Kramer’s index [23] based on same statistical 

variances as LI and L.W.B mixing index [45] which was first developed for a cylindrical mixer. LI 

for evaluation of mixing is based on evaluation of variance of number fraction of particles present 

in each grid (𝑥𝑖) as compared to the average value (𝑥𝑚), shown below with 𝑁 corresponding to the 

total number of grids.  Number fraction is the fraction of total number of particles of one particle 

type divided by that of all particle types present in the system.  

 
𝐿𝐼 =

𝑆2 − 𝑆𝑜
2

𝑆𝑜
2 − 𝑆𝑟

2
 

(1) 

Here, S corresponds to the variance of the system to be analyzed, 𝑆𝑜 corresponds to the variance of 

completely segregated state and 𝑆𝑟 corresponds to the variance of perfectly mixed state. These are 

evaluated as shown below.   
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𝑆2 =
1

𝑁 − 1 
∗ ∑(𝑥𝑖 − 𝑥𝑚)2

𝑁

𝑖=1

 

(2) 

𝑆𝑟
2 =

𝑥𝑚 ∗ (1 − 𝑥𝑚)

𝑁
 

(3) 

𝑆𝑜
2 = 𝑥𝑚 ∗ (1 − 𝑥𝑚) (4) 

For the periodic section of blender, some variations can be observed in the mixing index profile as 

a function of time due to the continuous motion of particles from one grid to another due to blade 

rotations. Being grid dependent, it is important to choose appropriate grid sizing for accurate 

evaluation of this index.  

 

4.3.1.2. Variance reduction ratio (VRR) 

VRR [10] has been widely used for mixing evaluations [16,46,47]. VRR is based on 

variance of number fraction of each type of particles present in each grid. VRR is the ratio of inlet 

variance and outlet variance. Thus, this index can be implemented for comparison of the mixed 

system with the original state and evaluate how much of inlet variance can be removed by mixing 

within the unit. Thus, VRR ratio is evaluated as shown below in Eq. (5).  

 
𝑉𝑅𝑅 =

𝜎𝑖𝑛
2

𝜎𝑜𝑢𝑡
2  

(5) 

 

𝜎𝑖𝑛
2 = 𝜎𝑜𝑢𝑡

2 = (
1

𝑁
) ∗ ∑(𝑋𝑖 − 𝑋𝑎𝑣)2

𝑁

𝑖=1

 

(6) 

Here, 𝑋𝑖  corresponds to the number fraction of each type of particles present in grid 𝑖, 𝑁 

corresponds to the total number of grids and 𝑋𝑎𝑣 corresponds to the average number fraction of 

particles present in all grids. Thus, VRR index is grid and color dependent.  
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4.3.1.3. Variance amongst bimodal bin counts (VBBC) 

Recently developed, VBBC [29] is based on calculation of variance of difference between 

number of particles of each type present in each grid, summed over all grids. It is evaluated as 

shown below.  

 

𝜎𝑤𝑒𝑖𝑏𝑖
2 = (

1

𝑁
) ∑ ((𝐶𝑎,𝑖(𝑡) −

𝐶𝑎(𝑡)

𝐶𝑏(𝑡)
∗ 𝐶𝑏,𝑖 (𝑡)))

2

 

𝑁

𝑖=1

 

(7) 

 
𝐼𝑤𝑒𝑖𝑏𝑖(𝑡) =

𝜎𝑤𝑒𝑖𝑏𝑖
2 (𝑡)

max (𝜎𝑤𝑒𝑖𝑏𝑖
2 (𝑡))

 
(8) 

Where, 𝑁 corresponds to the number of grids, 𝐶𝑎,𝑖 corresponds to the number of ‘A’ type particles 

in grid 𝑖. 𝐶𝑏,𝑖 corresponds to the number of ‘B’ type particles in grid 𝑖. 𝐶𝑎 , 𝐶𝑏 corresponds to the 

average of number of ‘A’ and ‘B’ type particles. Normalized VBBC (𝐼𝑤𝑒𝑖𝑏𝑖(𝑡)) thus obtained, 

varies from 1 (unmixed state) to 0 (mixed state). This index can only be used for bimodal particle 

systems.  

 

4.3.1.4. Relative standard deviation (RSD) 

RSD index has been widely used in literature for mixing evaluations [48-50], calculated as 

shown below in Eq. (9). This index being similar to variance reduction ratio evaluations, calculates 

standard deviation of concentration of particles present in each grid, divided by average 

concentration in all grids. RSD, similar to VRR, is also grid dependent.  

 𝑅𝑆𝐷 =
𝜎

𝐶𝑎𝑣
 (9) 

 

𝜎 = √
∑ (𝐶𝑖 − 𝐶𝑎𝑣)2𝑁

𝑖=1

𝑁 − 1
 

(10) 

Where, 𝐶𝑖  corresponds to the concentration of particles of a specific type within grid 𝑖, whereas, 

𝐶𝑎𝑣 corresponds to the average concentration in all grids (𝑁). 
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4.3.1.5. Mixing segregation index (MSI) 

MSI index [51] focuses on fraction variance of number of particles of type ‘A’ with respect 

to the total number of particles in the system as shown below.  

 

𝑀𝑆𝐼 =  √
1

𝑁 − 1 
∑(𝑋𝑖 − 𝑋𝑎𝑣)2

𝑁

𝑖=1

 

(11) 

 
𝑋𝑖 =

𝜙𝑖

𝜙𝑎𝑣
 , 𝜙𝑖 =

𝑎𝑖

𝑎𝑖 + 𝑏𝑖
 

(12) 

Here, 𝑁 corresponds to the number of grids, 𝑎𝑖 corresponds to the number of particles of type ‘A’ 

present in grid 𝑖, 𝑏𝑖 corresponds to the number of particles of type ‘B’ present in grid ‘𝑖’. This index 

is mainly used to identify segregation rates by plotting the segregation index as a function of 

number of rotations. Thus, it is grid and particle size dependent.  

 

4.3.1.6. Mixed Entropy (ME) 

ME index [27] uses the concept of entropy as a measure to evaluate mixing. Higher the 

entropy of the system, higher is the value of measured index and thus, higher are the levels of 

mixing present in the system. This index depends on the number fraction of each type of particles 

present in each grid. Thus, the entropy of each grid is defined as 𝑒(𝑘) and evaluated as shown 

below. 

 𝑒(𝑘) = 𝑥1(𝑘) ln(𝑥1(𝑘)) + 𝑥2(𝑘) ln(𝑥2(𝑘)) (13) 

Where, 𝑥𝑖 corresponds to the number fraction of particles of type 𝑖 present in grid 𝑘. Following 

this, ME index can be evaluated as shown in Eq (14).  

 

𝑀𝐸 =
1

𝑁
∑ 𝑒(𝑘, 𝑡) ∗ 𝑛(𝑘, 𝑡)

𝑁

𝑖=1

 

(14) 

Here, 𝑒(𝑘, 𝑡) is the entropy and 𝑛(𝑘, 𝑡) is the number of particles present in grid 𝑘 at time 𝑡 and 

𝑁 corresponds to the total number of grids. Thus, mixed entropy index is grid and color dependent. 
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After normalizing, this index varies from 0 to 1 where, 0 corresponds to the unmixed state and 1 

corresponds to the mixed state.  

 

4.3.1.7. Segregation Index (SI) 

SI [26] suggests use of concept of segregation to evaluate mixing. For the index evaluation, 

the number of contacts with different types of particles (𝐶𝐴𝐵) are compared with the total contacts 

made by one type of particles. Here, total number of contacts made by particles of ‘A’ type equals 

𝐶𝐴𝐴+𝐶𝐴𝐵 . This information is used to evaluate mixing as shown in Eq. (15) below.  

 
𝑆𝐼 =

𝐶𝐴𝐴

𝐶𝐴𝐴 + 𝐶𝐴𝐵
+

𝐶𝐵𝐵

𝐶𝐵𝐵 + 𝐶𝐴𝐵
 

(15) 

SI when implemented to evaluate mixing, can range from a value of 2 indicating completely 

segregated state to 0 indicating mixed state. Index value of 1 indicates randomly mixed state.  

 

4.3.1.8. Degree of mixedness (DM) 

DM is a mixing index based on number fraction of particles [28] present in each grid (𝑖), 

indicated by ‘𝑥𝑖’. The index is calculated as shown below.  

 

𝐷𝑀 = 1 − (
∑

𝑥𝑖 − 𝑥𝑐
𝑁

𝑁
𝑖=1

𝑥𝑐(1 − 𝑥𝑐)
)

0.5

 

(16) 

Where, 𝑥𝑐 corresponds to the average number fraction of all particles present in all grids. 𝑁 equals 

the total number of grids present in the system. As this index depends on the number of particles 

present in each grid, the index profile exhibits some level of fluctuations due to constant movement 

of particles from one grid to another.  
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4.3.1.9. Co-ordination number (CN) 

CN [31] is one of the simplest used indices for mixing. It involves measurement of number 

of contacts as a function of time. This mixing index is evaluated as ratio of contacts between two 

types of particles - A and B divided by the total contacts made by all particles separately. This index 

is closely related to the segregation index [26] and is evaluated as shown below.  

 
𝐶𝑁 =

𝐶𝐴𝐵

𝐶𝐴𝐴 + 𝐶𝐵𝐵
 

(17) 

This index varies from 0 indicating unmixed state, to a value of 1 indicating mixed state. Since this 

index depends on the contacts between particles which can change abruptly based on particle 

location and system dynamics, the index profile can exhibit some fluctuations while plateauing to 

the mixed state.  

 

4.3.1.10. Intensity of segregation (ESI) 

ESI [30] evaluates mixing based on location of tracer particles within the system. Tracer 

particles are added in a specific section along the mixing axis and the system is divided into multiple 

grids. As the system gets mixed, the number of tracer particles present in each grid is measured and 

the index evaluation is performed as a function of time. This index is evaluated as shown in Eq. 

(18).  

 𝐸𝑆𝐼 =
𝜎

√
𝑁𝑡𝑟𝑎𝑐𝑒𝑟
𝑁𝑡𝑜𝑡𝑎𝑙

∗ (1 −
𝑁𝑡𝑟𝑎𝑐𝑒𝑟
𝑁𝑡𝑜𝑡𝑎𝑙

)

 (18) 

Here, 𝑁𝑡𝑟𝑎𝑐𝑒𝑟 corresponds to the total number of tracer particles present in the system whereas, 

𝑁𝑡𝑜𝑡𝑎𝑙  corresponds to the total number of particles. 𝜎 corresponds the standard deviation of number 

fraction of tracer particles present in all grids. This index has been shown to be applicable for 

mixing evaluations in axial and radial directions based on placement of tracer particles.   
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4.3.1.11. Nearest neighbor method (NNM) 

NNM [52], as the name suggests, evaluates mixing based on measurement of number of 

neighboring particles. For application of this mixing index, the system of particles is divided 

initially into two sections before mixing and different colors are assigned to particles in each 

section. As mixing progresses, the number of neighboring particles with different color is measured 

as a function of time. For each particle in consideration, 12 nearest neighbors are checked based on 

their colors. If all the neighbors have the same color, then the system is unmixed whereas, if half 

of the neighbors have different color, then the system is assumed to be well-mixed and is evaluated 

as shown below.  

 

𝑁𝑁𝑀 =
1

𝑁
∑

2 ∗ 𝑛𝑑𝑖𝑓𝑓

𝑛𝑛𝑏

𝑁

𝑖=1

 

(19) 

Here, 𝑛𝑑𝑖𝑓𝑓 corresponds to the number of neighbors having different color than the particle in 

consideration. 𝑛𝑛𝑏 equal the number of neighbors which in this case, is considered as 12 and 𝑁 

corresponds to the total number of particles in the system. 

 

4.3.1.12. Nearest distance method (NDM) 

NDM [34] is based on evaluation of distance between nearest neighbors as a function of 

time. For a specific particle, the initial neighboring particles at time t = 0 are identified and their 

center-to-center distance is monitored as a function of time. Nearest neighboring particles imply 

the particles in contact with the selected particle. Due to the continuous motion of powder bed 

within the system, the center-to-center distance of neighbor particles can vary significantly along 

time. Thus, to evaluate NDM, the center-to-center distance measured earlier for all particle pairs is 

normalized by the center-to-center distance for randomly assigned particle pairs in the system as 

shown below.  
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𝑁𝐷𝑀 =

∑ 𝑑𝑖𝑗 − 𝑑𝑝𝑁𝑝

∑ 𝑑𝑖𝑘 − 𝑑𝑝𝑁𝑟

 
(20) 

 

Here, 𝑑𝑖𝑗 corresponds to the center-to-center distance between neighbor particle pairs – 𝑖 & 𝑗. 𝑑𝑖𝑘 

corresponds to the center-to-center distance between randomly selected particle pairs –𝑖 & 𝑘. 𝑑𝑝 

corresponds to the particle diameter which is the initial value of the center-to-center distance for 

neighboring particles in contact. 𝑁𝑝 is the number of nearest neighbor pairs and 𝑁𝑟 is the number 

of particle pairs selected randomly. 

 

4.3.1.13. Particle scale index (PS) 

PS index [25] is another mixing index based on variance of particle fraction within the 

powder system. The uniqueness of this index is that it takes co-ordination number also into 

consideration. A similar approach is applied for this index evaluation as used in nearest neighbor 

method where, the powder system is divided into two sections – colored differently. During powder 

mixing, the co-ordination number of each particle (𝐶𝑛,𝑖) is measured along with measurement of 

number of differently colored particles in contact (𝐶𝑛,𝑏). Thus, particle number fraction of each 

particle (𝑝𝑖) is evaluated as shown below. 

𝑝𝑖 =
𝐶𝑛𝑏

𝐶𝑛,𝑖 + 1
 (21) 

Similar to LI, PS index is based on the variance of calculated particle fraction, shown in Eq (22). 

𝑃𝑆 =
𝑆𝑜

2 − 𝑆𝑡
2

𝑆𝑜
2 − 𝑆𝑟

2 (22) 

𝑆𝑡
2 =

1

𝑁
∗ ∑(𝑝𝑖 − 𝑝𝑎𝑣)2

𝑁

𝑖=1

 (23) 
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Here, 𝑝𝑎𝑣 corresponds to the average particle fraction for all particles and 𝑁 equals the total number 

of particles in the system. PS index considers unmixed and completely mixed states through 𝑆𝑜 and 

𝑆𝑟 as shown in Eq. (24-25).  

 𝑆𝑜
2 = 𝑝 ∗ (1 − 𝑝) (24) 

 
𝑆𝑟

2 = 𝑝 ∗
1 − 𝑝

𝐶𝑛 + 1
 

(25) 

Here, p corresponds to the number fraction of particles present in each section with total number 

of particles. In this case, it equals to 0.5. 𝐶𝑛 is the average co-ordination number for the particle 

system. Thus, particle scale mixing index is a combination of LI and CN. It is grid independent but 

cannot be used for powders with different particle sizes as it can lead to bias in measurement of co-

ordination number.  

 

4.3.1.14. Siiria method index (SM) 

SM index [32] is used for mixing evaluations based on relative change of distance between 

different particle pairs. For evaluation of SM, all possible particle pairs are identified with 

measurement of the relative positions between particles of each pair. The mixing index is calculated 

as shown below with hyperparameters – R and g.  

 𝑀𝑖𝑗 = 𝑅𝑔|𝑥𝑖𝑗| ∗ (1 − 𝑅𝑔|𝑥𝑖𝑗−𝑥𝑖𝑗𝑘|) (26) 

Here, 𝑥𝑖𝑗 corresponds to the initial distance between particle pair - 𝑖 & 𝑗 whereas, 𝑥𝑖𝑗𝑘 is 

the relative distance between the particle pair at time 𝑘. Thus, 𝑀𝑖𝑗  is calculated at each time step 

and SM equals the averaged value of 𝑀𝑖𝑗  for all particle pairs as shown in Eq (27) with 𝑁 as the 

total number of particles in the system.  
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𝑆𝑀 =  ∑ ∑
𝑀𝑖𝑗

𝑁2

𝑗=𝑁

𝑗=1

𝑖=𝑁

𝑖=1

 

(27) 

Parameters R & g are the dimensionless hyper-parameter and scaling factor used in Siiria 

index evaluation. Value of R is selected between 0 – 1 based on the relative effect of 𝑥𝑖𝑗 on 

magnitude of 𝑀𝑖𝑗  and a recommended value of 0.87 [32] is used. g corresponds to the scaling factor 

with dimensions of 𝐿−1 (length). Value of g is selected such that (g*L) < 10 as a rule of thumb, 

where L corresponds to the largest length between two particles. [32]. This parameter removes the 

dependency of length scale from the index evaluation. SM thus, is grid and color independent, as 

it depends on particle pairs within the powder system. Since it depends on calculation of relative 

position of particle pairs for all particles, this index can get computationally expensive (𝑂2) 

depending on the total number of particles considered in the system.  

 

4.3.1.15. Average height method (AH) 

As the name suggests, AH index [31] is used to evaluate mixing by calculating the average 

height of particles present in the system. After particles are added to the system, the particles 

belonging to the top half section are colored red and the bottom half are colored blue. This color 

assignment is performed before mixing takes place within the system. During mixing, average 

height of colored particles is tracked as a function of time. AH is calculated using Eq. (28), as ratio 

of average height of one type of particles and average height of all particles.  

 

𝐴𝐻 =
1

𝑁𝑟𝑒𝑑
∗ (

∑ 𝑍𝑖𝑖−𝑟𝑒𝑑

(
1

𝑁𝑎𝑙𝑙
) ∗ ∑ 𝑍𝑖𝑖−𝑎𝑙𝑙

) 

(28) 

Here, 𝑍𝑖 corresponds to the height of 𝑖𝑡ℎ particle. 𝑁𝑟𝑒𝑑  corresponds to the total number of red 

particles in the system whereas, 𝑁𝑎𝑙𝑙  corresponds to the total number of particles. This index can 

be evaluated separately for both red and blue colored particles. Index value can fluctuate as particles 

move throughout the system, eventually plateauing near 1. The index value indicates that the 
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average height for red particles in Eq. (28) is the same as the average height of all particles, 

indicating perfectly mixed state. The characteristic feature of this mixing index is that it can be 

used to measure mixing only in one direction. Thus, to evaluate mixing in all directions, it needs to 

be evaluated separately for all directions. Above description of AH evaluation corresponds to 

mixing evaluation in vertical (𝑍) direction. 

 

4.3.2. Classification of mixing indices 

 

Based on the method of evaluation used in the above mixing indices, they can be broadly 

classified into three categories as shown in Figure 4.3. 

 

Figure 4.3: Classification of mixing indices 

 

The three categories are variance-based, contact-based and distance-based indices. 

Variance-based indices include all the indices (VRR, VBBC, RSD, LI, MSI, ESI, DM and ME) 

which evaluate variance of distribution of tracer particles for mixing. Measurement of distribution 

of tracer particles within the system is grid dependent. Grid sizing thus, needs to be chosen correctly 

depending on the required scale of scrutiny in powder system, such that it balances both micro-
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mixing and macro-mixing effects within each grid. Coarser grid selection can lead to micro-mixing 

effects being neglected, whereas finer grid can falsely be evaluated as unmixed systems, especially 

given the lower number of particles present in each grid. Thus, correct selection of gridding also 

depends on the average number of particles present in each grid and the end application of the 

powder blend. Detailed information on effects of grid selection and corresponding selectivity on 

evaluation of mixing indices can be found in published references [23,27,53-55].  

 

Contact-based mixing indices require measurement of particle contacts within the powder 

system for mixing evaluation. The contacts within the same particle type and different particle types 

are identified separately from the DEM framework. This information concerning total number of 

contacts and corresponding particle IDs in contact is extracted for calculation of these indices. This 

category includes indices like SI, PS, NNM and CN. Contact-based indices are applicable for 

systems where the powder bulk remains intact during mixing. Though these indices are easy and 

quick to evaluate, there are some limitations for their application. For systems like fluidizing bed 

where the aeration leads to separation of powder bulk into different sections, it is difficult to 

evaluate contacts and can thus, lead to incorrect measurement of mixing using contact-based 

indices. Similarly, for agglomerating systems, contact-based indices can fail to capture the true 

system dynamics during powder mixing.  

 

Third category focuses on evaluation of distance between particles for measurement of 

mixing. The location of the particles is extracted as a function of time to evaluate mixing within 

the system. This category includes AH, SM and NDM. Some of these indices based on distance 

evaluation can get computationally expensive, especially like SM which involves evaluation of 

distance between initial contact pairs and randomly assigned particle pairs. AH, on the other hand, 

is quick to evaluate as it involves simple assessments like particle position in only one direction.  

There are some indices which have been developed on the intersection of these categories like 
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neighbor distance and particle scale method. NDM first requires information about neighboring 

particles i.e. particles in contact and then evaluates the distance between them as a function of time. 

PS also combines variance-based LI with contact-based CN for mixing evaluation.  

 

This classification of mixing indices is useful to identify the underlying technique used in 

the index calculation for evaluation of mixing. Additional variants [4] of above-mentioned indices 

can also be categorized in a similar way, paving a clearer path for systematic analysis of mixing 

indices present in literature.  

