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Abstract

In numerical simulation of combustion models, solution of the chemical kinetics is often
the most expensive part of the calculation, since accurate description of kinetic mechanism
involves large number of species and reactions, leading to a large set of coupled ODFE’s,
often too complex to be considered in their entirety along with a detailed flow simula-
tion. Hence the need for representing the complex chemical reactions by simple reduced
models, which can retain considerable accuracy while rendering computational feasibility.
Realistically, under different conditions and at different points in time, different reactions
become important, which has been exploited to develop an adaptive mechanism reduc-
tion scheme such that the reduced reaction model adapts itself to the changing reactor
conditions. A methodology is developed in this work to automatically construct reduced
mechanisms by utilizing mathematical programming techniques, where the objective is to
minimize the dimension of the system while retaining sufficient accuracy in the prediction
of species profiles. The reduced kinetic mechanisms are then analyzed for the range of
conditions over which they retain their predictive capacity. Those reduced mechanisms
are then coupled with the reactive flow algorithm, by selecting the appropriate mechanism
depending on reactor condition and integrating the corresponding ODEs for the specified
valid range. These ideas are demonstrated using the system of methane combustion in

air.
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Chapter 1

Introduction

Reactive flows can be defined as fluid flows that are significantly affected by chemical re-
actions, like combustion, dissociation and biochemical processes. Important areas where
reactive flows play a vital role include aerospace propulsion, car engine, various manu-
facturing processes and even biochemical processes like blood circulation. Common to
all these examples is the intimate coupling between fluid dynamics and chemistry, which
demands a detailed understanding of both processes. The increase in computational
capabilities of recent years has contributed significantly towards the goal of accurately
simulating reactive flows. This task requires major advances in two areas, computational
fluid dynamics (CFD) and physical modeling. Each area is challenging on its own and
must be closely coupled to reproduce the physical reality. Using very simple physics
(incompressible fluids, or ideal gases) CFD researchers have been able to simulate flow
over complicated geometry. On the other hand, by using very simple geometries, many
complex physical problems have been investigated. The present challenge, still largely un-
fulfilled, is to combine geometrical and physical complexity to achieve realistic simulations
that can improve the basic understanding of reactive, nonequilibrium fluid flows.

The equations used to model a reactive flow problem are the continuum time- depen-
dent equations for conservation of mass density (p), the individual chemical species (y;),

the momentum density (pv), and the energy density (F). These equations can be written



in a general form as :

op
r__vy. 1.1
L = V() (11)

0y .
5_yt = —V(yz’()) —V.(yivdi)—l-wi,z: 1,...,N5 (12)

0
% = —V.(pvv) = V.P (1.3)
oF
The total energy E is defined as:

E =1/2pv.v+ pe (1.5)

In addition to the above conservation equations, expressions are required for the thermal

and caloric equation of state. For an ideal gas this is given by:

P = pRT (1.7)
T

hi = Hz'O +/ CpZdT (18)
T0

The terms represented explicitly in equation (1.1 - 1.4) are the convective transport, chem-
ical reactions and physical diffusion, such as thermal conduction and molecular diffusion.
Flow simulation in the absence of reaction will involve solution of the set of Navier-Stokes
equations, corresponding to mass, momentum and energy balance (Equations 1.1,1.3,1.4).
The reactive flow simulation will require in addition to the Navier-Stokes equation, a set
of N, conservation equations, describing the balance of N, species appearing in the flow.

The reactive flow equations, thus, will require additional modeling to describe the
chemical reaction term. In general, one wishes to predict the mass fraction of N species
which react through N, chemical reactions. However, the kinetic scheme describing the
species as well as reaction for a given situation is not unique. For example, in a hydro-
carbon/air flame, N; may typically change from two to several hundred, while N, may
vary between one and a thousand or more (Williams (1985)), depending on the precision
expected from the computation and on the existence of reliable kinetic data. Typically,
the chemical source term in Equation (1.2) (w;) consisting of elementary reversible (or

irreversible) reactions involving N chemical species can be represented in the general



form :
N, Ny
Zyllcir)/kﬁzyllcliq/k’i:]ﬂ"':]vr (19)
k=1 k=1
where vy; represents the stoichiometric coefficient and ~; is the chemical symbol for the
ki, species. The superscript (') indicates forward and (”) indicates reverse stoichiometric

coefficient. The production rate of the k* species can be written as a summation of the

rate of progress for all reactions involving the k' species :

Ny

(.J]c = Z ViiQ; (110)
i=1

Vgi = Vg — Vg (1.11)

The rate of progress ¢; for the ** reaction is given by the difference of the forward and
reverse rates as :
N,

Ns
gi = kpi | [IXe]™ = ki [ [1X6)%% (1.12)
k=1 k=1

where [X}] is the molar concentration of the k™ species and k¢ and k,; are the forward
and reverse rate constants of the i** reaction.