 

4.3.3. Detailed comparison of mixing indices 

Following the previous classification, this sub-section focuses on a thorough comparison 

of these indices based on specific features used for mixing evaluation. These features include 

computational complexity, grid dependency, color dependency, direction, size, and parameter 

dependency [33].  

 

Computational complexity is used as a feature for comparison based on the overall time 

required for evaluation of the mixing index. Indices incurring higher computational times, in the 

order of hours, are indicated by ‘Y’, implying computationally complex indices, whereas indices 

which provide quick assessments, in the order of a few minutes, are indicated by ‘N’, implying 

indices which are not computationally complex. This serves as an important feature especially 

when the end goal is to achieve real-time mixing evaluation in CPM lines. Grid dependency is 

associated with indices which focus on distribution of tracer particles within the system. 

Distribution is measured within different grids and grid sizing plays an important role in correct 

identification of true mixing levels of powder blend. The comparison shown in Table 1, takes this 

grid dependency into consideration where, ‘Y’ is assigned if the grid dependency is observed. 

Consequently, ‘N’ is assigned for indices which are not grid dependent. Color dependency implies 



 

 

84 

that the mixing index takes properties of specific ingredient into consideration, where different 

ingredients are highlighted by different colors. When colored differently, the ingredient particles 

can be identified easily and used for mixing evaluation. Some indices like ME, VBBC, SM, NDM, 

CN, SI, and PS consider all ingredients present in the system, whereas some like VRR, LI, DM, 

RSD, ESI, MSI, AH and NNM only use one belonging to a specific particle type to evaluate mixing. 

For comparison purposes, color dependent indices are indicated by ‘Y’, whereas ‘N’ is assigned 

for color independent indices in Figure 4.4. The direction feature is used to classify the indices 

which evaluate mixing in all directions simultaneously, from the indices which are applied in 

specific directions. Generally, variance-based, and contact-based indices are direction in-dependent 

i.e., these indices evaluate mixing in all directions. Such indices are indicated by ‘N’, implying 

them to be ‘direction in-dependent’. For distance-based indices like AH, the mixing is measured in 

a specific direction. Similarly, indices like NDM and SM depend on distance between particles, 

which is generally measured in specific direction. Thus, these indices are direction dependent and 

indicated by ‘Y’.  The direction dependent indices based on evaluation of distance can be modified 

to become direction independent by evaluating distance in 3-D space instead of a specified 

direction. However, this modification is not considered for the purpose of this comparison as it 

would require modification of the index proposed originally. Similarly, size feature corresponds to 

dependency of mixing evaluation on particle size. If the calculation of mixing index relates to the 

particle diameter, it cannot be used to evaluate mixing for a system with different particle sizes. 

Further, particle size also affects particle contacts as they are dependent on the particle diameters. 

Thus, indices relying on particle contacts, particle diameters and evaluation of distance between 

particles can show different results for particles of different sizes. These include CN, NNM, NDM, 

SM, PS and SI and are indicated by ‘Y’ in Figure 4.4, implying size dependency. Other indices are 

indicated by ‘N’ implying no size dependency. Some indices which are size dependent, can be 

modified to be independent, like SM, wherein, scaling parameters [32] can be used to remove scale 

dependency. Lastly, parameter dependency highlights dependence of mixing index on external 
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parameters, like SM (R, g), NNM (𝑛𝑛𝑏). These parameters need to be correctly chosen apriori based 

on their influence on the mixing index for correct evaluation. Indices which are parameter-

dependent are indicated by ‘Y’, otherwise ‘N’.  

 

Figure 4.4: Feature-based comparison of mixing indices 

 

The above features highlighted in Figure 4.4 can also be interpreted as advantages and 

disadvantages of these mixing indices. Higher computational complexity accounts as a 

disadvantage for mixing evaluation. Grid dependency can allow for a deeper insight within the 

powder bed as it focuses on inclusion of all grids, thus allowing for an evaluation of micro-mixing 

within the system. However, appropriate choice of gridding is essential to balance micro and macro 

mixing. Thus, this accounts towards a disadvantage due to additional computational efforts needed 

to identify appropriate grid size. The color-dependency feature is termed to an advantage, allowing 

the indices to evaluate and analyze mixing for each ingredient for powder systems with 3 or more 

components. Parameter dependency requires additional computations to evaluate the index 

parameters prior to mixing estimation, thus being a disadvantage. The direction feature adds to the 

advantages of the indices, allowing for a thorough mixing evaluation in different directions. Lastly, 

size also adds to the advantages for the mixing indices as this feature allows different particle sizes 

into consideration for mixing evaluation. Thus, the feature-based comparison of mixing indices 
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shown in Figure 4.4, provides a comprehensive picture of all the indices with their corresponding 

functionalities. This would be helpful in ensuring appropriate choice of mixing index based on the 

required index dependencies. To further illustrate the effects of these dependencies for each mixing 

index, Table 4.1 highlights different mixing applications where the above indices have been 

previously applied in literature.  

 

Table 4.1: Mixing indices with corresponding applications 

Mixing Index Applications for mixing evaluation  

LI 

Paddle blade mixer, batch bladed mixer [56], rotating drum [33,57], fluidized 

bed [58], V-binder and bin-blender [59] 

VBBC Continuous blender with two particle types [29], milli-static mixers [60] 

VRR Continuous blender with multiple particle types [46,61,62] 

RSD Paddle blade mixer [63], continuous mixer [16], Bohle bin blender [64] 

AH Vertical mixing – fluidized bed [34,65] 

NDM Rotating drum, spouted bed [33] 

NNM Fluidized bed, spouted bed and rotating drum [33,52] 

CN Rotating drum [33], vertical cylindrical mixer [25] 

PS 

Plowshare mixer [54], ribbon mixer [66], lab-scale screw mixer [67], vertical 

bladed mixer [68] 

ME Horizontal rotating drum [27], rotary kilns [69] 

SM multiple-spouted bed [70], stirred tank [71] 

MSI Rotating drum [72], fluidized bed [34] and tumbling blenders [51] 

ESI Co-rotating screws extruder [73], twin-shaft kneader [74] 
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SI Rotating drum, hoop mixer, turbula mixer[26] 

DM Fluidized bed [75,76], V-blender [77], slant-cone mixer [78] 

 

To obtain a quantitative comparison of the above mixing indices, 𝑇95 mixing time [34] is 

evaluated for each index. 𝑇95 mixing time corresponds to the time required for the system to reach 

95% of the completely mixed state. This also condenses the information pertaining to a time 

dependent mixing curve into a single value, which is more suitable for comparison. It is defined as 

shown in Eq. (29) where, a dampened exponential function is used to fit the mixing curve.  

 𝑀𝑓𝑖𝑡 = 1 −  𝐴 ∗ exp (−𝛾 ∗ 𝑡) (29) 

where the parameters 𝐴 and 𝛾 are obtained by fitting the exponential function to the mixing curve 

over time (𝑡). For indices like average height which show oscillations, the above equation is 

modified to include harmonic oscillations with frequency (𝑤) as shown in Eq. (30). 

 𝑀𝑓𝑖𝑡 = 1 −  𝐴 ∗ exp(−𝛾 ∗ 𝑡) ∗ cos (𝑤 ∗ 𝑡) (30) 

Using the above equations, 𝑇95 mixing time, corresponding to the time at which 𝑀𝑓𝑖𝑡 equals 0.95, 

is evaluated for all mixing indices considered in this study. 

 

4.4. Results and discussion – DEM simulation and mixing evaluation 

4.4.1. DEM simulation and data extraction 

Simulation results obtained for periodic section modeling of blender unit as described in 

Section 2, are shown below in Figure 4.5.  
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Figure 4.5: DEM simulation of blender using PSM - A) initial state of un-mixed powder system, 

B) Mixed state of powder system with chosen gridding for mixing evaluation 

 

Figure 4.5A illustrates the unmixed state of powder system within DEM at time t = 0 sec 

whereas Figure 4.5B describes the mixed state of the powder system in DEM at time = 20 seconds. 

Figure 4.5B also shows the choice of gridding used for mixing index evaluations. Appropriate grid 

sizing is determined based on the end application of the powder system while determining a balance 

between micro-mixing and macro-mixing within the system. A recommended gridding size of 

1x8x8 (X, Y, Z axes) based on Boukouvala et al. [20], is intended for this study. It is important to 

note that periodic section modeling has periodic boundaries, i.e., powder exiting the system along 

X axis, enters the system again from the opposite side. Thus, the progression of mixing in PSM 

along time can also be interpreted as progression of powder mixing along the length of the 

continuous blender (X axis). The mixing levels shown in Figure 4.5B can be used to evaluate 

mixing at the end of a continuous blender with residence time equal to simulation time of PSM 

blender model.  

 

For mixing evaluations, particle information including the number of particles of each 

particle type present in each grid, number of contacts and location of particles is extracted along 

time, from the DEM simulation. Based on the chosen grid size, there are some grids which contain 
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particles less than 50% of the average number of particles present in each grid (0.5 ∗ 𝑁𝑎𝑣  = 0.5 ∗

6000

64
 ≈ 0.5 ∗ 94 = 47). These grids are considered to be empty or incomplete for data extraction 

purposes [20] and are not considered for mixing evaluations as they can lead to fluctuations in the 

index evaluations. These mainly correspond to the grids in the upper half of the periodic section. 

Grids containing number of particles higher than average number of particles can be counted as 

representative samples for powder blend. Thus, these grids are considered in the mixing evaluations 

as shown below.  

 

4.4.2. Evaluation of mixing indices 

Based on the data extracted from the DEM simulation as a function of time, mixing indices 

are calculated. This allows for a time variant analysis of mixing indices. Figure 4.6 illustrates the 

dynamic profile of all the mixing indices considered in this study for periodic section model of 

blender.  
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Figure 4.6: Mixing indices for evaluation of mixing in the periodic section with subplots for 

different indices. 
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Figure 4.6 highlights index evaluations using red-colored particles for indices which can 

be evaluated separately for each particle type. These include LI, VRR, RSD, ESI, MSI, DM and 

AH. Other indices consider both particle types like SM, CN, PS, SI, NDM, NNM, ME and VBBC. 

All the indices shown in Figure 4.6 are evaluated at a time step of 0.1 seconds. It can be observed 

from the above index calculations that some indices show higher fluctuations than others. These 

differences are due to the inherent methods used for mixing analysis and the fluctuations are 

observed for indices which involve measurement of number of particles in each grid. Due to the 

movement of blades, particles constantly move from one grid to another, leading to the observed 

fluctuations. Another important observation is the variety in the range of values obtained for 

different indices which makes it difficult to compare numerically with each other. To overcome 

this aspect, the indices can be normalized between 0 to 1. This allows for an easy comparison 

between different indices.  

 

4.4.3. Comparison of indices based on the 𝑇95 mixing times 

Obtained index profiles are smoothened using a smoothening function for filtering the 

fluctuations using Savitsky-Golay smoothening filter [79]. These smoothened profiles are then 

regressed to obtain 𝑇95 mixing times and corresponding goodness of model fits along with model 

parameters are recorded as shown in the section 8.2. This is performed for different blade speeds 

of the blender unit – 100 RPM, 75 RPM and 50 RPM to evaluate the effects of blade rotation speed 

on the mixing time. The mixing indices which demand higher computation time than one hour are 

not included in this comparison. These include computationally heavy indices like SM, NDM and 

PS. Table 4.2 shows the comparison of 𝑇95 mixing times for different indices at three levels of 

blade speed. The mixing indices are colored based on the classification proposed in Figure 4.3. 

Obtained 𝑇95 mixing times can also be plotted as shown in Figure 4.7 to compare different indices 

and visually observe the effects of blade speed on the 𝑇95 mixing time.  
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Table 4.2: 𝑇95 mixing times for indices with different blade speeds 

Mixing Index 

Blade speed (RPM) 

100 RPM 75 RPM 50 RPM 

DM 7.595 10.892 14.349 

VBBC 3.902 6.268 8.733 

ME 5.004 5.941 8.207 

VRR 6.955 8.440 12.257 

MSIs 4.436 4.645 6.415 

ESI 6.392 8.301 11.729 

RSD 6.727 8.110 10.422 

LI 3.605 5.617 7.849 

CN 8.176 11.943 17.483 

SI 6.298 9.203 12.301 

NNM 7.180 9.715 13.470 

AH 4.648 10.496 20.501 
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Figure 4.7: 𝑇95 mixing times for indices at different blade speeds 

 

It can be observed from Figure 4.7 that as blade speed increases, the 𝑇95 mixing time 

decreases. This is in agreement with previously recorded observations for blender systems in 

experimental and computational studies [7,19]. Furthermore, it can be observed that these indices 

result in different mixing times based on the methods implemented. This extends to the 

classification of mixing indices listed above – variance, distance and contact-based indices where, 

they use different methods to measure mixing. Variance based indices (DM, VBBC, ME, VRR, 

MSI, ESI, RSD, LI) show smaller mixing times as compared to other indices, whereas, contact-

based indices including CN, SI and NNM encounter higher values of 𝑇95. AH, a distance-based 

metric also shows higher values, especially for 50 RPM. Since this is a uni-directional index, it can 

be concluded that the system needs more time to get well-mixed, specifically in Y direction. An 

alternative would be to use a combination of multiple directions for obtaining accurate estimates 

for the AH.  
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4.4.4. Selection of appropriate mixing index 

Based on the evaluation of different mixing indices for the powder blending system, this 

section illustrates the guidelines to be adopted for choice of appropriate mixing index based on the 

required application. To properly choose a mixing index, following questions need to be addressed 

prior to the mixing evaluation. The first question is – ‘what powder system is used for the specific 

study?’. This includes information concerning the particle size, number of particles, types of 

particles and initial position of these particles within the system. This is important as it allows the 

user to identify possible risks including segregation, agglomeration and unidirectional mixing 

associated with the powder system. The second question is – ‘what is the scope of the mixing 

evaluation?’. This is important as it allows the user to focus on the required scale of scrutiny and 

accuracy of mixing evaluation necessary for the end application of powder blend. Furthermore, it 

provides a rough estimate for the appropriate grid sizing balancing the measurement of micro-

mixing and macro-mixing within the system. These questions help identify the requirements of 

mixing evaluation of the powder system and correspondingly select candidate mixing indices. This 

is illustrated in detail, in Figure 4.8, highlighting the above questions, specific concerns associated 

with these questions, different options for each concern, corresponding effects of each options on 

mixing evaluation and a list of indices applicable for each option. Thus, given a new powder 

system, this diagram can be used to identify which concerns and corresponding options apply to 

the powder system under study. Following these options, effects on powder mixing can illustrate 

how the index calculations can get affected based on the selected options. Finally, a list of suitable 

mixing indices can be selected. Based on the multiple concerns relevant for a powder system, the 

lists of allowable indices can be compared to select a subset of appropriate indices which together 

address all concerns. These indices differ from each other based on the specific features highlighted 

in the review, classification, and comparison of these indices. In-depth scrutiny of these features 

would further allow the user to identify most appropriate index for the specific system under study. 
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Figure 4.8: Logical diagram for selection of appropriate mixing index 

 

An additional consideration which needs to be considered while selecting candidate indices 

includes the overall computational requirement required for mixing evaluation. This is important, 

especially in digital CPM lines as blend uniformity is measured in real-time where, corrective 

measures can be devised to rectify the blend non-uniformity in downstream unit operations.   

 

 Choice of mixing indices also depend on the dynamics of the powder system under study. 

For specific applications like fluidized bed and high shear blenders, where powder separates from 

the bulk due to the system dynamics, the indices need to be chosen such that they incorporate the 

phenomena of bulk separation. Bulk separation refers to the partial or complete fluidization of 

powder bed due to the system dynamics. Thus, contact-based indices would not be applicable for 

such systems due to high variability in contacts observed in the system. Distance-based indices like 

NNM, NDM and SM, though considers all particles within the system, can get computationally 

intensive for real-time application. Variance-based indices can be applicable for real-time analysis 

of such systems, given appropriate selection of gridding. Grid-dependency can also be addressed 
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by including dynamic gridding within the mixing evaluation. Thus, gridding can be chosen 

dynamically between coarse gridding (to incorporate process dynamics and bulk separation), and 

fine gridding (to comply the regulatory requirements of blend uniformity). Variance-based indices 

incorporating segregation can be utilized for systems with different particle sizes.  

 

4.5. Summary and conclusions 

Accurate measurement of blend uniformity is vital for the efficient and regulation-

compliant operation of CPM lines. Mixing indices are used for evaluation of blend uniformity at 

the blender outlet. Since 1950s, there have multiple studies focusing on development of new mixing 

indices and modifications based on existing indices, for mixing evaluations. Given this 

overabundance of mixing indices in literature, it becomes challenging to identify the appropriate 

index for mixing evaluation of specific application. Furthermore, due to the application of different 

indices, it becomes cumbersome to systematically combine and utilize this vast available literature 

for understanding and improving blending process through optimal selection of design, operating 

and process parameters. This article thus aims at addressing the above concern of availability of 

multiple indices in literature by performing a detailed review, classification, and comparison of 

different mixing indices. A computational approach is implemented for measurement of blend 

uniformity, wherein, a DEM simulation of blender is used as a case study for comparison of mixing 

indices. Following a detailed review, the article aims at addressing the considerations for selection 

of appropriate mixing index, aiming to capture the true mixing mechanism in the system under 

study.  

 

Different mixing indices considered in this review can be broadly classified into three 

categories: Variance-based, Contact-based, and Distance-based. Variance-based indices include LI, 

VRR, VBBC, RSD, MSI, DM, ME, and ESI. These indices utilize variance of number of particles 

present in grids for mixing evaluation, hence termed as variance-based indices. For these indices, 
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appropriate grid sizing is critical to balance measurement of micro-mixing and macro-mixing based 

on the intended application. These indices are quick to evaluate and can be successfully 

implemented for real-time mixing measurement. Contact-based indices are based on evaluation of 

total number of contacts between particles in the powder system. These contacts are measured 

separately for same and different particle types, which combined, can be applied for mixing 

evaluation. Contact based indices are also quick to evaluate but can result in erroneous results, 

especially for fluidizing systems. The bulk powder within such systems can separate, loosing 

contacts between particles intermittently, which in turn affects contact based mixing evaluation. 

Hence, these indices can only be implemented for those applications where the powder bulk 

remains intact i.e., particle contacts are not affected by system dynamics. This category of indices 

comprises of CN, SI, NNM and PS. Lastly, Distance-based index relies on measurement of distance 

between particles for mixing evaluation. This category includes indices like AH, NDM and SM. 

Except AH index, other distance-based indices are very computationally intensive as they consider 

distance between all possible pairs of particles present in the system, making them incompatible 

for real-time applications. Given the nature of mixing evaluation in distance based and contact-

based indices, these are grid-independent but color dependent.  

 

 To obtain a qualitative comparison of these indices, a feature-based comparison is 

conducted, wherein, the above-mentioned indices are compared based on features including 

computational complexity, grid dependency, color dependency, multi-direction, multi-size and 

parameter dependency. This feature-based comparison allows user to appropriately select the 

mixing index based on the requirements of the powder system. To obtain a quantitative comparison 

of the indices, they are applied for mixing evaluation of a powder blender system. The blending 

simulation is performed using DEM with PSM methodology wherein, two types of cohesionless, 

spherical particles with same particle size and properties are intended to be mixed. After completion 

of PSM simulation for a blade speed of 100 RPM, mixing indices are applied to evaluate function 
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of mixing levels along time. To obtain quantitative results, 𝑇95 mixing time is calculated for each 

index which indicates the time at which mixing level in the powder system reaches 95% of overall 

mixing. Further, to observe the effects of blade speed on the 𝑇95 mixing time, the PSM blender 

simulation is modified for additional blade speeds – 75 RPM and 50 RPM. Overall comparison of 

indices at different levels of blade speeds show a similar trend of increasing mixing time with blade 

speed, corroborated by previous studies [7,41].  

 

 The above qualitative and quantitative comparison aims towards the addressing the main 

question of which index should be applied for mixing evaluation. Given various features, 

advantages and disadvantages associated with each index, the mixing indices need to be chosen 

based on the intended application of mixing within the powder system. The two questions that need 

to be taken into consideration before implementation of mixing indices are: information concerning 

the powder system intended to be mixed and the underlying reason for powder mixing. These 

together can aid in suitable selection of mixing index. This review article focuses on comparison 

of these indices for a blender unit. Other case studies including fluidized bed, sprouted beds, and 

high shear blenders can also be incorporated to justify the choice of mixing index. Given the same 

properties for both types of particles selected in the study, phenomena like agglomeration, 

electrostatics and segregation are not observed. However, different particle properties with 

cohesive powder system can also be incorporated to check for agglomeration issues. Detailed 

review and comparison of mixing indices can aid in proper utilization of available literature on 

blender systems and powder mixing for enhancement in process understanding. This can further 

assist in selection of optimal parameters for process operation by accurate measurement of blend 

uniformity. Eventually, this would be helpful to identify the suitable index for real-time application 

of measurement of mixing in digital CPM lines based on the powder properties, where the index 

incorporates and assesses the true mixing phenomena observed in the powder system.  
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CHAPTER V 

 

5. Aim 2: Unit operation process modeling using DEM – compartment 

modeling 

 

 
 

5.1. Introduction  

CM, since its conceptualization in the last decade[1-3], are being actively researched to enable their 

adoption in the pharmaceutical industry. Towards this end, innovative research efforts have focused 

on developing and implementing pioneering initiatives [4-7] to advance drug production and 

maximize the overall efficiency and robustness of manufacturing line. These initiatives are in 

accordance with the U.S. FDA’s vision for 21st century [8] aiming to ‘promote a maximally 

efficient, agile, and flexible pharmaceutical manufacturing sector that reliably produces high 

quality drugs without extensive regulatory oversight’. One such initiative is the QbD[9] defined as 

a systematic approach for advancing the pharmaceutical manufacturing through detailed product 

and process understanding, based on quality risk management. QbD thus focuses on designing the 

process such that the product quality is assured, incorporating the detailed process understanding 

of the overall system. For the successful implementation of this initiative, it is important to develop 
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the capability to provide detailed process understanding from a mechanistic perspective, along with 

an accurate assessment of process prediction. There has been substantial emphasis of academic 

research efforts and industrial collaborations directed towards this effort by developing the required 

experimental and modeling capabilities over the past decade. These capabilities focus on real-time 

measurement and evaluation of effects of process parameters on product critical quality attributes 

(CQAs) of the manufacturing line. FDA Q8(R2) Pharmaceutical development [10] defines CQA 

as the important properties of the drug substance, excipients, intermediates and drug products that 

affect the product quality, purity, stability and bioavailability. These properties are measured at the 

outlet of intermediate unit operations in the manufacturing process, to direct and guide the drug 

product manufacturing and development. The CQAs identified using quality risk assessment[11], 

evaluate the extent of impact of change in critical process parameters (CPPs) on the final drug 

product quality. A detailed description of the important CQAs can be found in literature[12]. To 

produce oral solid-based drug products, blend uniformity (BU) is an important CQA, measured at 

the outlet of the continuous powder blender. Measurement of BU ensures that the uniformity of the 

powder blend [13,14] lies within the limits defined by regulatory guidelines and depends on the 

extent of powder mixing within the system. This is a crucial CQA, as the accurate measurement of 

BU provides enough time for the process control strategies to rectify any divergences outside of 

the regulatory limits[15], before the non-conformant powder blend passes through the 

manufacturing line, thus preventing the production of off-specification drug products. 

 

Continuous powder blenders have been extensively studied in literature[16-20], including 

experimental approaches like mixing analysis [14,21-23], residence time distribution studies 

[19,24-26], holdup analysis [25,27]and modeling approaches like discrete element modeling[28-

30], population balance modeling [31] [32], surrogate models[33,34], and RTD models [18,19]. 

These approaches are mainly directed for obtaining process understanding of powder flow and 

evaluation of powder mixing within the blender. The assessment of powder mixing performed 
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along axial direction is measured experimentally through residence time distribution (RTD) and 

corresponding RTD models are developed accordingly. Furthermore, the influence of various 

process parameters and material properties on the extent of axial mixing has also been investigated 

thoroughly in literature[16]. Conversely, the pharmaceutical literature lacks a thorough description 

on accurate experimental measurement and modeling of powder mixing along the radial direction. 

The evaluation of radial mixing has been attempted experimentally through use of measurement 

probes [35] and techniques like positron emission particle tracking techniques (PEPT) [36]. 

However, these methods have some shortcomings which limit their application. Researchers [35] 

have reported problems like disruption of powder bed, identification of statistically significant 

number of samples while using measurement probes for assessment of radial mixing. Though 

techniques like PEPT can avoid such issues, they can get very expensive due to the requirement of 

specialized equipment setup for measurement [36]. These difficulties thus complicate the accurate 

measurement and analysis of radial mixing, which further hinders assessment of blend uniformity 

for its inclusion in the predictive models for continuous blender units.  

  

To address the above shortcomings, we propose the use of first principle-based simulation 

techniques like discrete element modeling (DEM) for accurate measurement of powder mixing, 

followed by the development of a predictive model for the continuous powder blenders. DEM has 

been widely studied in literature in order to understand particle-level physics during pharmaceutical 

process operations [37] including  continuous blenders[38-40]. This technique is applied to evaluate 

powder mixing within the blender system, based on particle-scale information extracted from the 

DEM simulation. However, one of the major drawbacks of using DEM is that it can get 

computationally intensive due to the evaluation of particle contacts and contact forces for all 

particles in the system and at all time steps of the simulation[41]. This results in the simulation time 

of the order of 8-10 hours, and thus cannot be used for quick assessment of powder mixing. To 

address this challenge and subsequently develop a computationally efficient technique for modeling 



 

 

102 

of powder mixing within the continuous powder blender, we propose the use of hybrid multi-zonal 

compartment modeling strategy. Multi-zonal compartment modeling strategy is a technique that 

transforms the detailed information obtained from high-fidelity simulations like DEM into a 

network of inter-connected compartments, which can replicate the observed process behavior 

efficiently. This network of inter-connected compartments is then used to develop a predictive 

hybrid model for the continuous powder blender, which can then be used in flowsheet modeling of 

the entire manufacturing line. In the presented work, multi-zonal compartment modeling strategy 

is developed and demonstrated for a periodic section of the continuous powder blender followed 

by its extension for the entire blender. Previous publications [23,40] in this area showcase the use 

of similar methodology of compartment modeling for the blender systems, however the choice of 

compartmentalization is determined based on the user experience. The dependence of 

compartmentalization on user-expertise can restrict the applicability of the approach since it does 

not incorporate process information within the development stage. The novelty of the proposed 

work stems from the application of mechanistically informed compartmentalization using DEM for 

the development of a computationally efficient hybrid model using multi-zonal compartment 

modeling strategy for model predictions.  

 

The chapter is outlined as follows. Initially, the different methodologies utilized in the proposed 

work are introduced in sections 2, including DEM and multi-zonal compartment modeling strategy. 

This is followed by their application for the periodic section of the continuous powder blender 

system as presented in section 3. The results of the proposed approach are demonstrated in section 

3, supplemented by the validation. Following the model validation, the applications of the 

developed model for the periodic section are described, including application of periodic section 

for evaluation of radial mixing and its extension for modeling the entire continuous blender. This 

leads to the development of a computationally efficient hybrid model for the continuous powder 

blender. Lastly, the conclusions and potential avenues for future work are presented in section 4, 
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including further improvement of proposed methodology and application for other unit operations 

in the pharmaceutical manufacturing line.  

 

5.2. Materials and methods 

5.2.1. Discrete element modeling (DEM) 

DEM, first introduced in 1970s[41], has been widely applied for the modeling of particulate 

systems in the pharmaceutical industry[37] to develop first principle-based understanding of 

powder dynamics. This method focuses on the numerical modeling of powder mechanics based on 

Newton’s laws of motion and involves evaluation of contact forces acting on each particle based 

on its interactions with other particles and the walls of the equipment being simulated. The contact 

forces including normal and tangential forces, are evaluated based on the selected contact model 

for each particle and at each time step, making this method computationally intensive. The normal 

and tangential contact forces thus identified, then dictate the trajectory of the particle during the 

next time step. The equations involved in DEM are described in detail in literature [30,42]. The 

DEM methodology thus can be applied for different applications including particle tracking, 

detailed understanding of particle flow, and evaluation of particle mixing within the particulate 

system.  

 

The detailed steps involved in DEM modeling are summarized in Figure 5.1. The first step involves 

developing the computer-aided geometry for the desired powder system. Following this, the 

particles resembling pharmaceutical powder, are added to the system using virtual factories. These 

particles can be developed based on the user specifications and particle properties, including 

particle size and shape. Due to the high computational requirement of DEM, generally the particles 

are scaled up in size around the range of few hundred microns and the particle properties are chosen 

such that the bulk nature of powder within DEM as observed experimentally. Desired contact 
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models are chosen, and particles are added to the desired geometry. Next, the particulate system is 

simulated, and the following events occur recursively for the user defined duration of simulation 

time. These events include contact detection between particles, evaluation of contact forces – 

normal and tangential forces, and determination of particle trajectory for the next time step, as 

shown in Figure 5.1. The time step for the DEM simulation is determined based on the Rayleigh’s 

time step and a value of 10-20% of Rayleigh’s time step is recommended [30,42]. 

 

Figure 5.1: Discrete element modeling methodology 

 

In the presented work, we implement the DEM method for simulation of continuous powder 

blender system. Given the inherently high computational expense associated with DEM modeling, 

a small section of the continuous powder blender is simulated. This section is chosen specifically 

to represent the central region of the powder blender, with periodic boundaries on both ends. The 

periodic boundaries ensure that the particles exiting from one boundary of the periodic section, re-

enter the system from the other boundary. Thus, the periodic section simulated for the residence 

time of the continuous powder blender, can replicate the powder behavior as observed along the 

axis of the blender. In this work, we develop the periodic section similar to that used in previous 

publications[33,34,38,43,44] and similar values of DEM parameters are chosen for this work. The 

details of the DEM simulation along with the chosen model parameters are provided in the section 
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8.3.1. In the DEM simulation, the walls of the equipment and the blades are considered as hard 

boundaries, whereas the periodic boundaries are open on both sides to allow periodic movement of 

particles. The geometric dimensions of the periodic section are 40mm x 80mm x 80 mm along X, 

Y and Z directions, as shown in Figure 5.2.  

 

Figure 5.2: Geometric details of the periodic section used in this study (Taken with permission 

from Bhalode and Ierapetritou, 2020) 

 

Following the development of CAD geometry, cohesionless, spherical particles with 

particle radius of 1 mm are added to the system. To provide ease of visualization of powder mixing 

within the periodic section, two types of particles, differing only in color, are added on either side 

of the periodic section at the start of the simulation. The periodic section at time = 0 seconds with 

the two types of particles colored as red and blue, is shown in Figure 5.3A. A total of 3000 particles 

for each particle type are added, resulting in a total of 6000 particles in the DEM simulation [43,44]. 

During addition of particles, a separation plate is added to the geometry, to ensure the particles are 

completely unmixed at the start of the simulation. Following the addition of particles, the plate is 

removed, and the blades are rotated at a blade speed of 100 RPM for 20 seconds, to simulate powder 

mixing. The mixing time is determined based on mixing index evaluations[43] to ensure the powder 

mixing reaches a steady state, as shown in Figure 5.3B. The DEM simulation of periodic section, 
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as demonstrated in this chapter, is performed on a desktop computer with Intel Xeon E5-2650 v4 

2.2 GHz (2 processers) and 128 GB RAM using a commercial software EDEM 2020, resulting 

in an approximate computation time of 8 hours with 4 CPU cores. 

  

Figure 5.3: Simulation of periodic section using DEM - A) periodic section at t=0 sec, B) 

periodic section at t=20 sec 

 

5.2.2. Multi-zonal compartment modeling  

Multi-zonal compartment modeling is a hybrid technique to simulate complex systems. This 

technique comprises of developing a computationally efficient representation of the system based 

on functional zones called compartments[45]. These compartments are evaluated based on the 

spatially distribution of important process variables of the system. These when connected to 

develop the compartment model (CM), the model can then be utilized to represent systemic or 

global level information of the complex system. Thus, the CM model is constructed such that it 

provides multi-scale modeling with low computation time and is known by different terminologies 

in literature[45], including multi-zonal models, network of zones, and multi-block models. Multi-

zonal compartment modeling approach divides the system into multiple zones based on the 

distribution of process variables of interest to construct an inter-connected network of these zones. 

This modeling approach was first introduced in 1980s[46] and implemented to model the system 

under study as a network of ideal reactors. Following the introduction of this concept, there have 

been many publications in literature which apply compartment modeling for applications like 
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bioreactors[47-49], bubble columns [50], chemical reactors [51,52], crystallizers[53,54], and 

aerated canal reactors[55,56].  

 

In the proposed work, we aim to implement the CM methodology using the rationalization approach 

for development of a hybrid model of the periodic section in the form of inter-connected networks 

of compartments[44,49], which will be extended for modeling the entire continuous powder 

blender. The proposed methodology for developing multi-zonal compartment model using DEM, 

includes three steps - initialization, zoning, and compartmentalization as explained in this section.  

  

Step 1. The initialization step focuses on determination of important process variables of interest 

to be used for evaluation of zones. Zones are the homogenous regions within the system, wherein, 

process variables are within the homogeneity tolerance limits. The number of process variables can 

be limited to one variable or multiple based on the process output and the required application of 

the model. The corresponding user-defined tolerance range for chosen variables are also determined 

in this step, to discretize the system into separate zones. For application of this step, a high-fidelity 

simulation like CFD or DEM is simulated and the values for chosen variables are extracted for each 

element of the simulation. These elements are first grouped together to develop square-shaped grids 

to ensure uniformity of grid sizing across the system, and the variable information pertaining to 

these grids is obtained by averaging the variable information for each element present in the 

respective grid. This is performed to ensure there aren’t any irregular shaped grids present in the 

system[49]. Following this, the user-defined tolerance range of variables is selected based on the 

degree of variation between maximum and minimum values. This needs to be chosen carefully to 

balance the number of compartments and the overall computational requirements of the 

compartment model. Higher the chosen number of compartments, more accurate is the obtained 

model prediction, but higher is the associated computational cost for the developed compartment 

model. 
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Step 2. The zoning step focuses on categorizing all the grids in the system into discrete zones based 

on the variable parameters chosen in the first step. There exist two methods to perform zoning for 

high-fidelity simulations – manual zoning and automated zoning. Manual zoning is performed by 

classifying the system domain into zones based on the user expertise. To limit the dependence of 

user expertise on zoning strategies, automated zoning is preferred[47,48], which includes 

classification of grids of the entire domain into spatial zones, based on the variable parameters 

defined in the initialization step. This step is thus used to develop zone maps of the system.  

 

Step 3. Compartmentalization involves development of compartment maps using the zone maps 

developed in step 2. The compartment maps are developed as follows. The multi-regional zones in 

the zone map are separated into multiple mono-regional compartments to develop a network of 

compartments. This is followed by evaluation of inter-connection flowrates between these 

compartments, to develop the compartment maps of the original simulation. Initially, the zone maps 

are checked for presence of any multi-regional zones or spatially disconnected grids belonging to 

the same zone. If present, each spatially disconnected group of grids is classified into a separate 

compartment to develop a spatially distributed network of compartments. The distributed network 

of compartments thus acts as a data-driven surrogate representation of powder flow in the original 

simulation. Following this, the powder flowrate between the distributed compartments is evaluated 

based on the original CFD or DEM simulation.  The inter-connection flowrates are evaluated 

separately in all directions to ensure overall systemic flow is well-captured. Lastly, the data-driven 

inter-connected network of compartments is combined with inter-connection flowrates to provide 

a computationally efficient hybrid representation of the system under study. 
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5.2.3. Method for development of compartment model 

Following the framework for construction of multi-zonal compartment models described in section 

3, this section aims at implementing the proposed framework for the periodic section using DEM. 

The multi-zonal compartment modeling strategy is implemented to combine the systemic process 

knowledge pertaining to axial mixing, with local variable information including velocity 

distribution for radial mixing. In this work, we develop multi-zonal CM based on particle velocities 

along all directions as the variables of interest, to effectively capture the systemic and local level 

information of the blender system. After completion of the DEM simulation of the periodic section, 

the particle-level information is extracted from DEM for the initialization step. This is important 

for understanding the particle level physics and characterizing the powder flow within the unit. To 

obtain this information, appropriate grid sizing needs to be chosen for the elements of the DEM 

simulation. In this work, the chosen grid size is 10 along X direction, and 20 along the Y and Z 

directions, based on previous publication [43,44]. After developing these grids along X, Y and Z 

directions, the particle level information for these grids is extracted and the user-defined tolerance 

limit for zoning is determined based on the range of values of particle velocities. The next step 

comprises of zoning the periodic section based on these velocities and tolerance limits, using a 

similar methodology as proposed by Tajsoleiman et al. [49]. Before the zoning step, we break the 

periodic section down into multiple slices along the axial and radial direction, as shown in Figure 

5.4. In this work, 10 slices are chosen for one periodic section along the axial direction. The 

underlying reasons for the proposed analysis are explained later in section 3. These slices are used 

to develop zone maps for axial compartmentalization. Each slice is indicated by its corresponding 

location along the X direction. Each of these slices consist of a filled region with particles present 

and an empty region where no particles are present. Based on these regions, the zoning strategy is 

performed wherein, the filled region is divided into zones highlighted by ‘+1’, ‘0’ and ‘-1’, based 

on the averaged particle velocities of the individual grids being greater than 0, equal to 0 and less 

than 0. These user-defined tolerance limits are chosen for the compartment model, after balancing 
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the required model accuracy and associated computational cost. Further, the grids belonging to 

zone ‘0’ also includes the dead zone, which can later be identified if the averaged particle velocity 

is equal to 0 for longer durations in the DEM simulation. This distribution of zones for all slices is 

used to construct zone maps for radial compartmentalization. Following the evaluation of zone 

maps along axial and radial directions, the compartmentalization step is performed to obtain inter-

connected compartment maps. In this work, the compartment maps are developed after a steady 

state is reached in the periodic section, like that observed experimentally in the manufacturing line, 

wherein, the powders are added to the blender unit after reaching a steady state of operation. This 

approach ensures steady flowrates between compartments along time and can be further extended 

for dynamic compartment model if needed, to include the effects of start-up, shut down and step 

changes of process variables. Lastly, the inter-connection flowrate values are obtained between the 

compartments to develop inter-connected network of compartments. 
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Figure 5.4: Proposed breakdown of periodic section - A) selection of periodic sections from DEM 

simulation of continuous blender, B) breakdown of periodic section for axial and radial 

compartments, C) compartment model representation for axial and radial compartments. 

 

The proposed multi-zonal compartment modeling approach is developed in-house using open-

source python language, followed by extraction of relevant datasets from the DEM simulation. The 

developed python code includes the evaluation of compartments and compartment maps for axial 

and radial directions along with evaluation of inter-connection flowrates. This is shared through 

GitHub code repository for public use on other applications and is available at 

https://github.com/pbhalode/Multi-zonal-Compartment-modeling.git. The total computational 

time for developing the inter-connected network of compartment is around 3 mins for the axial 

compartments and 10 mins for radial compartments, out of which most of the time is required for 
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loading the data-intensive information of variable distributions from DEM. Once the hybrid model 

is developed, the simulation is very quick in the order of few seconds and thus, can be easily 

integrated within process flowsheets for obtaining quick assessment of powder mixing within the 

blender unit. 

 

5.3. Results and discussions 

Based on the proposed breakdown of periodic section highlighted in section 5.2.3, this section aims 

at evaluating the compartment maps, followed by development of an inter-connected network of 

compartments for the periodic section along radial and axial directions. Before implementing the 

proposed strategy of compartmentalization, the empty region in the periodic section is identified 

for all slices where no particles are present. The evaluation of empty region is performed before 

the compartmentalization, to optimize the overall time required for evaluation of compartments by 

focusing only on the region which is filled with particles. This distribution of empty and filled 

regions is shown in Figure 5.5, for the 1st slice corresponding to x = 0. In this figure, the green 

colored region indicates filled region with particles present and red colored region indicates empty 

region with no particles. This distribution is obtained for each slice along the axial direction and 

each slice is further used for evaluating radial compartments.  
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Figure 5.5: Distribution of filled and empty regions in the 1st slice of periodic section, 

corresponding to x = 0 

 

5.3.1. Results for radial compartmentalization 

Radial compartmentalization is performed for evaluating radial mixing in the system. For obtaining 

the radial compartments, zone maps are evaluated based on averaged particle velocities as shown 

in Figure 5.6A for Y direction and Figure 5.6B for Z direction corresponding to the slice belonging 

to x = 0 in the periodic section. In these zone maps, region corresponding to ‘1’ indicates zones 

with particle velocities greater than 0, ‘0’ with particle velocities equal to 0, ‘-1’ with particle 

velocities less than 0 and ‘-2’ indicating the empty zone with no particles. Following the evaluation 

of zone maps, the total number of spatially separated zones are identified, and compartment maps 

are developed. The compartment map developed along Y direction is shown in Figure 5.6C, where 

7 individual compartments are identified for the slice corresponding to x = 0 within the periodic 

section. Similarly, the compartment map along the Z direction is illustrated in Figure 5.6D, where 

6 individual compartments are identified.  

 

After evaluating the compartment maps for Y and Z directions separately, these maps are overlaid 

together to obtain an overall compartment map for the radial direction. The overlaid map thus 
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demonstrates the combined distribution of compartments for both directions for quantification of 

radial mixing and can be used to develop the inter-connected network of compartments for radial 

direction. The overlaying of compartment maps is performed using the approach shown in literature 

[44,49], where the two compartment maps are superimposed on top of each other, and each section 

of the overlaid compartments is identified uniquely to distinguish it from other sections. The 

overlaid compartment map for radial direction is shown in Figure 5.6E, where the total number of 

overlaid zones equals 15 for the slice corresponding to x = 0. This varies along the periodic section 

for each slice with the total number of overlaid zones for the entire periodic section equal to 51. 