Over the past couple of decades detailed kinetic networks have been developed to
model combustion processes. Although kinetic simulations comprising hundred of species
and thousand of reactions is not a constraint in homogenous systems, detailed simulation
of complex reacting flow systems having strong coupling of heat and mass transfer is still
computationally prohibitive. The stiffness of the embedded kinetics often makes the in-
tegration of chemical source term the most expensive step. In practice, to alleviate the
computational complexity, the reacting flow models use a skeletal kinetic model instead
of the detailed mechanism. There has been considerable effort towards reduced represen-
tation of detailed kinetic mechanism to alleviate the computational workload, a detailed
review of which can be obtained in Tomlin et al. (1997). Most of the techniques are based
on the concept of timescale separation. The chemical processes ocurring in a combustion
system span a broad range of time scale spreading over many orders of magnitude, from
seconds down to nanoseconds. It is this feature that gives rise to the stiffness of the
governing equations for the chemical reactions. Yet the fluid mechanics in reactive flows
usually occur at a narrower range, on the order of milliseconds to microseconds. There are
typically many chemical processes that are much faster than the fluid dynamic processes,

so if one is interested in computing behavior on the scale of the fluid mechanics, several



chemical processes will have already self-equilibrated. The time-scale based reduction
techniques are all based on decoupling the fast equilibrating chemical processes, either
explicitly or implicitly.

The first such technique is the Quasi Steady State Approximation (QSSA), a mathe-
matical technique that originated early in the twentieth century and was formalized for
combustion systems by Peters (1988). It involves setting certain species in steady-state
and certain reactions in partial equilibrium. A reduced set of global reactions is thus
obtained, where the rates of these reactions are given as functions of several rates in the
original detailed mechanism. The ODEs for these reduced reaction rates can then be
solved in conjunction with algebraic expressions for the concentration of the steady-state
species. Typically, partial equilibrium relations are used to simplify these algebraic rela-
tions to explicit expressions for efficient solution. QSSA is a relatively simple technique
to apply, although it involves considerable chemist’s intuition to know which species to
set in steady-state and which reactions in partial equilibrium. Tools have been devel-
oped to aid this process (Turanyi et al., 1996) but they still require a set of appropriate
model problems in which to examine the rates. Hence the method has still not been fully
automated, and is essentially a hand-powered analytical technique.

A rigorous mathematical formulation for mechanism reduction was initiated by the
approach of lumping (Wei and Kuo (1969), Kuo and Wei (1969)), in which the chemical
species are transformed and lumped into a few dynamically equivalent classes. In this
method, a system of linear ordinary differential equations describing the evolution of

chemical species :

dC
— = KC 1.13
is transformed into a kinetically equivalent but reduced set of equations :
dc
— =kc 1.14
7 (1.14)
where, C = {C},Cs,...,C,}T is an n-dimensional column vector of concentrations of
all the reacting species in the system and ¢ = {c;,cs,..., ¢}t is an m-dimensional

column vector of the lumped concentration, where m is much smaller than n. The lumped
concentrations c are defined as linear combination of the original concentration C.
Frenklach (1984) suggested the solution mapping approach, where the model responses

are expressed as simple algebraic functions (usually polynomials) in terms of the model



variables. These algebraic functions, called response surfaces, are obtained by carrying
out several thousands computer simulation using the complete kinetic model. These
simulations are performed at preselected combinations of the values of the model variables.
If the fitted function has less variables than that of the original mechanism, a reduced
dimension model is produced. The repro-modelling approach has been successfully used in
atmospheric chemistry and in several areas of combustion chemistry, like in the simulation
of hydrocarbon ignition, shock waves, laminar and turbulent flames. These methods
are taken from the field of response surface design (Box and Draper (1987)), developed
for optimization of a poorly understood process by performing the smallest number of
experiments possible.

A more recent effort towards automation of mechanism reduction was made in the
Intrinsic Low Dimensional Manifold (ILDM method) and Computational Singular Per-
turbation (CSP) Lam and Goussis (1994) method. They offer considerable advantages
over QSSA but are significantly more complicated to implement. The ILDM method
(Mass and Pope (1992)) explicitly computes the low dimensional manifolds on which the
slow chemistry evolves in the reaction state space, then tabulates the computed results in
a lookup table for later use in reactive flow code. The CSP method uses a transformation
of the system basis vectors to automatically compute the optimum steady state and par-
tial equilibrium relationship. Unlike ILDM it gives rise to an explicit reduced mechanism,
thus providing better understanding of the rate-limiting chemistry.