Following the evaluation of the overlaid compartment map for radial mixing, the next step focuses 

on quantification of flowrates between these compartments to obtain an inter-connected network 

of compartments for radial direction. The inter-connection flowrates thus indicate the extent of 

powder flow between these compartments. These flowrates (𝐹𝑖𝑗(𝑘))  are evaluated as described in 

literature [44,48] and quantified using interfacial areas (𝐴𝑖𝑗) between different compartments (𝑖, 𝑗) 

and averaged velocities of the grids in the compartments (𝑣𝑖 , 𝑣𝑗) along a specific direction (𝑘), as 

shown in Eq 1. 
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Figure 5.6: Radial compartmentalization for slice corresponding to x = 0 within the periodic 
section - A) identified compartments for x = 0 along Y direction, B) identified compartments 

along Z direction, C) compartment map for Y direction, D) compartment map for Z direction, E) 

overlaid compartment map for radial direction (including Y and Z directions) 

 𝑭𝒊𝒋(𝒌) = 𝑨𝒊𝒋 ∗ (𝒗𝒊(𝒌) − 𝒗𝒋(𝒌)) (1) 

These flowrates are evaluated for all combinations of overlaid compartments, based on the 

interfacial areas for each combination of compartments and averaged velocities for each 

compartment. After obtaining the flowrates between different compartments, the periodic system 

is transformed into an inter-connected network of compartments, used for evaluating radial mixing. 

 

5.3.2. Results for axial compartmentalization 

A similar methodology is implemented for evaluation of compartments along the axial direction. 

The proposed zone maps are computed for each slice of the periodic section, wherein, the zones 

are obtained based on the averaged axial velocities along X direction of individual grids. Identified 

compartments are shown in Figure 5.7A for slices corresponding to x = 0 and Figure 5.7B for x = 

1 where, ‘1’ indicates zones with particle velocities greater than 0, ‘0’ with particle velocities equal 

to 0, ‘-1’ with particle velocities less than 0 and ‘-2’ indicating the empty zone with no particles. 

Since the location of zones is different for each slice as shown in Figure 5.7, a slightly different 
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approach is used for the axial direction as compared to that used for radial direction. Here, the inter-

connected network of zones is developed as shown in Figure 5.7C, with all zones (‘+1’,’0’ and ‘-

1’) in one slice being connected to those in the next slice. Such connection is developed for all 

slices along the length of the periodic section. This connection is determined based on evaluation 

of flowrates using interfacial areas and axial velocities along the forward and backward directions 

for each slice, using Eq (1). Further, since the periodic section has periodic boundaries, the 

periodicity is extended to the slices at the boundary as well, i.e., for slices corresponding to x = 0 

and x = 9. Thus, the inter-connected network of zones is developed for axial direction, to evaluate 

extent of axial mixing in the periodic section. Here, the flowrates evaluated for axial direction 

indicate a net forward flow of particles, as observed experimentally due to the forward movement 

of blades. 

 

Figure 5.7: Axial compartmentalization for the periodic section - A) zone map for slice 
corresponding to x = 0, B) zone map for slice corresponding to x = 1, C) inter-connected zone 

map for axial direction 
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5.3.3. Validation of compartmentalization methodology 

After implementing the proposed multi-zonal compartmentalization methodology for axial and 

radial directions, this section aims at validating the developed compartment models. The validation 

is performed by comparing the systemic information of the periodic section obtained from the 

developed compartment model with the original DEM simulation. This comparison is performed 

for quantification of mixing using residence time distribution studies. The respective systemic 

information is specifically chosen for comparison to ensure that the developed compartment model 

can preserve the important process knowledge despite the quick model computation in the order of 

few seconds, as compared to the original DEM simulation.  

 

The validation is performed by comparing the residence time distribution (RTD) profiles of the 

proposed compartment model with the original DEM simulation. The RTD profile of the periodic 

section corresponds to the distribution of time that it takes for particles to traverse from one end of 

the periodic section to the other. For the original DEM simulation, all particles are taken into 

consideration and the RTD profile is obtained separately for the two particle types considered in 

the original DEM simulation, as shown in Figure 5.8. The dotted lines (red and blue) indicate one 

standard deviation from the mean values of both distribution profiles. As the compartment model 

involves averaged flow between different slices in the periodic section, an averaged value of 

residence time is obtained using averaged velocities obtained from the compartment model. The 

residence time thus obtained from the compartment model (RT_CM) is shown in Figure 5.8, which 

corresponds to the average time it takes for particles to travel the length of the periodic section. It 

can be seen from Figure 5.8, that the compartment model provides a similar value of averaged 

residence time as compared to that obtained from the DEM model, thus, validating the selected 

strategy for compartmentalization. 
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Figure 5.8: Validation of axial compartmentalization - RTD profile for DEM plotted for both 

particle types (P1_DEM, P2_DEM) and compartment model (RT_CM 

 

5.3.4. Applications of developed compartment model 

After developing and validating the compartment model, it can be used for in-depth process 

analysis like evaluation of radial mixing. Quantification of radial mixing is important as it affects 

an important tablet CQA – content uniformity (CU) and is difficult to obtain experimentally [35]. 

The developed CM model resolves this problem by preserving the relevant information as observed 

in high-fidelity simulations, while providing quick process computations as observed in process 

models [57]. The developed compartment model is used to evaluate extent of radial mixing, where 

radial mixing is quantified using relative standard deviation (𝑅𝑆𝐷) mixing index, as shown in Eq. 

(2).  

 𝑹𝑺𝑫 = (
𝟏

𝑪𝒂𝒗
∗ √

∑ (𝑪𝒊 − 𝑪𝒂𝒗)𝟐𝑵
𝒊=𝟏

𝑵𝒄𝒐𝒎𝒑𝒂𝒓𝒕𝒎𝒆𝒏𝒕𝒔 − 𝟏
) (2) 

Here, the 𝑁𝑐𝑜𝑚𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡𝑠  corresponds to the total number of compartments in the periodic section, 

𝐶𝑖  represents the concentration of each compartment (𝑖) and 𝐶𝑎𝑣 represents the averaged 

concentration of all compartments in the periodic section. Using Eq. (2), the RSD profile for the 

compartment model is computed for the entire periodic section and smoothened using Savitsky 
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Golay filtering[43]. The obtained RSD profile is shown in Figure 5.9, where the RSD profile 

reduces gradually and stabilizes around a value of 0.57 indicating the stabilization of radial mixing 

in the periodic section. The RSD profile obtained using the CM model, is visually close to that 

obtained for the original DEM simulation, as shown in section 8.3.2. The developed CM model can 

thus provide an insight into the microscopic details of the particle system, as shown by the 

evaluation of radial mixing for the periodic section, like that obtained by the high-fidelity 

simulation models like DEM, with significantly lesser computational costs. It is important to note 

that since there is an inherent discrepancy of the grid sizes between the two models (CM and DEM), 

a numerical comparison of the microscopic behavior is not applicable, and thus the authors present 

the RTD profiles of the two models as a validation of the CM model approximation. 

 

Figure 5.9: Relative standard deviation (RSD) profile for the periodic section as a function of 

time 

 

Another application of the developed compartment model of the periodic section includes the 

extension of the developed model for the entire length of the continuous powder blender. 

Considering the chosen length of the periodic section and the length of the continuous powder 

blender, 8 periodic sections need to be aligned in series to replicate the process dynamics of the 
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entire blender [38,44]. Thus, the axial mixing for the entire continuous blender can be obtained by 

convolution of 8 periodic sections. This convolution (𝑅𝑇𝐷𝑐𝑜𝑛𝑣(𝑡)) is performed using convolution 

operator, as shown in Eq. (8), where 𝐸1  and 𝐸2 are the two RTD profiles of the periodic sections 

to be convoluted. This can be represented using the convolution integral as shown in Eq. (9). After 

implementing the Eq. (9), the convoluted RTD profiles are shown in Figure 5.10 for 1, 2, 4 and 8 

periodic sections, along with the respective residence times of the compartment model shown by 

dotted lines.  

 𝑹𝑻𝑫𝒄𝒐𝒏𝒗(𝒕) =  𝑬𝟏(𝒕) ∗ 𝑬𝟐(𝒕) (8) 

 
                                         = ∫ 𝐸1(𝑡 − 𝜏). 𝐸2(𝜏)𝑑𝜏

𝜏=𝑡

𝜏=0

 (9) 

 

The convoluted RTD profile for 8 periodic sections thus, represent similar degrees of axial mixing 

as observed in the entire continuous powder blender. 
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Figure 5.10: Axial mixing for entire continuous blender obtained by convolution of 8 periodic 

sections 

 

Similarly, the degree of radial mixing observed in the periodic section can also be extended to that 

for the entire continuous blender based on the evaluation of RSD mixing index as previously 

suggested by Gao et al. [29]. Using this approach, RSD index is evaluated for the continuous 

powder blender along the length of the blender (𝑥), as shown in Eq. (10). The model parameters 

𝑅𝑆𝐷𝑠𝑠 , 𝑅𝑆𝐷𝑜 and 𝑘𝑏 are obtained by fitting the RSD index profile of the periodic section. The 

averaged velocity along with axial direction (𝑣𝑥) can be quickly obtained from the developed 

compartment model and corresponds to 0.1117 m/sec. Thus, the RSD profile for the entire blender 

(𝑅𝑆𝐷𝑐(𝑥)) can be calculated as a function of axial location, shown in Figure 5.11.  

 𝑹𝑺𝑫𝒄
𝟐(𝒙) = 𝑹𝑺𝑫𝒔𝒔

𝟐 + (𝑹𝑺𝑫𝒐
𝟐 − 𝑹𝑺𝑫𝒔𝒔

𝟐 ) ∗ 𝒆𝒙𝒑(−𝒌𝒃 ∗ 𝒗𝒙 ∗ 𝒙) (10) 
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Figure 5.11: Extended RSD profile for the continuous powder blender 

 

5.4. Conclusions and future work 

The presented work highlights the development of hybrid model using multi-zonal compartment 

modeling strategy. The multi-zonal compartment modeling strategy aims at integrating the 

systemic or global level knowledge with local particle scale information, in a computationally 

efficient hybrid model. In the presented work, the hybrid model is developed for the continuous 

powder blender using DEM, to characterize overall powder mixing along axial and radial 

directions. The novelty of the proposed work stems from the application of DEM models to 

construct physics-informed, computationally-efficient hybrid models for quantification of overall 

powder mixing within continuous powder blender.  

 

In this work, a DEM model is constructed for periodic section of the continuous blender. Following 

this, detailed mechanistic information of the particulate system i.e., particle velocities are extracted 

from the DEM model and utilized to identify different compartments or zones in the system. These 

compartments are then used to develop compartment maps, based on the observed process 

dynamics. Compartment maps are used to develop a simplified representation of the powder system 

in the form of inter-connected network of compartments. Following this, the inter-connection 
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flowrates between different compartments are quantified based on the particle velocities of each 

compartment and interfacial area between different compartments. This inter-connected network 

along with the flowrates act as a mechanistically informed hybrid model which can be used to 

replicate the observed process dynamics in a computationally efficient manner. Such hybrid models 

are developed along axial and radial directions separately to quantify the degree of axial and radial 

mixing. These models are further validated along axial direction using residence time distribution 

profiles and along radial direction using mixing indices like relative standard deviation index. 

Lastly, the presented approach is extended for the entire continuous blender. This approach thus 

allows to evaluate axial mixing in the powder blender along with quantification of radial mixing, 

which despite being an important CQA, has been challenging to quantify. In terms of the overall 

computational cost, the presented methodology provides significant time savings for developing 

and simulating the multi-zonal hybrid model, as compared to the original DEM simulation. Given 

such significant time savings coupled with model prediction accuracy, the developed hybrid model 

can be integrated within flowsheet framework for modeling of integrated manufacturing line.  

 

Some potential avenues for advancing the proposed approach are presented here. The proposed 

approach assumes a specific selection criterion for evaluation of zones and compartments based on 

the particle velocities, to balance the required model accuracy and associated computational 

expense. The model accuracy can further be improved by selecting a finer compartmentalization 

criterion based on the end requirement of model application. Multiple variables of interest can also 

be included in the selection criteria based on the end goal of the model development. This strategy 

can be implemented for other complex systems incorporating cohesion and polydispersity of 

particles, which are prevalent in the continuous manufacturing line. The overall computational 

costs incurred in simulation of DEM models, construction, and simulation of developed hybrid 

multi-zonal compartment models can be improved through use of parallel computing strategies.  
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CHAPTER VI 

 

6. Aim 3: Data pre-treatment and analysis of manufacturing lines 

 

 
 

6.1.Statistical data pre-treatment and denoising for residence time distribution 

profiles 

6.1.1. Introduction  

Residence time distribution (RTD) is a commonly used technique to evaluate the time that 

it takes for any material to traverse through the system under study [101, 197, 198]. Given that 
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RTD provides an effective technique to observe and understand the bulk fluid patterns within the 

system, it has been a fundamental tool in characterizing and developing predictive models of unit 

operations across various industries [101, 197-202]. Since its conception in 1935 [203], RTD 

studies have been widely used across various industries such as chemical, petrochemical, food, 

polymer, dyes, pharmaceutical industries for various engineering applications, including stirred 

tanks, unit operations, distillation, absorption and adsorption columns, microfluidic reactors, and 

wastewater treatment reactors [102, 152, 197, 198, 200, 204-209]. 

 

Within pharmaceutical manufacturing, RTD has also been widely used [10, 74, 102] for 

various applications ranging from characterization of unit operations and process flowsheets [47, 

210-213] to material traceability, real-time quality assurance, process verification, and system 

health monitoring [46, 47, 214]. These applications are in line with U. S. Food and Drug 

Administration (FDA)’s vision for the 21st century [215] to enable manufacturing with minimal 

regulatory oversight, introducing the concept of Quality-by-Design (QbD) [26, 216-218]. QbD 

essentially encourages developing manufacturing lines where the product quality attributes are 

ensured in a timely manner and with less intensive product testing. Regulatory agencies, such as 

FDA [29, 30, 32-34], ICH [31, 35, 36], and ISPE [219-221] have published various guidelines for 

the industry, providing recommendations to adopt QbD within pharmaceutical manufacturing 

[218]. A critical component for integrating QbD within manufacturing lines involves developing 

an accurate and detailed process understanding of the manufacturing line, taking into consideration 

the effects of critical process parameters (CPPs) and critical material attributes (CMAs) on critical 

quality attributes (CQAs) of the drug product [218]. To develop this level of detailed understanding, 

various experimental and modeling techniques have been implemented [10, 12, 59]. RTD is one 

such technique that has been widely applied for developing process understanding, given the 

advantage of quick model assessment compared to other techniques [74, 102, 212]. 
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RTD provides a probability distribution of residence time that a material resides within the 

system [197, 199, 200]. The distribution is obtained by tracking a traceable material, also known 

as a tracer. Generally, the tracer is selected to be one of the formulation ingredients (typically, API 

for pharmaceutical applications) or an external tracer material [102, 151]. For pharmaceutical 

applications, it is advised to choose a tracer material from an extensive material property data 

library that can replicate the flow properties of the API by using multivariate analysis techniques 

[222-225]. Recently, Razavi et al. [225] demonstrated that by carefully selecting a tracer that 

resembles the same physical properties of the API, the RTD profiles of the tracer and API are 

equivalent under different bulk flow properties. Along with this, it is also important to ensure that 

the tracer material is easily detectable using PAT techniques (such as commonly used vibrational 

spectroscopic techniques including Raman and Near Infrared (NIR)) and has a signal that is 

distinguishable from the bulk material [151, 226] to ensure the obtained RTD can accurately 

represent the system. Escotet et al. [226] demonstrate the importance of selecting a tracer with 

differences in spectral data compared to the bulk material by comparing the corresponding 

concentration profiles determined by NIR for two different tracers (Acetaminophen and Maize 

Starch) for the same bulk material (Avicel 102). It is observed that since the spectra of Maize starch 

closely resemble the spectra of Avicel 102, it becomes challenging to identify the tracer 

concentration accurately and results in a very noisy profile, shown in Figure 6.1A. On the other 

hand, the spectra of Acetaminophen being distinguishable from the bulk material can provide 

accurate RTD profiles with a significantly high signal-to-noise ratio, as shown in Figure 6.1B. 

Thus, it is crucial to select a tracer that is inert to the system, detectable, does not stick to the walls 

or agglomerate within the unit, and does not alter the flow properties of the system under study 

[151, 197, 199, 200].  
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Figure 6.1: Comparison of different tracers for the same bulk material using the NIR spectra and 

the obtained tracer concentration profiles (Images taken with permission from Escotet et al. [48]) 

 

Following the tracer selection, the tracer material is added at the inlet of the system and is 

tracked at the outlet as it exits the system. Commonly used input profiles for tracer addition include 

step, pulse, and variable step input [197, 199, 200]. Step input generally involves a step-change in 

the concentration of one of the formulation ingredients (selected as tracer) at the inlet of the system 

at a time 𝑡. Pulse input provides an impulse of tracer at the inlet whereas, variable step input 

provides a tracer profile consisting of varying step-up and step-down profiles [151, 214]. These 

input profiles are discussed in depth along with their advantages and disadvantages in literature 

[102, 151]. After the tracer is injected near the inlet, the tracer concentration profile is measured at 

the outlet of the system using process analytical techniques (PAT) [102, 227]. Amongst the PAT 

techniques, vibrational spectroscopy is generally employed for tracer detection in the 

pharmaceutical industry, as these techniques do not require sample preparation [102], and are thus 

suitable for real-time measurement of tracer concentration [29].  
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To evaluate the tracer concentration profile, it is important to develop appropriate data 

acquisition and calibration strategy that can capture the changes in tracer concentration using 

spectroscopic sensors at desired frequency and signal intensity to accurately capture the tracer 

concentration profile [13, 210]. The calibration model is recommended to be developed for varying 

levels of tracer concentration to ensure correct measurement of tracer concentration [40]. The 

concentration range selected for the calibration studies depends on the processing conditions and 

the limit of detection for the selected tracer material [228]. Thus, multiple calibration runs are 

performed using a selected design of experiments accounting for various sources of variability, 

including process, environmental, and instrumental variability [229, 230]. Normalization methods 

such as standard normal variate (SNV) and multiplicative scatter correction (MSC) and their 

combinations with 1st and 2nd order derivatives are implemented as part of data pre-treatment 

strategies to develop the calibration model [102]. These strategies are tested using statistical 

methods, including root mean square error of cross-validation for varying number of selected latent 

variables, to ensure the spectral information of the tracer to be the main contributor to the observed 

variability [229, 231]. During the measurement of tracer concentration, it is ensured that the desired 

level of measurement frequency of the tracer concentration is maintained. Higher measurement 

frequency allows capturing the tracer concentration more precisely including all the variabilities of 

the tracer concentrations, whereas a low measurement frequency results in smoother concentration 

profiles but can miss out on capturing important RTD information of the system [227, 232]. To 

avoid loss of information, a higher level of measurement frequency is desired, but this can lead to 

noisy RTD profiles which may not provide a good signal to noise ratio. A general tendency to 

circumvent this problem is to increase the tracer concentration in the system to ensure the tracer is 

accurately captured. However, this can be detrimental to the RTD study if the tracer flow properties 

differ from the bulk material and can potentially alter the original system. On the other hand, the 

tracer amount should be enough to ensure that it is detected accurately at the outlet of the system. 

Thus, the appropriate tracer amount needs to be defined based on the selected tracer, specific bulk 
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material, and the system under study [102, 151, 225]. After finalizing the required amount of tracer 

material, powder blends consisting of different tracer concentrations and the bulk material are 

prepared, and calibration runs are performed. Partial Least Squares (PLS) models are then 

developed to relate the spectroscopic data to the tracer concentration values, and calibration models 

are established for RTD studies.  

 

Despite such detailed analysis in tracer selection and developing accurate calibration 

models to measure tracer concentration profiles for RTD studies, significant level of variability is 

observed in the measured tracer concentration profiles, as highlighted in literature [152, 225, 226]. 

The observed levels of variability, leading to noisy tracer concentration profile, can potentially 

hinder accurate analysis of RTD and subsequently impact process decisions based on RTD studies, 

leading to drug product recalls. Hence, it is imperative to handle the levels of variability and noise 

observed in RTD profiles.  

 

Data pre-treatment strategies, including noise characterization and denoising, are thus 

crucial for RTD studies to quantify and selectively remove the noise from the measured tracer 

concentration profiles, thus providing a methodology to obtain a true representative RTD of the 

system under study [102]. Though necessary for accurate characterization of RTD, the literature 

lacks a detailed analysis and description of the data pre-treatment strategies, making it challenging 

to replicate or utilize the RTD profiles for important applications such as material traceability and 

real-time quality assurance. The proposed article aims to address this concern of lack of detailed 

discussion regarding RTD noise characterization and denoising strategies. In the presented work, 

the authors focus on discussing the characteristics of noise present in tracer concentration profile 

along with the application of various denoising strategies for RTD studies. Furthermore, 

performance metrics are devised to compare the denoising methods quantitatively. This article aims 

to serve as a guide for researchers in the field to understand the implications of different denoising 
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strategies on the RTD profiles and subsequently select the most appropriate method for respective 

applications based on the performance metrics. The chapter is organized as follows. Section 1 

provides an introduction of the problem to be addressed and discusses the novelty of the article. 

Section 2 describes the experimental campaign for obtaining the tracer concentration datasets used 

in this work. Section 3 focuses on understanding noise and denoising from a signal processing 

perspective and discusses the denoising strategies investigated in the presented work. This is 

followed by introducing performance metrics to compare the denoising strategies. Section 4 

presents the results of the denoising strategies on the experimental datasets, along with the 

evaluation of the performance metrics for comparison. Following this, the impact of denoising on 

important RTD applications such as material traceability and product quality assurance are 

discussed. Lastly, section 5 outlines the conclusions for the presented work on applying noise 

handling strategies for RTD studies. 

 

6.1.2. Experimental studies 

The experimental strategy used in this work is summarized in this section, where a pulse 

input method is used for the RTD studies. The details of the experimental work are described in 

depth in a recent article from the same research group [225], and a summary is outlined below. A 

single K-Tron KT20 (Coperion K-Tron Pitman Inc., Sewell, NJ) feeder fitted with a coarse auger 

screw configuration and a C-type motor is used to maintain a steady flow of base powder into the 

continuous mixing system. A Gericke GCM 250 mixer (Gericke USA, Somerset, NJ) is used as the 

blending system with alternate blade configuration operating at a rotational speed of 100 RPM. A 

weir (semicircular disc) is placed at a 60° angle at the exit of the mixer to control powder hold-up. 

A long vibratory feeder is placed at the exit of the blender to dispense the powder and provide a 

homogenous sample presentation for the PAT. A Bruker Optics (Billerica, MA) Matrix Fourier 

Transform Near-Infrared (FT-NIR) spectrometer is installed on a platform above the vibratory 
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feeder, as shown in Figure 6.2. The throughput of the system is maintained at 12 kg/hr. In this work, 

only one excipient powder (Avicel PH301) is used as the base powder.  

 

 

Figure 6.2: Experimental setup including feeder, blender, NIR probe, and vibratory feeder 

 

Following the experimental setup, NIR calibration model is developed, wherein 

characteristic spectral bands from bulk material and tracer are identified to determine the 

appropriate spectral range for quantification and calibration models are constructed by testing seven 

data pre-treatment methods [102, 228], and the best method is determined based on root mean 

square of cross-validation (RMSEV) by comparing it with explained variation. Calibration spectra 

is acquired to incorporate sufficient variation within the tracer concentration as it exits the system 

and thus, calibration experiments are conducted using the same setup and acquisition parameters 

as the RTD runs. Calibration blends of 0.0 – 9.0 % w/w in steps of 3.0 % w/w are used [228] 

covering a significant range of tracer concentration. The experimental campaign includes three 

repeats of the RTD experiment with different tracer amounts (10g, 7.5g, 6g, and 5g) to evaluate its 

effects on the tracer concentration profiles, leading to a total of 12 experimental runs. For robust 
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PAT method, the calibration model is built and used for executing the RTD experiments on the 

same day. The experiments with 6g tracer amount were conducted later resulting in concentration 

profiles following a different trend in terms of peak intensity, as it is susceptible to environmental 

and minor setup changes. Nevertheless, all the E(t) profiles overlapped on top of each other and the 

mean residence time for all the cases showed no statistical significance. Although the PAT models 

need to be recalibrated often, practitioners may not do it routinely as it is tedious and sometimes 

costly. This can be another source of variability that is considered in our analysis. The measured 

tracer concentration profiles for different tracer amounts are shown in Figure 6.3 along with the 

repeated runs.  

 

Figure 6.3: Tracer concentration profiles for different tracer amounts with repeated runs 
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6.1.3. Methods 

6.1.3.1. Signal processing – signal and noise 

A time-series dataset has two components – signal (desired or important part) and noise 

(undesired or unimportant part) [233-235]. A crucial problem in the signal processing literature is 

identifying the true underlying signal from the noise component to correctly analyze the general 

trend of the dataset and evaluate the degree of confidence of the measurements [233, 236]. 

Evaluating the extent of noise is relatively easier for datasets that are generally plateaued around a 

fixed mean value or for situations where the true underlying form of the signal is exactly known. 

However, characterizing the noise becomes challenging if the underlying signal is of a specific 

shape or form, such as the tracer concentration profiles [233, 236]. Along with noise 

characterization, it is also important to consider the limit of detection, which corresponds to the 

lowest measurement of the signal that the measurement device can reliably capture despite the level 

of noise present in the system [228]. Roman-Ospino et al. [228] presented an interesting study 

illustrating probability distributions associated with measurements of low tracer concentrations in 

a feed frame, thus indicating the difficulty in determining the low concentrations accurately. An 

alternative way to evaluate the true signal is using repeated measurements of the RTD signal [152, 

226], which are used to calculate an averaged profile, known as ensemble averaging [233]. 

However, obtaining repeated measurements of the RTD experimentally, can become quite 

laborious and time-intensive, and thus this approach is not always recommended or feasible.  

 

Thus, noise handling and denoising methods are devised to address the fundamental problem of 

distinguishing the true underlying signal from the noise. These methods focus on smoothening the 

dataset by removing sharp, abrupt fluctuations in the time-series data to provide a smoother signal 

which can better capture the underlying trend [233, 235].  Smoothing acts as a low pass filter, which 

allows signals with low frequencies to pass through and attenuates the noise components associated 

with high frequencies in the dataset. Before discussing the denoising methods, it is important to 
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reflect on situations where denoising or noise handling and removal can be important for RTD 

studies, as outlined below [233], 

1. it is important to observe the long-term trend instead of short term 

2. the signal is too noisy to correctly identify the important features of the RTD profile, 

including the height of the peak, the width of the profile and area under the curves 

3. the noisy RTD signal is to be used for post-processing such as identification of peaks 

 

For situations where the RTD dataset contains some outlier points (predominantly seen in 

sensor measurements), it is important to address the outlier detection and removal before 

implementing noise handling strategies [233], as outlier points, if any, can significantly skew the 

trend of the dataset during denoising as well as impact model fitting leading to erroneous outcomes 

[233]. Thus, outlier detection and removal are pre-requisite for denoising and signal processing. 

Some filtering techniques like median filters [237] can be used to handle outliers in the dataset, 

using linear interpolation between the points before and after the outlier point, and can thus restore 

the original trend of the dataset. 

 

6.1.3.2. Noise characterization for RTD studies 

During RTD experiments, various sources of noises are captured along with the underlying 

desired signal. These sources include and are not limited to equipment, environment, 

experimentation, and human noise [151, 152, 233]. Equipment noise corresponds to the noise due 

to vibrations of moving parts in the equipment if not balanced or handled properly. Environmental 

factors include numerous sources, including neighboring activities and vibrations from those 

activities. The experimentation itself is an important source for unseen errors, comprising material 

handling and flow, correct positioning and location of sensors, and vibrations that arise during the 

experiment. Human noise, such as human movements around the equipment, human error during 

experimentation and tracer introduction, calibration measurement, and material handling, is also a 
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key component contributing to the overall noise captured in the datasets. For tracer concentration 

profiles described in section 2, the noise levels captured in the profiles are shown in Figure 6.4. 

These profiles are first converted to E(t) profiles, followed by taking the absolute difference 

between a least-square curve fit using a tanks-in-series model and the E(t) profile. The observed 

types of noises can be identified based on the frequency distribution of the noise and are generally 

referred to by colors [233, 236, 238, 239]. For a uniform noise distribution, the noise is referred to 

as ‘white’ or uniform noise. Pink noise has an inverse proportionality between noise and frequency 

(often referred to as 1/𝑓 noise) and is relatively difficult to remove compared to white noise. Other 

types of noises include red noise or Brownian noise, which has the noise proportional to the square 

root of the frequency, and the blue noise, which has higher power at higher frequencies. It can be 

seen from Figure 6.4 that there exist different types of noise in the RTD profiles - proportional 

noise observed near the peak regions of the profiles, inversely proportional or pink noise, and white 

or constant noise, which is present along the entire duration of the profile. Based on these types of 

noise, specific denoising methods can be devised that provide higher noise removal [233, 236].  

 



 

 

136 

 

Figure 6.4: Noise present in tracer concentration profiles with different tracer amounts shown in 
each sub-plots, where colors (orange, green, and blue) are used to show the noise in repeated 

concentration profiles 

 

6.1.3.3. Denoising methods 

There exist various denoising methods in the literature that provide noise reduction in the 

dataset. It is, however, important to keep in mind that the degree of smoothing can have a significant 

impact on the important RTD features, such as the height and width of the profile. The higher the 

degree of smoothing, the greater is the noise removal, but greater is the possibility of signal 

distortion due to smoothing [233]. Thus, the degree of smoothing should be optimized considering 

the type of signal, the height of the peak, the width of the profile, and the total number of data 

points in the dataset.  
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In this work, we compare time averaging (sliding average and Savitsky Golay filtering) 

and frequency averaging techniques (Fast Fourier transform and wavelet transform) to evaluate 

appropriate denoising methods for RTD studies, based on the degree of smoothing and retention of 

important RTD features.  

 

6.1.3.3.1. Sliding average (SA) 

Sliding average (SA), also known as moving or rolling average, is one of the simplest 

smoothing algorithms [233, 238], involving unweighted averaging of specific number of data 

points. Commonly used with time series, this method involves replacing noisy data points by 

averaged values of adjacent 𝑀 points in the dataset, where 𝑀 corresponds to the averaging window, 

thus capturing the overall trend of the dataset [233]. SA is commonly used in signal processing 

literature and is calculated as shown in Eq. (1).  

 
𝑺𝑨𝒕 =

(𝒙𝒕 + 𝒙𝒕−𝟏 + 𝒙𝒕−𝟐 + 𝒙𝑴−(𝒕−𝟏))

𝑴
 

(1) 

Using Eqn. (1), SA at time 𝑡 (𝑆𝐴𝑡) is calculated as the unweighted average of 𝑀 data points 

obtained prior to time 𝑡. The averaging window 𝑀 is chosen based on the desired degree of 

smoothing vs. the retention of accuracy in the smoothened dataset. The higher the averaging 

window, the smoother the data, but the lower the accuracy of the retained dataset will be. For the 

work presented in this article, a preliminary analysis is conducted to evaluate the desired value of 

𝑀, wherein three values (3, 5, and 10) are tested, and a medium value of 5 is chosen, as it preserves 

the relevant information while denoising the dataset. A comparison of different values of 𝑀 for the 

tracer concentration profile is shown in Figure 6.5. 
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Figure 6.5: Effects of selected smoothing window size on tracer concentration profiles for sliding 

average (SA) method 

 

SA method can be implemented in python using pandas module [240], as listed below - 

(pandas.Series(𝐶1).rolling(𝑀).mean()) where, 𝐶1 corresponds to the noisy dataset to be 

smoothened. Alternatively, MATLAB includes the module movmean, including parameters as 𝐶1 

and the smoothing window (𝑀) [241]. Other variations of SA include cumulative moving average 

(CMA), weighted moving average (WMA), and exponential moving average (EMA) methods 

[233-236]. CMA considers all time points up to the current time 𝑡 to obtain a smoothened dataset, 

focusing on capturing the overall trend. WMA assigns specific weights to the time points for 

obtaining the denoised dataset. Lastly, EMA assigns weights to the data points such that the recent 

points are assigned more importance than the older data points. Thus, EMA reacts to the changes 

and fluctuations in the data faster than SA, which seems to be more efficient for fluctuating datasets 

like RTDs; however, it may not provide desired levels of smoothing for the datasets.  
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6.1.3.3.2. Savitsky Golay (SV) filtering 

Developed and popularized in a seminal paper by Abraham Savitsky and Marcel Golay in 

1964 [242], SV is a filtering method wherein the data points are smoothened by fitting subsequent 

data points with a low-degree moving polynomial using linear least squares [233, 236, 243, 244], 

which is then used to replace the noisy dataset. Thus, each value of the noisy data is replaced by 

the value of the polynomial model fit to neighboring 2𝑛 + 1 points with 𝑛 being greater than or 

equal to the order of the polynomial. SV is a commonly used filtering method in chemometrics, 

signal processing, and spectroscopy literature [233, 236, 238, 239, 242, 245]. SV is applied as 

shown in Eq. (2), where 𝑦𝑗+1  is the observed value and 𝑌𝑗 is the denoised SV filtered value at 

specific time points. 𝐶𝑖  corresponds to the set of 𝑚 convolution coefficients chosen based on the 

selected order of the polynomial model. 

 

𝒀𝒋 =  ∑ 𝑪𝒊

𝒊=
𝒎−𝟏

𝟐

𝒊=
𝟏−𝒎

𝟐 

𝒚𝒋+𝟏   𝒘𝒉𝒆𝒓𝒆,
(𝒎 − 𝟏 )

𝟐
<= 𝒋 <= 𝒏 −

(𝒎 − 𝟏)

𝟐
  (2) 

The parameters for SV, including the smoothing window size (indicating the number of 

powders used to fit a polynomial function) and the order of the polynomial, are investigated using 

preliminary results and the values that provide the best level of smoothing are chosen. Figure 6.6A 

shows the effects of order of the polynomial on the selected RTD data whereas, Figure 6.6B shows 

the effects of the smoothing window size selected for the polynomial. It is observed from Figure 

6.6A that the order of 5 tends to overfit the original noisy data near the baseline, whereas a value 

of 1 does not capture the RTD profile correctly, especially the peak and the width of the profile. 

Thus, an intermediate value of 3 is chosen, which provides a good balance between accuracy and 

denoising. Similarly, Figure 6.6B shows the effect of smoothing window sizes, where higher values 

(21 and 31) do not capture the important features of the RTD profile, whereas a lower value of 5 
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overfits the noisy data, especially near the baseline. Thus, an intermediate value of 11 is chosen as 

the smoothing window size for the SV method. 

 

 

Figure 6.6: Effects of SV parameters on tracer concentration profile - A) effect of polynomial 

order, B) effect of smoothing window size for polynomial fit 

 

In the presented work, SV is implemented on the noisy dataset using python module 

signal.savgol_filter from the scipy parent module as listed here – signal.savgol_filter(𝐶1, 𝑛, 𝑚) 

[246]. Here, 𝐶1 corresponds to the noisy data that needs to be filtered or smoothened and smoothing 

window size (𝑛) and order of polynomial (𝑚) is selected to be 11 and 3, respectively. Alternatively, 

MATLAB uses the function sgolay for performing SV filtering and has similar inputs as listed 

above for the python module [241]. 

 

6.1.3.3.3. Fast Fourier transform (FFT) 

Fourier transform involves transforming a signal from time to frequency domain, 

decomposing the signal into multiple component frequencies contained in the original signal. This 

mathematical transformation, after its conceptualization in the early 1800s [247] and popularization 

around the mid-1900s [248], has been widely applied in various fields of science, mathematics, 

signal processing, and engineering [249-251]. Fast Fourier Transform (FFT) is an algorithm that 

provides the Discrete Fourier transform (DFT) of a signal, which involves decomposing the signal 
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into various frequency components, and requires a time of the order of 𝑂(𝑁2) where, 𝑁 is the data 

size. FFT reduces the computational requirement to the order of 𝑂(𝑁𝑙𝑜𝑔𝑁) [233]. This is beneficial 

for cases where N is large, leading to significant time savings in computing the Fourier transform. 

FFT allows order reduction as it decomposes the DFT of the signal into multiplication of sparse 

factors. Figure 6.7 shows the different steps associated with denoising a signal using the FFT 

method. FFT is commonly used as a low pass filter by first calculating all the frequencies contained 

in the signal and removing the frequencies associated with the noise component within the original 

signal to obtain a low pass filter in the frequency domain. Lastly, the signal is transformed back to 

the time domain by performing Inverse FFT (IFFT), resulting in a denoised signal. FFT is obtained 

using the scipy.fftpack module in python, which includes functions such as, fftpack.fft and 

fftpack.ifft for calculating FFT and IFFT of the signal [246]. Similarly, MATLAB uses fft and ifft 

functions for obtaining the FFT of the original signal and inverting it back to the time domain [241].  

 

 

Figure 6.7: Signal denoising using FFT - A) original noisy signal in time domain, B) frequency 

domain of noisy signal, C) denoising of noisy signal in frequency domain, D) denoising signal in 

time domain 
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6.1.3.3.4. Wavelet transform 

Though widely used as a promising method for denoising, FFT is best applicable for 

scenarios where the frequencies present in the signal are not time-dependent and are stationary 

along time. However, most of the signals that are encountered in nature are not stationary and have 

a time-dependent frequency spectrum associated with the signal. Some examples include ECG 

signal [252, 253], equipment or sensor data [254], fault detection [255], and stock markets [256]. 

This is valid for RTD applications as well, as the degree of noise associated with the signal varies 

over time, and it does not have constant white noise but a combination of white, pink, and 

proportional noise (as observed in section 2), which are time-dependent. Thus, for dynamic systems 

where the frequency spectrum varies along time, it is important to record the frequencies present 

in the signal as a function of time. FFT fails to capture these dynamics as it provides detailed 

resolution in only the frequency domain but zero resolution in the time domain. 

 

For such systems, wavelet transform (WT) is a powerful method for the analysis of time-

series datasets [233, 257]. WT method can provide a high degree of resolution in both time and 

frequency domains, as it has the dual capability to capture small frequencies (with high resolution 

in frequency domain and low resolution in time domain), as well as large frequencies (with low 

resolution in frequency domain and high resolution in time domain). The stretched-out part of the 

wavelet captures the main shape of the signal whereas, the compressed part of the wavelet captures 

the sharp changes present in the signal. Amongst the different types of wavelet families that exist 

with different shapes and compaction levels for denoising of datasets, the most appropriate wavelet 

family is chosen. These families include discrete wavelets such as Haar, Daubechies, Symlets, 

Coiflets, Biorthogonal and continuous wavelets such as Mexican Hats, Morlet wavelet, complex 

Gaussian wavelet [257-261]. Within each wavelet family, there exist sub-categories based on the 

level of decomposition, refinement, and the number of coefficients.  
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Discrete wavelet transform (DWT) is used for the studies highlighted in this article, as DWT has 

discrete nature in frequency domain and is applicable to dynamic systems, i.e., with continuous 

nature in time domain. DWT method acts as a filter-bank that decomposes the signal into a series 

of high-pass and low-pass filters [233, 262]. For WT, frequencies are defined in terms of scales, 

such that high frequencies correspond to small scales. The first step starts with analyzing high 

frequency behavior. The second step increases the scale by a factor of 2, and the signal is analyzed 

around half of the maximum frequency. The third stage increases the scale by a factor of 4 and the 

signal is analyzed around a quarter of the maximum frequency. These steps are continued to reach 

the desired level of decomposition. Along with these steps, the original signal is transformed into 

a series of signals with different frequencies. Following this transformation, the denoised signal 

can be obtained by filtering out the high frequency region of the signal, controlled by a threshold 

rule such as soft, hard, and garrote rule [263].  Denoising is performed to a minimum of the selected 

threshold value or 𝑓𝑙𝑜𝑜𝑟(𝑙𝑜𝑔2𝑁) where, 𝑁 is the number of samples in the dataset [264, 265]. For 

the denoising work presented in this article, the DWT is performed using open-source wavelet 

transform software PyWavelets in python [261]. MATLAB includes a wavelet toolbox including 

signal denoising function – wdenoise is used for obtaining denoised RTD profiles with level set to 

its default value [264-266]. Different wavelet families and sub-categories are compared with the 

noisy RTD profile to ensure the most appropriate family and sub-category is selected for RTD 
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denoising. Figure 6.8 shows a comparison of different wavelet families, where discrete wavelet 

families are compared to identify the best candidate.  

 

 

Figure 6.8: Comparison of discrete wavelet families on tracer concentration profiles - A) original 

and denoised concentration profiles, B) original concentration profile, C) denoised profile using 

symlets, D) denoised profile using daubechies, E) denoised profiles using coiflets 

 

Based on Figure 6.8A, the wavelet families - symlets, daubechies, and coiflets perform 

fairly close to each other, as shown in Figure 6.8C-Figure 6.8E, while bior wavelet adds some 

variability at the start and end of the profile. For the work presented in this article, Symlets wavelet 

(sym4) is used for denoising tracer concentration profiles using wavelet transform, as it provides 

smoother profiles in comparison to the daubechies and coiflets. 

 

6.1.3.4. Comparison of denoising methods 

It is important to develop a quantitative comparison of the denoised profiles to evaluate the 

most appropriate denoising strategy. This sub-section aims at developing comparison metrics for 

denoised tracer concentration profiles. These metrics are developed such that they preserve the 

relevant information as contained in the original profiles as well as provide adequate levels of 

denoising. These metrics are outlined as follows -  
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i. Height of denoised vs. original peak  

This metric compares the maximum height of the denoised profile to the maximum 

height of the original profile [233]. It ensures that denoising does not significantly affect 

the height of the tracer concentration peak, as the peak height is crucial for RTD-specific 

applications such as drug product quality and out-of-specification (OOS) analysis. 

 

ii. Width of denoised vs. original peak 

This metric compares the width of the denoised tracer concentration profile to the 

original profile and ensures that the denoising method does not severely impact the width 

of the tracer concentration profile [233]. As the width varies along the height of the tracer 

concentration profile, the width is measured at a specific height equal to half of the 

maximum height (also known as ‘full-width at half-maximum or fwhm’) [267]. The width 

of the tracer concentration profile is a crucial metric as it is important for applications such 

as material traceability.  

 

iii. Standard deviation (STD) 

The standard deviation of a base signal (constant around a mean value of zero) 

corresponds to the extent of noise present in the system and, thus, is used as a metric to 

compare the denoising methods presented in this article. STD is used in two different ways 

to provide a robust comparison.  

a.  Signal_STD – This metric compares the standard deviation of the original 

signal and the denoised signal [233] and thus quantifies the level of denoising. 

It is important to keep in mind that this metric assumes the Gaussian profile of 

tracer concentration in RTD studies itself to be part of the noise and evaluates 

the standard deviation accordingly. 
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b.  Difference_STD - This metric focuses on comparing STD of the difference 

between denoised and original signal. The difference between the two signals 

provides a noisy base signal, and measuring the STD thus estimates the degree 

of smoothing provided by the denoising method. 

 

iv. Signal-to-noise ratio (SNR) 

SNR is a widely used metric in engineering literature and defined as the ratio of 

inherent signal to inherent noise present in the measurement [233-236, 238, 245]. This can 

be challenging for RTD studies as it is difficult to evaluate the inherent noise present in the 

profile. Thus, a modified version of SNR is used in this work, defined as a ratio of the mean 

divided by the standard deviation of the signal [233], and is used in two ways as shown 

below -  

a. Difference_SNR – This metric evaluates the SNR of the signal obtained from 

the difference between the original and denoised RTD profiles and is evaluated 

as absolute value of mean of the difference divided by the absolute value of 

the standard deviation of the difference.  

b. Improvement_SNR – This metric is similar to the difference_SNR but 

removes the effect of mean on evaluation of SNR. The mean value of the 

difference should ideally be 0, but slightly positive or negative values can 

affect the results of the analysis. Thus, in this case, a mean value of 1 is 

considered and the metric is evaluated as the reciprocal of the standard 

deviation of difference between the two signals. 

 

All these metrics, when applied together, ensure that the denoising method preserves the 

important features of the RTD while providing desired levels of denoising or noise removal. Thus, 
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these metrics are implemented and analyzed together for a comprehensive comparison of various 

denoising methods.  

 

6.1.4. Results and discussions 

6.1.4.1. Denoising methods on noisy RTD datasets 

The denoising methods described in section 3.3 are applied to the experimentally obtained 

tracer concentration profiles. To provide a robust analysis, the denoising is evaluated for all 12 runs 

in the experimental plan (as outlined in section 2), where for each experimental setting, 3 replicates 

are available. The denoised profiles obtained using different denoising methods are presented 

below in Figure 6.9. Figure 6.9A shows the denoised profiles using SA, and Figure 6.9B shows the 

denoised tracer concentration profiles using SV with a polynomial of window size of 11 and a 

polynomial order of 3. Figure 6.9C represents the degree of denoising obtained from FFT, and 

Figure 6.9D shows the denoising of concentration profiles using WT. 
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Figure 6.9: Denoised tracer concentration profiles using denoising methods - A) sliding or 

moving average, B) SV filtering, C) FFT, and D) wavelet transform 

 

6.1.4.2. Comparison of denoising methods based on metric evaluation 

Figure 6.10 shows the denoised profiles for the 1st and 2nd run in the experimental campaign 

showcasing the differences in the denoised profiles using different denoising methods. Here, SA 

provides a slightly skewed profile as compared to other methods. These profiles are further 

compared based on comparison metrics calculated for all denoising methods. 
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Figure 6.10: Comparison of denoising methods demonstrated for 1st and 2nd experimental run 

 

The comparison metrics - height, width, and standard deviation of the denoised profiles are 

compared with the original profile, whereas the other metrics, including Difference_STD and 

Improvement_SNR, are evaluated taking the original profile into account. For the experimental 

runs performed in this work with 3 repeated experiments for each experimental setting, the 

denoising metrics are averaged for the repeated experiments. Table 6.1 shows the averaged values 

for each experimental setting using the different denoising methods. Based on these values, the best 

denoising method can be investigated. 

 

Table 6.1: Metrics for comparison of different denoising methods on RTD studies 

Metrics for 

comparison 

Sliding 

average 

(SA) 

Wavelet 

transform 

(WT) 

Savistky 

Golay 

(SV) 

Fast Fourier 

Transform 

(FFT) 

Original 

RTD 

profile 

Height of RTD 

profile 

9.757 10.189 10.111 10.204 10.290 

4.477 4.740 4.605 4.628 4.835 

6.597 6.983 6.804 6.839 7.098 

4.056 4.233 4.140 4.148 4.322 

5.273 5.418 5.380 5.409 5.429 
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Width of RTD 

profile 

2.475 2.532 2.524 2.534 2.558 

3.848 3.923 3.912 3.921 3.942 

2.319 2.372 2.362 2.367 2.389 

Signal_STD 

2.239 2.301 2.285 2.297 2.306 

1.051 1.075 1.072 1.076 1.086 

1.634 1.666 1.661 1.665 1.674 

0.985 1.007 1.003 1.005 1.015 

Difference_STD 

9.089 1.426 1.856 2.443 − 

4.355 1.593 1.608 1.738 − 

5.971 1.621 1.574 1.894 − 

3.825 1.262 1.303 1.465 − 

Difference_SNR 

1.40E-03 6.90E-03 2.77E-03 3.26E-16 − 

3.09E-03 1.07E-02 8.29E-04 2.03E-16 − 

4.00E-03 8.11E-03 3.59E-03 3.99E-16 − 

9.53E-03 4.37E-03 2.96E-03 5.02E-16 − 

Improvement_SNR 

1.3338 8.49398 4.96588 6.52627267  

2.86541 7.6917 7.08962 7.66633434  

2.06265 7.53036 6.46147 7.75139959  

3.12194 9.65982 8.13137 9.18556249  

 

 The metrics measuring the height and the width of the tracer concentration profile ensure 

that the important features of the RTD profile are preserved. It is, however, crucial to remember 

that the original tracer concentration profile is noisy and metric values for the height and the width 

of the original profile may be skewed based on the extend of noise present in the system. Thus, for 

these metrics, the best strategy is to select the denoising method that provides values close to that 
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obtained for the original profile, albeit it is not required for them to match. Table 6.1 shows that 

WT provides very close values compared to the original RTD for both metrics – height and width 

of the RTD profile. The only exception is the height metric for the 1st experiment with 10g tracer, 

where FFT seems to closely match the values obtained for the original profile.  

  

Signal_STD metric compares the standard deviation of the denoised profiles to that of the 

original profile. For this metric, the best method should provide the low values close to that of the 

original profile, as the measured standard deviation considers the Gaussian profile (without noise) 

itself as noise along with the noise measured during the RTD experiments. Thus, the lower the STD 

values, the more the RTD signal tends to smoothen out and the RTD features may get lost. 

Signal_STD metric further shows that the WT method provides the best level of smoothing as 

compared to other methods.  

  

Difference_STD metric aims at evaluating the standard deviation of the difference of the 

denoised and the original RTD profile. This difference results in a noisy signal centered around a 

mean value of 0. Calculating the standard deviation of this signal then provides an understanding 

of the closeness of denoised and original RTD profiles. Thus, lower value of this metric is better 

for evaluating denoising methods. However, this value, if equal to 0, indicates that there is no noise 

reduction between the original and denoised profiles. Table 6.1 shows that WT provides low values 

of this metric followed by FFT, SV, and SA. For the SNR_Difference metric, which aims at 

evaluating the SNR of difference between the original and denoised profiles, a lower standard 

deviation and a correspondingly higher value of the metric would indicate a higher degree of 

smoothing. From Table 6.1, it is observed that WT provides higher values of the metric in 

comparison to other methods. SA also provides relatively close values for SNR_Difference. 

However, the SA method distorts the profile's important features, including width and height. For 

SNR_Difference, it is also important to keep in mind that the mean values of the difference between 
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the denoised and the original profiles may affect the outcome. Thus, SNR_Improvement metric is 

also compared, which considers a mean value of 1 and calculates the SNR of difference between 

the denoised and original profiles. For this metric, lower standard deviation and correspondingly a 

higher value of the metric would indicate more denoising. Thus, the WT method outperforms other 

methods except for one run wherein FFT performs better than WT. These values are highlighted in 

Table 6.1.  

 

Considering all the above metrics together, it can be concluded that WT performs best, 

followed by other methods – FFT, SV, and SA. The underlying reason is that WT ensures 

smoothing across both time and frequency domains. FFT ranks behind WT, as it provides 

smoothing along only the frequency domain, leading to similar denoising levels only for certain 

scenarios. It is also important to understand that these values of the comparison metrics are 

dependent on the meta-parameters for each method (e.g., the averaging window and order of 

polynomial for SV). Thus, it is imperative to optimize the meta-parameters prior to comparing or 

utilizing any denoising method. 

 

6.1.4.3. Impact of denoising on applications of RTD  

Lastly, following the evaluation and comparison of different denoising methods, this 

section highlights the impact of denoising of tracer concentration profile on important applications 

of RTD studies for continuous pharmaceutical manufacturing. These applications include material 

traceability for tracking material lots and quality assurance for evaluating OOS analysis, which are 

widely used techniques to ensure robust manufacturing practices [8, 150, 268].  
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6.1.4.3.1. Material traceability 

For evaluating the impact of denoising methods on material traceability, a similar approach 

as outlined by Engisch et al. [210] is implemented, where material lots are identified using lot 

boundaries defined as 0.5% and 99.5% of the cumulative distribution function (CDF), obtained 

using the Eq. (3-4). The lot boundaries defined by 0.5% and 99.5% of CDF are used to obtain the 

boundaries of specific lots for material tracking, as shown in Figure 6.11. Figure 6.11 aims at 

highlighting the differences in lot boundaries for material tracking of the original profile (shown in 

Figure 6.11A and Figure 6.11C) and the denoising profile using WT (shown in Figure 6.11B and 

Figure 6.11D). The lot boundaries for the original profile are 16.375 seconds and 83.384 seconds 

for 0.5% and 99.5% of CDF of the original tracer concentration profile. These values correspond 

to 16.379 seconds and 81.895 seconds for 0.5% and 99.5% of CDF for the denoised profile (using 

WT), leading to an error of 1.7%. Based on these values, it can be concluded that denoising does 

not largely impact the lot boundaries for material traceability.  

 

𝐸(𝑡) =  
𝐶(𝑡)

∫ 𝐶(𝑡)𝑑𝑡
∞

0

 (3) 

 

𝐹(𝑡) =  ∫ 𝐸(𝑡)𝑑𝑡
𝑡

𝑡=0

 (4) 
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Figure 6.11: Material tracking using original and denoised profiles with lot boundaries defined 

based on 0.5% and 99.5% of F(t) 

 

6.1.4.3.2. Product quality assurance 

Similar to material traceability, the impact of signal denoising on product quality assurance 

is quantified using an OOS analysis. In this approach, the tracer concentration profile is converted 

to RTD 𝐸(𝑡) profiles, which is then used to evaluate OOS product, if any, by convoluting 𝐸(𝑡) 

with different pulse input disturbances with all possible combinations of duration and intensity of 

the disturbance. Based on the convoluted concentration profile, the product is analyzed for OOS 

analysis, and the degree of deviation from the desired value is recorded for all these combinations 

of input profiles. The degree of deviation plotted as a function of the intensity and duration of the 

input profile is commonly known as the funnel plot. Funnel plots have been widely used to evaluate 

OOS product and assure product quality [102, 120, 269]. In this work, the funnel plots are 

developed for the original tracer concentration profile as well as the denoised profile to observe the 

differences between the two, if any, as shown in Figure 6.12A and Figure 6.12B, where the 
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denoised profile is obtained using WT. To compare the two funnel plots, they are overlaid on top 

of each other, as shown in Figure 6.12C, where the two funnel plots align perfectly on top of each 

other. This indicates that the proposed denoising does not alter the product quality assurance, as 

observed using the OOS analysis.  

 

 

Figure 6.12: Funnel plots developed for A) original concentration profile, B) denoised 

concentration profile, C) both profiles overlaid together 

 

Thus, it can be concluded that denoising the tracer concentration profile does not impact 

the RTD applications such as material traceability and product quality assurance and aims at 

providing greater clarity of the true underlying signal by identifying and smoothening the noise 

component present in the measured signal. 
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6.1.5. Conclusions 

 

Despite the importance of accurate signal characterization of RTDs in the pharmaceutical 

manufacturing industry, the literature lacks description and analysis of appropriate data pre-

treatment strategies. This makes it difficult to utilize existing literature for applications such as 

material traceability and product quality assurance, especially as different data pre-treatment 

strategies lead to uncertainty regarding the true signal and noise components. To address this 

problem, the proposed article provides a detailed description of data pre-treatment strategies, 

including noise characterization and denoising methods for tracer concentration profiles. The 

article focuses on the characterization of noise present in tracer concentration profiles, discussion 

of different denoising methods, and quantitative comparison of these strategies using performance 

metrics. The performance metrics are devised to ensure desired levels of smoothing of the dataset 

while maintaining the important features of the profile. The results indicate that frequency 

averaging methods such as wavelet transform and Fourier transform provide higher signal retention 

than time averaging methods, as observed from the values of the performance metrics. It is 

important to point out that the specific values of performance metrics for denoising methods are 

dependent on the respective meta-parameters, and thus, it is recommended to optimize the values 

of the meta-parameters prior to utilizing or comparing different methods. Further, it is observed 

that the denoising methods focus on cleaning the dataset to correctly identify the noise and the 

signal components of the dataset for further analysis and do not scientifically impact the RTD 

applications such as material traceability and product quality assurance. The presented work on 

RTD data pre-treatment has been extended to quantify the impact of baseline noise and the need of 

long RTD tails on product quality assurance through truncation of RTD profiles, aimed towards 

focusing calibration efforts to capture RTD peak effectively as compared to the tail region.  
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6.2.Analysis of RTD using truncation 

 

6.2.1. Introduction 

The residence time distribution (RTD) is the distribution in time that a material spends or resides 

in the system under study [197, 199, 200]. It has been widely applied across various technology 

areas, including continuous manufacturing of petrochemicals, pharmaceutical products, plastics, 

polymers, food, catalysts, perfumes, oils; distillation columns; absorption and adsorption columns, 

and chromatography columns; wastewater treatment plants; engineering of flow reactors, fixed bed 

reactors, microfluidic reactors, continuous flow polymerization, and cascades of stirred tank 

reactors and other continuous flow chemistry applications [10, 41, 102, 152, 197-200, 212, 270]. 

Traditionally applied in the continuum domain, RTD aims at understanding the bulk flow patterns 

and the extent of mixing (and stagnation) for process design and optimization [197]. In the last 

decade, it has also been extensively employed for applications involving solid granular or powder 

Acknowledgement of publication status:  

Entire sections of this chapter are being prepared to be published in a scientific journal 

written by the author of this thesis. This work is completed in collaboration with Sonia M. 

Razavi1, Andrés Roman-Ospino1, Marianthi G. Ierapetritou2, Fernando J. Muzzio1*  

 

Affiliations: 

1 Engineering Research Center for Structured Organic Particulate Systems (C-SOPS), 

Department of Chemical and Biochemical Engineering, Rutgers – The State University of 

New Jersey, Piscataway, NJ, 08854, USA 

2 Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, 

Delaware, 19716, USA  

* Corresponding author – email – muzzio@rutgers.edu 



 

 

158 

systems [102, 212], specifically in the pharmaceutical industry for developing predictive models 

for powder flow and mixing for various unit operations (such as twin-screw extruders [206, 271, 

272], granulators [211, 273-275], fluidized bed dryers [275], continuous blenders [151, 170, 226, 

276-279], powder feeders [169, 280], feed frames and tablet press [281-285]) and overall 

manufacturing lines (including direct compaction [122, 210, 213, 286], dry granulation[47, 211, 

278, 287], and wet granulation[287]). These studies have been further extended for important 

pharmaceutical applications[102], such as material traceability[47, 122, 210, 288, 289], product 

quality assurance and system health monitoring[214], diversion of out-of-specification (OOS) 

material[120, 122, 269, 290], aimed towards ensuring final drug product quality and developing 

robust manufacturing practices.  

 

RTD is normally obtained by introducing a high-contrast traceable material (commonly known as 

a “tracer”) at the inlet of the system under study along with the bulk fluid and measuring its 

concentration as a function of time at the outlet [10, 41, 102, 152, 197-200, 212, 270]. For RTD 

studies, it is essential to ensure that the tracer does not affect the bulk flow of materials, which 

would prevent capturing the true RTD in the system. Thus, the tracer material is chosen specifically 

to have similar physico-chemical flow properties as that of the material being traced while being 

inert and detectable[151, 226]. Once the tracer is selected, the RTD experiments are performed 

under controlled conditions that minimize the impact of external disturbances on the system, 

including the disturbance introduced during the addition of tracer at the inlet [152, 291]. The tracer 

concentration is measured at the outlet of the system, using process analytical technology (PAT) 

techniques, with a measurement frequency that is at least one order of magnitude faster than the 

expected duration of the RTD peak. Commonly used PAT techniques in the pharmaceutical 

industry are based on vibrational spectroscopy, such as NIR and Raman45. A PAT strategy 

involving a relatively fast data acquisition method, based on a chemometric calibration model 

spanning the entire range of variation of tracer concentration, is developed to correlate the obtained 
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spectral measurements of the outlet stream to the tracer concentration (𝐶(𝑡)). Lastly, the RTD 

probability distribution function (𝐸(𝑡)) is obtained for the system using Eq. (5). Also known as the 

exit age distribution, 𝐸(𝑡) mathematically describes the distribution of time that each portion of the 

bulk fluid resides in the system before exiting out [101, 197, 199, 200]. Thus, it can be used to 

understand the flow patterns and develop predictive models to replicate the system dynamics. This 

is typically done using simple dynamic elements such as ideal stirred tanks and plug-flow pipes. 

Non-ideal mixing is captured using components such as dead volume, bypass, and recycling.  

 
𝐸(𝑡) =

𝐶(𝑡)

∫ 𝐶(𝑡)𝑑𝑡
𝑡=∞

𝑡=0

 (5) 

The RTD is normally characterized using metrics corresponding to its 1st, 2nd, and 3rd centered 

moments along time, commonly known as the mean residence time (MRT), the mean-centered 

variance (MCV), and the skewness of RTD, respectively [101, 197, 199, 200]. These metrics 

characterize the main features of the RTD profile, such as the peak, width, and skewness, as 

compared to a Gaussian profile, and the tail region, and are used to quantitatively compare multiple 

RTDs. Typically, RTD studies (including the experimentation and development of PAT strategy) 

are conducted such that all the above-mentioned features of the profile are captured as accurately 

[231, 292, 293]. The chemometric calibration models included in the PAT strategy are best 

constructed based on an experimental design incorporating process, material, and environmental 

variability [231]. The obtained spectral measurements at the outlet stream are then pretreated using 

data normalization techniques to ensure the variability in tracer concentration is the main source of 

observed variance[231, 294]. The range of concentration values considered in the calibration model 

is normally defined by the range of potential values observed in the system during the RTD 

experimentation and depends on the target amount of tracer added to the system. The target amount 

of tracer is selected to be high enough to be easily detectable and low enough so as not to affect the 

inherent physico-chemical flow properties of the system[102, 151, 294]. Once the target amount of 
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tracer is defined, the calibration range is evaluated, and powder blends are produced based on the 

experimental design spanning the desired calibration range for RTD experiments. Based on these 

experiments, the calibration models are developed to determine the correlation between spectral 

measurements and tracer concentration values. It requires extensive experimentation to develop a 

rigorous calibration model capable of detecting the entire range of observed values of tracer 

concentration and is further extended for situations where the tracer material is yet to be defined, 

and different combinations of tracer/bulk powders are considered [229, 231, 294-296].  

 

In previous studies, there has been much emphasis on developing a robust experimental campaign 

capable of capturing all features of the RTD profile, including the tail and the peak region [226]. 

However, when developing a chemometric model, the methods distribute the error of prediction 

across the entire range of measurements. As a result, as the range of concentrations becomes wider, 

accuracy is somewhat lost across the entire range. This loss of accuracy is most significant in the 

tail of the distribution because concentrations are smallest, and therefore, relative errors (due to 

error of measurement) tend to be highest. Efforts to minimize tail errors by, for example, including 

data sets for a longer time duration, come at the expense of loss of accuracy in the peak region 

[152]. Conversely, if the calibration model is developed focusing on capturing the peak accurately, 

it is then likely that accuracy will be lost in the tail region, leading to noise near the RTD baseline 

(and vice versa). Despite the extensive efforts required in obtaining accurate RTD profiles, there 

exists a possibility that the low values of tracer concentration may not be predicted correctly, 

especially if the values are below the limit of detection. Román-Ospino et al. [228] present an 

interesting finding concerning the limit of detection of tracer concentration, where the authors 

demonstrate the existence of overlapping probability distributions for low values of tracer 

concentration, which make it challenging to identify these values accurately. The uncertainty 

introduced in the RTD profiles, due to a typically noisy tail region, eventually impact decisions 

concerning the “end” of the profile, the RTD metrics that best characterize the profile, and affect 
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RTD-based applications such as material traceability, and out-of-specification (OOS) analysis 

[122]. Despite some efforts being directed towards developing appropriate denoising strategies 

[152, 291] for RTD profiles to address such issues, it may become challenging to distinguish the 

intrinsic systemic profile from the external noise, especially considering the limit of detection. 

 

The main takeaway point made in this article is that for some RTD applications, the effect of the 

tail is negligible, and it is possible to minimize effort and maximize accuracy by focusing only on 

the peak of the RTD. To this end, a novel approach focusing on analyzing the effects of RTD 

features is investigated from a quality assurance perspective. In the presented work, the 

experimentally obtained RTD profiles are truncated at different baseline levels to examine the 

impact of different features of the RTD profile and limit of detection on the final product quality. 

Ensuring that the quality of drug products is within the desired specification as part of a quality 

assurance framework is essential in manufacturing pharmaceutical solid drug products [59, 216, 

218]. OOS analysis focuses on identifying the products that may not be within the specified limits 

defined by the regulatory agencies, and if not detected and diverted, can lead to risk to patients, and 

to product recalls, causing considerable losses to the pharmaceutical companies [150, 268]. Thus, 

OOS analysis is vital in identifying OOS products beforehand to maintain the quality of the final 

drug products.  

  

The remainder of this article is organized as follows: Section 2 focuses on the different methods 

used in the article, including experimental work, OOS identification, and the different case studies 

for evaluating the important features of RTD using truncation. The results of the case studies are 

provided in section 3, followed by discussion in section 4, including work focused on identifying 

optimal levels of truncation in RTD profiles and the effects of truncation of RTD itself by 

comparison of truncated profiles with the original. Conclusions are outlined in section 5.   
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6.2.2. Methods 

6.2.2.1. Experimental details 

The experimental setup used here is shown in Figure 6.13A as described in a previous publication 

from our group [225]. The details of the setup and experimental procedure are briefly discussed 

below. In the presented RTD studies, a pulse test is performed, with a high contrast tracer added at 

the inlet of the system and the tracer concentration tracked at the outlet to obtain the RTD of the 

system under study. The experimental setup consists of a single K-Tron KT-20 feeder (Coperion 

K-Tron Pitman Inc., Sewell, NJ) with a coarse auger screw configuration, with a C-type motor to 

maintain a steady flow of powder at the outlet of the feeder unit. The powder is then fed to the inlet 

of the continuous blender, where a Gericke GM 250 mixer (Gericke USA, Somerset, NJ) is used 

with alternate blade configuration operated at 100 RPM, and a weir (semi-circular disc) is placed 

at 60o at the outlet to control powder hold up inside the unit. The blender outlet is connected to a 

long vibratory conveyor feeder, providing a homogeneous sample presentation of powder for PAT 

measurement. A Bruker NIR spectrometer is installed above the conveyor to measure the tracer 

concentration. The overall setup is arranged as shown in Figure 6.13A, and the system is operated 

at a flowrate of 12kg/hr with one excipient powder (Avicel PH301) as the bulk powder and 

Mannogem XL as the tracer. The RTD experiment is repeated 3 times to ensure robustness. To 

obtain the tracer concentration profile from the NIR measurements, an NIR calibration model is 

developed with powder blends containing 0.0 % - 9.0 % Mannogem XL in steps of 3.0 % to cover 

the anticipated range of tracer concentration values. The details of NIR chemometric models are 

described in Razavi et al. [225]. Here, the tracer concentration profile obtained using 10g tracer 

amount is used for downstream analysis of important RTD features as shown in Figure 6.13B, and 

similar analysis can easily be extended for other tracer amounts.   
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Figure 6.13: RTD studies, A) experimental setup, B) tracer concentration profiles with repeated 

runs. 

 

6.2.2.2. Predictive identification of OOS product 

Formation of OOS product can be predicted using RTD studies, and the steps are listed below[46, 

102, 150, 210, 290]. After obtaining the tracer concentration profiles experimentally, these profiles 

are used for OOS analysis, focused on quantifying the probability of OOS material being produced 

in the system subject to various tracer input profiles or disturbances in the system. This is quantified 

by the convolution of input profiles with the RTD (𝐸(𝑡)) profiles of the system under study. The 

first step involves obtaining the 𝐸(𝑡) profiles from the tracer concentration profiles (𝐶(𝑡)), using 

Eq. (1). The second step involves convoluting the obtained 𝐸(𝑡) profiles with input profiles 

representing process disturbances or fluctuations. Convolution is performed as shown in Eq. (6), 

where 𝐸1(𝑡) corresponds to the RTD of the system and 𝐸2(𝑡) represents the input disturbances 

[210]. For convolution, the RTD dataset can be used directly (i.e., without fitting an RTD model). 

The convoluted concentration profile provides an estimate of OOS material that deviates from the 

base value, e.g., having a % deviation of more than 5%, and it can be used to identify the time limits 

within which the OOS product is formed, during which the material is diverted [210]. 
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𝐸𝑐𝑜𝑛𝑣(𝑡) = 𝐸1(𝑡)⨂𝐸2(𝑡) =  ∫ 𝐸1(𝜏) ∗ 𝐸2

∞

−∞

(𝑡 − 𝜏)𝑑𝜏 (6) 

The steps mentioned above are repeated for various combinations of duration and intensity of 

disturbances applied to the system, which are convoluted with the E(t) profile to obtain % 

deviations of the signal for all possible combinations of the duration and intensity of disturbance. 

Funnel plots are developed based on the % deviations of concentration from the base value. First 

conceptualized in 2017, funnel plots have been widely used in the literature for performing OOS 

analysis [102, 120, 122, 269]. Funnel plots are mainly categorized into 2 regions – a feasible region 

where the combinations of duration and intensity of disturbances do not lead to OOS product (i.e., 

maximum % deviation is less than 5%) and an infeasible region where OOS product is formed (i.e., 

where the maximum % deviation is greater than 5%) and can potentially lead to product recalls 

[122]. The steps involved in developing funnel plots are outlined in Figure 6.14. These steps are 

repeated to obtain funnel plots for different scenarios. 
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Figure 6.14: Steps involved in OOS analysis - A) obtaining tracer concentration profile, B) 

evaluating RTD E(t) profile, C) quantifying OOS for input profiles when convoluted with E(t), D) 

developing funnel plot analysis 

 

6.2.2.3. Evaluation of important features of RTD using truncation 

This section focuses on identifying important features of RTD and their respective effects on funnel 

plot or OOS analysis from a quality assurance perspective. In the presented work, the important 

features are evaluated using truncation of tracer concentration profiles. Several case studies are 

showcased in Figure 6.15, where specific parts of the profiles are truncated to understand their 

impact on the funnel plots. The details of these case studies are outlined below.  
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Figure 6.15: Case studies for truncation of RTD profile - A) truncation of tail region, B) 

truncation along time, truncation along Y axis – focusing on C) low limits of detection, and D) 

high levels of truncation. 

 

6.2.2.3.1. Truncation of tail regions – do tails matter? 

This case study focuses on analyzing the effects on OOS analysis of truncation of the RTD’s tail 

based on a minimum concentration of tracer. This analysis is directly related to the effort required 

to measure the tail accurately; to accurately quantify lower tracer concentration levels, the 

experimenter requires more extensive data, with faster and more sensitive (and more expensive) 

instrumentation. Moreover, retention of a longer tail would necessarily incorporate more error into 

the overall data set, which would then reduce the accuracy of peak measurements. In this study, 

two RTD profiles with different tails are compared, and the differences are evaluated based on 

funnel plots aimed towards analyzing the optimal efforts required to obtain the RTD of a system 
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experimentally. The tracer concentration profile is simulated to obtain the profiles with different 

tail regions, obtained by superimposing two Gaussian profiles representing the main RTD peak and 

the tail region, as shown in Figure 6.15A.  

 

6.2.2.3.2. Truncation along time axis 

Truncation of the RTD profile along the time axis or vertical truncation can be useful to evaluate 

the impact of the time extension at the end of the RTD profile on the production of OOS material. 

This is an important case study as it helps understand and investigate the need for capturing an 

RTD beyond its peak. As discussed below, this analysis provides an opportunity for significant 

experimental savings. To investigate this case study, a tracer concentration profile is obtained for 

a long duration of 200 seconds (well beyond the span of the RTD’s peak), and it is compared with 

a truncated version (truncated at 50 seconds), as shown in Figure 6.15B, to understand how time 

truncation of the RTD’s tail affects the OOS analysis. The corresponding effects are evaluated 

using funnel plots.  

 

6.2.2.3.3. Truncation along Y axis 

Truncation of the RTD profile along different values of tracer concentration (shown on the Y axis), 

i.e., horizontal truncation, is useful in understanding the impact of different regions in the RTD 

peak on the funnel plot using OOS analysis. This case study is quite useful in evaluating the 

probable effects of an NIR calibration model that is not calibrated for values below a certain limit 

(e.g., 2% wt/wt of tracer concentration) on the RTD profile and funnel plots. This case study is 

explored in two parts. First part focuses on analyzing the impact of low values of tracer 

concentration on OOS analysis. Capturing low levels of tracer concentration values accurately has 

been an important issue in the experimental characterization of RTD profiles, especially combined 

with the efforts to characterize the baseline correctly and distinguish the true signal from noise. In 
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this study, the tracer concentration profile is truncated at low limits (0.125, 0.25, 0.375, and 0.5 % 

wt/wt) as shown in Figure 6.15C, and subsequent effects on the funnel plot analysis are analyzed 

to evaluate the need for accurately obtaining low values of tracer concentration, especially given 

the inherent concern about their reliability [228]. The second part of this case study focuses on 

analyzing the impact of higher degree of truncation along Y axis, to identify optimal levels of 

profile that need to be captured without significant changes in the funnel plot. For this study, the 

RTD profile is truncated at different levels (0.5, 1, 1.5, and 2% wt/wt) as shown in Figure 6.15D, 

and the respective effects are evaluated using the funnel plot.  

 

6.2.3. Results 

In this section, the case studies described in section 2.3 are evaluated using funnel plots to 

understand the effects of truncation on OOS analysis. The funnel plots are developed for original 

and truncated RTDs for ease of comparison, as shown in Figure 6.16. It is important to note that 

the truncation of tracer concentration profiles is performed such that the total number of 

measurements are preserved. Here, the total time duration of profile is maintained during truncation 

to ensure accurate calculation of the area under the curve for 𝐸(𝑡). This prevents the need to 

renormalize the RTD after truncation. 

 

The first case study focusing on truncation of tail regions is performed to mainly answer the 

question – “do tails matter?”. Towards this end, the differences in the overlaid funnel plots of the 

two RTD profiles differing in the tail regions is evaluated and shown in Figure 6.16A. Here, the 

funnel plot highlighted in blue corresponds to C1 (as shown in Figure 6.15A) and that highlighted 

in orange corresponds to C2 (as shown in Figure 6.15A). The funnel plots closely fit on top of each 

other in the regions of interest - low duration and low intensity region of the perturbation space. 

These regions are quite important as the disturbances in these regions are difficult to track given 

their duration or intensity being too small to be captured easily (i.e., large perturbations are easier 
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to detect and to track). The fact that the funnel plots overlay on top of each other in these regions 

is noteworthy, as it provides additional support to the previous finding that OOS analysis is not 

affected in these regions specifically despite minor changes in the tail region of tracer concentration 

profile. As mentioned, this finding provides an opportunity for substantial savings in experimental 

efforts by focusing on the meaningful portion of the RTD profile. For the regions indicated by 

longer duration and intensity, small fluctuations are observed in Figure 6.16A, and these 

fluctuations are dependent on the specific tail profiles, as shown in Figure 6.15A.  

 

Figure 6.16B shows the overlaid funnel plots developed for the second case study comparing the 

original tracer concentration profile and the profile truncated along time (at 𝑡 =  50 𝑠𝑒𝑐). The 

funnel plots obtained for the two profiles overlay exactly on top of each other, indicating no visible 

differences in the funnel plots, despite the tracer concentration profiles being truncated along time 

at 𝑡 = 50 𝑠𝑒𝑐. Thus, it can be concluded that the measurement timeline of the selected RTD profile 

can be effectively reduced at least by a quarter, significantly reducing the time and efforts required 

in RTD measurement without resulting in a detectable consequence on the final product quality. 

This is important because RTD studies can be lengthy, consuming large amounts of expensive line 

time and materials; the savings achieved by time truncation would enable consideration of larger 

sets of designed experiments, augmenting process knowledge without sacrificing accuracy.  

 

Lastly, Figure 6.16C and Figure 6.16D depict the overlaid funnel plots developed for truncation 

along the Y axis focusing on identifying low limits of detection and high values of truncation. 

Figure 6.16C shows the funnel plot developed for tracer concentration profiles being truncated at 

low limits of detection and it is observed that the funnel plot grows narrower as the truncation limit 

increases. For example, the funnel plot in blue indicates a truncation level of 0.125 % wt/wt, which 

has a slightly larger feasible region compared to a truncation level of 0.5 % wt/wt colored in red. 

Thus, the case study demonstrates an important fact: funnel plots become more conservative as 
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truncation levels increase, albeit resulting in loss of a small number of acceptable tablets that would 

be wrongly labeled as OOS but providing an increased degree of confidence on not accepting bad 

tablets and thus increasing the level of confidence of the QA system. Similar analysis is supported 

by the results shown in Figure 6.16D, where funnel plots are developed for tracer concentration 

profiles truncated at higher limits of truncation, as shown in Figure 6.15D. The funnel plot colored 

in red (for a truncation level of 2% wt/wt) is observed to be more conservative than that shown in 

blue (for a truncation level of 0.5% wt/wt). Thus, it reinforces the previous findings that 

conservative estimates of funnel plots are obtained with a higher degree of truncation. This 

observation is remarkable as it indicates that the experimental savings would in fact result in a more 

reliable QA system by yielding a conservative funnel plot. In other words, excluding the tail region, 

where measurements have lower accuracy due to low values of tracer concentration, both reduces 

the required effort and increases the reliability of the QA system. 
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Figure 6.16: Funnel plots for different case studies - A) truncation of tail regions, B) truncation 

along time, truncation along Y axis – C) low limits of detection and D) high levels of truncation. 

 

6.2.4. Discussions 

Following the results of obtaining conservative funnel plots with higher truncation levels, it brings 

to light the question of computing optimal levels of truncation of RTD. This question is tackled 

using three different approaches as described below. To quantitatively understand the relationship 

between the funnel plots and the level of truncation of the tracer concentration profile, and 

subsequently compute optimal levels of truncation for RTD studies, the first approach involves 

evaluating the effect of truncation on the degree of conservativeness (reduction) of the feasible 

region in the funnel plots. Similar to previous studies [210], we define the feasible region in a funnel 

plot as the region where the combination of intensity and duration of disturbance results in a 

deviation less than 5% from the base value. To quantify the effect of truncation on the feasible 
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region, a similar OOS workflow (as implemented in section 2.2) is applied and outlined in Figure 

6.17. The first step of this workflow involves truncation of the tracer concentration profile at 

varying levels indicated by 1.25, 2.5, 3.75, 5, 7.5, and 10% of the maximum height observed in the 

original profile. The truncated profile is subsequently smoothened using wavelet transform to 

remove noisy components leading to noise in the funnel plots [233, 291]. Following this step, the 

funnel plots are developed to identify the effect of truncation on OOS product determination. The 

funnel plots are obtained for all the truncation levels mentioned above, and the feasible region is 

quantified in the respective funnel plots. The reduction of feasible region in the funnel plots thus 

indicate more tablets being classified as OOS with higher levels of truncation. Lastly, this 

increment in the OOS tablets (assuming a uniform probability distribution of disturbances of 

varying duration and intensity) is plotted as a function of the truncation levels.  

 

Figure 6.17 demonstrates an interesting finding that the increment in OOS tablets does not increase 

linearly with the truncation level. Initially, it increases up to a truncation level of 7.5%, and then it 

plateaus to a % increment of 0.14% as the truncation level is increased to 10%. This is an interesting 

finding as it indicates that the % loss of tablets (classified as OOS) is not linear with the truncation 

criteria. This indicates that a higher truncation level would not significantly reduce the tablets 

within specification limits but instead, would provide substantial savings in terms of experimental 

time and efforts required to obtain the tracer concentration profile.  
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Figure 6.17: Workflow for determining truncation criteria using funnel plots 

The second approach to determine an optimal level of truncation focuses on investigating the effect 

of the truncation on the RTD model parameter estimates. This approach helps evaluate the effect 

of truncation on other RTD-based applications, such as unit operation and flowsheet modeling, and 

material traceability. To this end, a comparison of the RTD profiles with different truncation levels 

is performed using a model-dependent approach [151, 226]. This approach compares the model 

parameters statistically for the commonly used axial dispersion (AD) model. The AD model 

replicates the RTD of a system wherein particles are transported by convective and dispersive 

methods along the length of the unit, normally combined with a plug-flow unit to represent time 

delay in the system. It is mathematically described using Eq (7), where 𝜏𝑑 is the delay time, 𝜏𝐴𝐷 is 

dispersion time, and 𝑃𝑒 is the Peclet number. 

𝐸(𝑡) =
𝑢(𝑡 − 𝜏𝑑)𝑃𝑒0.5

(4𝜋(𝑡 − 𝜏𝑑)𝜏𝐴𝐷)0.5
 𝑒

−(
𝑃𝑒(1−

(𝑡−𝜏𝑑
𝜏𝐴𝐷

)

4(𝑡−𝜏𝑑)
𝜏𝐴𝐷

)

 
(7) 
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Figure 6.18: E(t) profiles for different levels of truncation (a) averaged for all repeats and (b) 

regressed using axial dispersion model  

The averaged E(t) profiles of the experimental data truncated at 1.25, 2.5, 3.75, 5, 7.5, and 10% of 

the total maximum height of the tracer concentration profile are obtained using Eq. (1) and plotted 

in Figure 6.18A. As the truncation levels are increased, the area under the curve decreases, and the 

intensity of the RTD peak increases. The regressed E(t) profiles using Eq. (3) are presented in 

Figure 6.18B, and the averaged AD model parameters for the three RTD replicates are provided in 

Table 6.2. In general, higher truncation levels result in slightly lower 𝜏𝑑 and inversely, larger 𝜏𝑡, 

and 𝑃𝑒 values. Larger 𝑃𝑒 values correspond to less axial back-mixing, which can be attributed to 

the RTD profiles getting narrower as the truncation levels increase. 

 

Table 6.2: Regressed model parameters for AD model with the student's t-test comparison for 

different truncation levels 

Truncation 

level 

𝜏𝑑 (sec) 𝜏𝐴𝐷 (sec) Pe 

Ave. St. Dev. Group Ave. St. Dev. Group Ave. St. Dev. Group 

0 11.92 0.57 A 16.37 0.51 A 7.67 0.13 A 



 

 

175 

0.0125 11.81 0.60 A 16.46 0.46 A 7.90 0.26 A 

0.025 11.61 0.67 A  B 16.63 0.44 A  B 8.35 0.20 A  B 

0.0375 10.99 0.55 A  B 16.59 0.13 A  B 9.01 0.07 B 

0.05 11.24 0.44 A  B 16.96 0.56 A  B 9.10 0.26 B 

0.075 10.51 0.90 B  C 17.65 0.49 B  C 10.56 0.71 C 

0.1 9.47 0.90 C 18.66 1.13 C 12.47 0.82 D 

 

One-way ANOVA is performed on the regressed model parameters for the seven truncated profiles, 

including the original profile, which results in a statistically significant difference for all the model 

parameters. The student’s t-test of each pair means comparison grouped the truncation levels based 

on the statistical significance between the regressed coefficients, as shown in Table 6.2. Truncation 

levels that share the same letter are found to have similar statistically significant means (p-value 

<0.05). Thus, by truncating the concentration profile up to 2.5% of the total maximum height, the 

differences in regressed model parameters are statistically insignificant, as they share the same 

letter. On the other hand, the difference between the 0 and 0.1 truncation levels is apparent as they 

do not share any letters for the three model parameters. These results confirm the sensitivity of the 

model parameters to the truncation levels and shed light on the possibility of misinterpretation of 

results. More importantly, how one could interpret the results differently by avoiding any truncation 

or truncating too much.  

 

Lastly, the third approach of RTD truncation is investigated, taking the inherent system variability 

captured in RTD measurements. From the understanding that external variability along with the 

precision of PAT instrument used for RTD measurements affects the RTD profile, especially near 

the tail of the profile and the baseline, it is important to consider the sensitivity of the PAT 

instrument for identifying the optimal truncation levels for the tracer concentration profile. Thus, 

this approach utilizes the sensitivity of the PAT instrument used for measuring RTD profile to 
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determine optimal truncation levels. The instrument sensitivity is determined based on the extent 

of variability captured in the measurements when minimal or no tracer is present in the system. The 

RTD runs captured for a long duration of time (as described in section 2) are used to quantify this 

extent of variability in the measurements recorded approximately beyond 𝑡 = 120 𝑠 where there is 

minimal or no tracer present in the system. These measurements are separated from the RTD profile 

and used to calculate the average (𝜇) and standard deviation (𝜎) of the measurement variability. 

For the three RTD run replicates, 𝜇 corresponds to -0.03, -0.05, and -0.074 whereas, 𝜎 corresponds 

to 0.125, 0.130, and 0.132. Assuming the variability to have a normal distribution, a truncation 

level of 𝜇 ± 2𝜎 will capture 95.5% of the overall variability observed in the system, and 𝜇 ± 3𝜎 

will capture 99.5% of the total variability. Thus, a conservative truncation limit of 𝜇 ± 3𝜎 is 

implemented to capture most of the variability observed in the system. The truncated concentration 

profiles after denoising are shown in Figure 6.19 for all repeats along with the original profiles. 

The effect of the truncation limit is further quantified using the two approaches mentioned above, 

i.e., funnel plots for OOS analysis and RTD model parameter estimates. The funnel plots obtained 

for truncated and original profiles (Figure 6.20) almost overlay on top of each other and thus 

indicate no significant differences between the two profiles from a quality assurance perspective.  

 

Figure 6.19: Original and truncated tracer concentration profiles 
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Figure 6.20: Overlaid funnel plots for truncated and original tracer concentration profiles 

The truncation strategy proposed in the third approach is further validated by comparing the 

regressed RTD model parameters for AD model (as described in the second approach). Figure 6.21 

demonstrates the experimental and regressed 𝐸(𝑡) profiles using the PAT-based truncation method, 

which shows that the regressions capture the distribution properties truthfully. 

 

Figure 6.21: The original and regressed E(t) profiles using PAT-based truncation method 
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Table 6.3 presents a comparison between the regressed AD model parameters of the original (non-

truncated) and PAT-based truncated 𝐸(𝑡) profiles. Comparing the results in Table 6.2 and Table 

6.3 shows that the PAT-based truncation falls around the 3.75% truncation level. This seems to be 

a practical truncation strategy for three specific reasons: 

1. it provides a reasonable truncation level that does not result in very different model 

parameter estimates 

2. it is adjustable to different PAT instruments in use and can be assessed before executing 

the RTD experiments 

3. unlike the second approach, it is independent of the amount of the tracer being pulsed in 

 

Table 6.3 Regressed AD model parameters for the original and PAT-based truncation  

Truncation strategy 

𝜏𝑑 (sec) 𝜏𝐴𝐷 (sec) Pe 

Ave. St. Dev. Ave. St. Dev. Ave. St. Dev. 

Original RTD profile 

PAT-based truncation 

11.92 

11.40 

0.57 

0.64 

16.37 

16.82 

0.51 

0.35 

7.67 

8.73 

0.13 

0.41 

 

 

6.2.5. Conclusions 

This article aims at investigating the impact of different features of RTD profile on an RTD-based 

application, OOS analysis, to optimize the time and effort required to obtain an accurate RTD for 

the system under study. In this work, the RTD tail is truncated along time to observe the respective 

effects on the determination of OOS product, specifically by developing funnel plots of truncated 

profiles and comparing them with that developed from the original profiles. Different case studies 

are developed to investigate the impact of profile truncation on funnel plots.  These case studies 

include truncation along the tail regions, time, and Y axis including low values of tracer 
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concentration, to identify the impacts of limit of detection. For each of these case studies, the 

truncated RTD profiles are developed, and respective effects are captured on the funnel plots 

analyzing the possibilities of production of OOS material. The results for these case studies show 

that truncation along the tail regions and along time do not have a significant impact on funnel 

plots, and truncation along the main RTD peak and along lower values of tracer concentration 

intriguingly provides a more conservative estimate of funnel plots. The conservative nature of the 

funnel plots obtained by truncation indicates higher confidence of not accepting a bad tablet, at the 

cost of rejecting a small number of good tablets erroneously labeled as bad. The conservative nature 

of the funnel plots thus reveals an avenue for significant savings in the amount of time and effort 

required to capture the tracer concentration accurately, especially at the low concentration levels in 

the tail region of the RTD. Lastly, efforts to quantify optimal levels of truncation are investigated 

using a three-way approach. It includes examining the relationship between the degree of 

conservative nature of the funnel plots with truncation levels, the effect of noise, and truncation on 

regressed RTD model parameters for the axial dispersion model.  
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CHAPTER VII 

 

7. Conclusions and future work 

7.1. Conclusions  

 
 

With the collaborative efforts of academia, industry, and regulatory organizations to modernize 

pharmaceutical manufacturing and move towards realizing FDA’s vision for the 21st century for 

the pharmaceutical industry, there have been immense developments towards Pharma 4.0 using 

digital twin frameworks. These developments have focused on various aspects of developing digital 

twins including the virtual and physical components, connection between the two components and 

integration of process data using cloud computing technologies. The work presented in this thesis 

mainly focuses on work related to the first two aspects – the virtual and physical components of 

digital twins and involves efforts directed towards developing multi-scale computationally efficient 

process models that incorporate detailed process physics to be incorporated within the virtual 

component along with statistical data handling and analysis of experimentally obtained dataset 

from the physical component. These efforts thus contribute towards the efficiency of the digital 

twin as well as establishing connection between the two components. The major contributions of 

the thesis are outlined below – 

• First aim of the thesis focuses on developing high-fidelity simulation models using discrete 

element modeling (DEM) of unit operations to understand particulate flow from a particle-

scale perspective. This is especially beneficial for situations where powder properties can 

vary with the environment and external conditions and can eventually impact the predictive 

models. Understanding particulate flow from a particle-scale perspective thus provides an 

insight into the powder mechanics and flowability while accounting for powder flow based 

on its properties. DEM calibration is also investigated to develop realistic simulations of 
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powders within the DEM environment, aimed to capture the true behavior of powder flow. 

DEM calibration is developed using the bulk calibration approach and aims at identifying 

a unique solution for the calibration problem by incorporating multiple bulk measurements 

together to identify calibrated set of DEM parameters. 

• The second aim of the thesis mainly focuses on integrating the detailed particulate insight 

(investigated in aim 1) to develop accurate process models for process flowsheets. DEM 

models being very time intensive cannot be integrated directly within process flowsheets. 

Thus, multi-zonal compartmentalization methodology is investigated to develop 

computationally efficient process models based on the time-intensive DEM simulations of 

unit operations. The work thus aims at transferring information from a particulate scale to 

a unit operation scale to develop accurate and efficient process models. The proposed 

strategy is developed for continuous powder blenders based on DEM simulation of periodic 

sections of the blender. Blend uniformity, being an important critical quality attribute for 

regulation compliant manufacturing of pharmaceutical drug products, is quantified from 

DEM using mixing index – relative standard deviation (RSD). Given the plethora of mixing 

indices available in literature, a detailed literature review is performed to classify the 

indices into three main categories, with guidelines for selecting appropriate indices based 

on the specific application. Using these guidelines, RSD is selected for developing process 

model of blender using DEM simulation. The unit operation model thus developed can be 

integrated within process flowsheets for quick simulation and accurate prediction.  

• The third aim of the thesis focuses on the physical component of the digital twin – 

specifically the statistical data handling and pre-treatment of systemic data obtained from 

the manufacturing lines. The experimentally obtained data normally encounters various 

fluctuations and disturbances given external and environmental conditions and may 

potentially lead to erroneous conclusions about the systemic behavior. Thus, this aim 

focuses on data pre-treatment and handling for residence time distribution (RTD) profiles 
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obtained from manufacturing line. In this work, different statistical denoising methods are 

used to denoise RTD profiles and compared based on quantitative metrics to ensure 

sufficient degree of denoising. The degree of denoising needs to be balanced with retention 

of important features of RTD and degree of smoothening. The quantitative metrics are 

devised to balance the degree of denoising of RTD profiles. Denoised RTD profiles can 

thus effectively remove the effects of unwanted noise and be used towards various RTD-

based applications such as characterization of manufacturing lines, material traceability, 

and OOS analysis. Along with the data pre-treatment, efforts focusing on optimizing the 

time and efforts required for obtaining RTD experimentally are performed by identifying 

the important features of RTD and capturing those well. This is performed using truncation 

of RTD profiles to isolate the effects of different features and their effects are respectively 

investigated on OOS analysis, ensuring regulation compliant drug production.  The 

investigation including evaluation of tail and baseline regions, led to interesting 

conclusions indicating that mainly the RTD peak is important for OOS analysis and the tail 

or baseline regions do not affect the OOS profiles as much, resulting in conservative funnel 

plots with truncation.  

 

7.2. Future work 

 

Directions for future research are outlined below. These research areas are highlighted for the 

different scales of process modeling (particle, unit, and flowsheet scale) highlighted in the thesis.  

• For particle-scale simulations outlined in aim 1 specifically the DEM calibration, 

incorporation of electrostatics has not been explored in literature and would be an 

interesting addition to ensure realistic predictions of powder flow. Electrostatics can lead to 

agglomeration or sticking of powder to the walls of the unit operation due to charge transfer 

and this may affect the overall powder flow dynamics. DEM calibration is normally performed 
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for a specific powder or a set of bulk measurements and need to be repeated for different 

powders in the material database. Repetition of calibration efforts can be immensely time-

consuming and hinder its applicability. An interesting idea would be to develop calibrated 

material database in DEM parameters using the pharmaceutical material database. This 

database can thus provide the calibrated parameters of all powders and be used as a reference 

guide for future DEM simulations. DEM simulations (developed for feeder units) can be 

extended for complicated unit operations in the pharmaceutical manufacturing lines such as 

granulators, roller compactors, extruders along with incorporation of fluid. This will help 

understand the system dynamics from a detailed perspective. Such simulations can be 

developed for overall manufacturing lines as well, especially to understand the effect of transfer 

from one unit to another on powder flowability and dynamics. 

• Multi-zonal compartment models have shown to translate important particle-scale 

information to a unit-operation scale and useful for integration within process flowsheets 

for simulation of unit operations. Such models can be extended to more complicated unit 

operations such as extruders to develop computationally efficient process models. Such 

models when integrated together to develop process flowsheets, can also be investigated 

for applications of manufacturing lines such as material and disturbance traceability.  

• For the RTD data handling and pre-treatment outlined in aim 3, an interesting and 

important future work would include developing a python library for pre-processing of 

RTD profiles resulting in denoised RTD profiles with comparison of different denoising 

methods. Outlier detection and detection of RTD profiles can be incorporated within the 

python library to develop a complete data pre-treatment library for RTD profiles. RTD 

truncation can further be extended for material traceability applications. An important 

challenge for material traceability involves identification of start and end of RTDs, 

especially considering the variabilities observed near the baseline. Developing a variability 

or uncertainty range based on the PAT system used for detection of tracer concentration, 
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would be an interesting avenue for future work. This can be developed to obtain 

quantification of this variability, based on which accurate RTD profiles can be evaluated 

by discarding the environmental and external noise. Such RTD profiles can accurately 

capture the systemic information of manufacturing lines. Lastly, these can be incorporated 

within the digital twin frameworks as well to ensure data pre-treatment and handling for 

digital twins.  
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CHAPTER VIII 

 

8. Appendices 

8.1. Aim 1 – Developing high-fidelity DEM simulations for pharmaceutical unit 

operations with DEM calibration 

8.1.1. Calibration results for bulk measurements 

Different bulk measurements are used in the study for material calibration including shear angle, 

angle of repose, maximum flowrate at opening and mass in lower container. For these bulk 

measurements, the important main and interaction effects are identified using stepwise regression 

with minimization of AIC, BIC criteria and p-values. Following the results obtained for shear angle, 

analysis of variance and parameter estimates are obtained and shown in Figure 8.1 for main effects. 

Figure 8.2 shows the ANOVA results with parameter estimates for main and interaction effects 

corresponding to shear angle measurement. The results for other bulk measurements are shown 

below where Figure 8.3 corresponds to the important main and interaction effects for mass in lower 

container. Angle of repose evaluations are shown in Figure 8.4 whereas maximum flowrate 

evaluations are shown in Figure 8.5.  

 

Figure 8.1: Analysis of variance and parameter estimates of main effects for shear angle 
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Figure 8.2: Analysis of variance and parameter estimates of main and interaction effects for 

shear angle 

 

 

 

Figure 8.3: Main and interaction effects for mass in lower container of the drawdown test 
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Figure 8.4: Main and interaction effects for bulk measurement of angle of repose 

 

 

Figure 8.5: Main and interaction effects for bulk measurement of maximum flow rate 

 

8.1.2. Evaluation of feed factor 

Table 8.1 highlights feed factor parameter values regressed from feed factor vs feeder weight 

profile. Goodness of the fit measured using 𝑅2 values are also measured in the table below. 
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Table 8.1: Regressed feed factor parameters for the selected DOE 

Run 𝐹𝐹𝑚𝑎𝑥 𝐹𝐹𝑚𝑖𝑛 𝛽 𝑅2 

1 0.03158 0.00177 11.91720 0.89611 

2 0.05161 0.00004 4.46254 0.95363 

3 0.06896 0.00004 4.78237 0.96879 

4 0.05764 0.00023 6.68204 0.97840 

5 0.04572 0.00263 6.45111 0.93269 

6 0.06569 0.00148 4.25551 0.95585 

7 0.02180 0.00727 12.28483 0.76931 

8 0.06500 0.00194 4.81382 0.96475 

9 0.04334 0.00133 9.85730 0.93485 

10 0.03663 0.01062 10.74547 0.84227 

11 0.05342 0.00280 5.47477 0.94281 

12 0.03386 0.00422 7.82309 0.89391 

13 0.02355 0.00518 11.42371 0.78380 

14 0.03487 0.01204 11.21864 0.81465 

15 0.06751 0.00156 4.51660 0.95554 

16 0.03477 0.00164 10.50590 0.89336 

17 0.05112 0.00495 5.64182 0.88750 

18 0.02466 0.00574 11.93730 0.81609 

19 0.03448 0.00340 7.60655 0.90767 

20 0.04859 0.00314 6.34797 0.93488 

21 0.07235 0.00022 4.79984 0.95953 
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Figure 8.6-Figure 8.8 provide parity plots for the feed factor parameters (𝐹𝐹𝑚𝑎𝑥 , 𝐹𝐹𝑚𝑖𝑛 , and 𝛽) 

along with an effect summary of important parameters for their predictions.  

 

 

Figure 8.6: Parity plot for 𝐹𝐹𝑚𝑎𝑥  with effects summary 
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Figure 8.7: Parity plot for 𝐹𝐹𝑚𝑖𝑛  with effects summary 
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Figure 8.8: Parity plot for 𝛽 with effects summary 

 

Prediction profiles for all feed factor parameters (𝐹𝐹𝑚𝑎𝑥 , 𝐹𝐹𝑚𝑖𝑛 , and 𝛽) are shown in Figure 8.9-

Figure 8.11, which elaborates the dependence relationship between important DEM material and 

feed factor parameters.  

 

 

Figure 8.9: Prediction profiles for 𝐹𝐹𝑚𝑎𝑥 
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Figure 8.10: Prediction profiles for 𝐹𝐹𝑚𝑖𝑛 

 

Figure 8.11: Prediction profiles for 𝛽 

 

8.2. Aim 2: Unit operation process modeling using DEM – mixing indices 

 

This section includes supplementary results illustrating goodness of model fits for 

evaluation of 𝑇95 mixing times for different indices. Table 8.2 highlights the goodness of the model 

fits for blender operation with blade speed of 100 RPM, Table 8.3 for a blade speed of 75 RPM and 

Table 8.4 for a blade speed of 50 RPM. Indices – SM and NDM are not evaluated for 75 and 50 

RPM due to the high computational requirements associated with these indices. 

 

Table 8.2: Results of model fit for blender operation with a blade speed of 100 RPM 

Model Parameters R^2 fit Mixing Indices 
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Afit Gamma 𝑇95 

0.6968 0.3469 7.5948 0.9345 DM 

2.6007 1.0127 3.9020 0.9728 VBBC 

6.4894 0.9724 5.0042 0.9897 ME 

1.0721 0.4407 6.9552 0.9039 VRR 

0.4265 0.4833 4.4355 0.8142 MSI  

1.2514 0.5038 6.3915 0.8365 ESI  

1.2906 0.4833 6.7268 0.8142 RSD 

2.2095 1.0508 3.6053 0.8998 LI 

1.8814 0.4437 8.1758 0.9648 CN 

1.9524 0.5819 6.2980 0.9802 SI 

1.0453 0.4234 7.1799 0.9866 NNM 

0.6447 0.2639 9.6891 0.6554 PS 

-0.8400 0.6071 4.6475 0.9501 AH 

0.9998 2.9268 1.0235 0.9367 SM 

0.9763 0.5023 5.9165 0.8012 NDM 

 

Table 8.3: Results of model fit for blender operation with a blade speed of 75 RPM 

Model Parameters 

R^2 Mixing Indices 

Afit Gamma 𝑇95 

0.6666 0.2378 10.8918 0.9688 DM 

1.6018 0.5531 6.2675 0.9875 VBBC 

1.6174 0.5852 5.9412 0.9958 ME 

0.9379 0.3473 8.4402 0.9185 VRR 
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0.4717 0.4832 4.6445 0.9652 MSI 

1.2089 0.3837 8.3010 0.9808 ESI  

1.3132 0.4030 8.1100 0.9182 RSD 

1.2171 0.5683 5.6170 0.9622 LI 

1.6061 0.2905 11.9429 0.9570 CN 

1.5099 0.3703 9.2033 0.9893 SI 

1.1115 0.3192 9.7151 0.9841 NNM 

-0.0008 0.3966 10.4956 0.9048 AH 

 

Table 8.4: Results of model fit for blender operation with a blade speed of 50 RPM 

Model Parameters 

R^2 Mixing Indices 

Afit Gamma 𝑇95 

0.5941 0.1725 14.3492 0.9854 DM 

1.3663 0.3788 8.7326 0.9861 VBBC 

1.2852 0.3956 8.2073 0.9936 ME 

0.7970 0.2259 12.2566 0.9702 VRR 

0.3765 0.3147 6.4148 0.9815 MSI  

1.0740 0.2615 11.7292 0.9740 ESI  

1.3288 0.3147 10.4225 0.9815 RSD 

0.9122 0.3700 7.8488 0.9958 LI 

1.3962 0.1904 17.4830 0.9707 CN 

1.3295 0.2667 12.3011 0.9959 SI 

1.0891 0.2287 13.4705 0.9899 NNM 

-0.0006 0.2163 20.5012 0.9054 AH 
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8.3. Aim 2: Unit operation process modeling using DEM – compartment modeling 

8.3.1. Details of DEM simulation 

The details of the DEM simulation of periodic section are provided in Table 8.5, along with the 

particle properties of the bulk powder used in the DEM simulation. The walls of the equipment and 

the blades are made of the same material – steel and DEM parameters are assigned correspondingly 

as shown in Table 8.5. 

 

Table 8.5: Details of DEM model parameters used for periodic section 

DEM Parameters Values 

Powder particles Particle radius 1 mm 

 Particle density 1500 kg/m3 

 Shear modulus 2E6 Pa 

 Poisson’s ratio 0.25 

Particle-particle interactions Static friction 0.5 

 Rolling friction 0.01 

 Coefficient of restitution 0.1 

Equipment (walls and blades) Shear modulus 8E10 Pa 

 Poisson’s ratio 0.29 

 Solid density 7800 kg/m3 

Particle-wall interactions Static friction 0.5 

 Rolling friction 0.01 

 Coefficient of restitution 0.1 

Simulation time step 10% of Rayleigh’s time step 
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8.3.2. Radial mixing profiles using RSD 

Radial mixing profile using relative standard deviation (RSD) mixing index, obtained from the 

original DEM simulation of periodic section is shown in Figure 8.12. The RSD profile 𝑅𝑆𝐷𝐷𝐸𝑀) is 

evaluated using the Eq. (B.1). Here, 𝐶𝑗  is the concentration of each grid (𝑗) in the DEM simulation, 

𝑁𝑔𝑟𝑖𝑑𝑠  is the total number of grids and 𝐶𝑎𝑣 is the averaged concentration of all grids.  

 𝑹𝑺𝑫𝑫𝑬𝑴 = (
𝟏

𝑪𝒂𝒗
∗ √

∑ (𝑪𝒋 − 𝑪𝒂𝒗)
𝟐𝑵

𝒋=𝟏

𝑵𝒈𝒓𝒊𝒅𝒔 − 𝟏
) (B.1) 

To obtain the RSD profile as shown in Figure 8.12, the original DEM simulation is broken down 

into 10x6x6 grids along X, Y and Z directions for evaluating the RSD profile. The gridding is 

selected such that it provides a grid size equivalent to the final pharmaceutical tablet of size 100 

mg. 

 

Figure 8.12: RSD profile obtained from DEM simulation of periodic section 

 

It can be seen from Figure 8.12 that a similar trend is observed as compared to that obtained for the 

developed compartment model, with the profile stabilizing to a value close to 0.5.  
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