An alternative to mechanism reduction is the In situ Adaptive Tabulation (ISAT) tech-
nique proposed by Pope (1997). The basic idea behind ISAT is to integrate the chemical
source term and store the reaction mapping and sensitivity information in a binary tree
data structure for later use. For subsequent calculations, for points within a small dis-
tance of the previously tabulated points, direct integration is avoided by estimating the
reaction mapping using multilinear interpolation. Any reaction mapping that cannot be
interpolated with sufficient accuracy is generated by direct integration and stored in a
table.

Another suggested approach towards automation of the mechanism reduction is the
mathematical programming based approach (Androulakis (2000),Petzold and Zu (1997),
Edwards et al. (2000)), which will be adopted in the present work. This approach is

based on determining the reactions which can be excluded from the detailed mechanism



while still retaining desired accuracy in the prediction of the profiles of certain important
species. This approach renders lot of flexibility in the generation of the reduced model,
which can overcome the shortcomings of the previous methods. Following this approach
it is possible to generate reduced models possessing specific user defined property and
accuracy, which gives the flexibility to generate different reduced models to serve different
purposes. Also it gives an estimate of the error incurred by using the reduced model.

In practice, to alleviate the computational complexity, the reacting flow models use a
skeletal kinetic model instead of the detailed mechanism, determined by the procedures
discussed above. However, for most of the reduction schemes mentioned before, the sim-
plified kinetic model represents the chemical activity tolerably well in a limited region
of the flow field and is not accurate over the entire temperature/composition space of
interest. In the absence of detailed study of the range of validity of reduced model, the
CFD simulation uses the same reduced model over the entire range of conditions, thereby
incorporating significant error in the simulation. To overcome these problems an adaptive
chemistry approach has been proposed in this work where different chemical behavior of
the reactive flow simulations is represented by different reduced models, thereby maintain-
ing sufficient accuracy with significantly reduced models. Though this work concentrates
only on combustion systems, but the proposed method is general and can be applied to
any reacting system.

In a reactive flow simulation, typically, different regions in the flow field encounter
vastly different conditions of species concentration and temperature, which again evolves
with time. Hence the nature of chemical reactions going on at different regions at different
times are very different. For example, in a flame propagation model, the moving flame
front has a strongly exothermic reaction going on, which moves forward with time. The
region behind this moving flame front consists of burnt gases at a high temperature but
low fuel and oxidiser concentration, while the region ahead of the flame front is rich in fuel
and oxidiser, but has insufficient temperature to trigger off combustion. Hence, depending
on the involved chemistry, the flow field can be roughly divided into three zones, the
location of which again evolves with time. This phenomenon leads to the understanding
that different regions of the flow field has entirely different chemistry going on at any
instant of time, and the local chemistry in itself is also a function of time. The detailed

description of the kinetic network contains information regarding all possible conditions
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and is capable of capturing the vastly different kinetic behavior at the diverse conditions
encountered. However, when such a detailed network is represented by a reduced set of
species and reactions, it is no longer possible to capture the entire domain of behavior
with desired accuracy. This means that the reduced representation pertains to a specific
region in the flow field and using this model over the entire flow field will lead to erroneous
results. This understanding has been exploited in the present work, to develop different
reduced schemes to address different regions in the flow simulation, thereby capturing the
local behavior with high accuracy, while retaining considerable simplicity in the reduced
model.

Chemical kinetics is essentially a local phenomenon, depending only on the conditions
of species concentration and temperature. The only effect the flow field has on the local
kinetics is the rate at which the flow field changes the species concentration because of
diffussion, convection etc., but it directly does not affect the kinetic behavior. Thus, if
the CFD code successfully decouples the flow from the kinetics, the kinetic behavior can
be adequately expressed as a function of species concentration and temperature. Hence,
to start with, what is required is a complete knowledge of the different conditions encoun-
tered in the detailed reactive flow simulation. Since solution of the detailed flow model
considering an extensive kinetic model is not computationally feasible, an estimate of the
accessed composition space has been obtained by solving a homogenous mixing simulation
using detailed kinetic model. Different such schemes are evaluated to determine a good
estimate of the accessed space. The next step is the generation of a set of reduced reaction
models which can address this accessed space. An efficient kinetic mechanism reduction
scheme is presented which can reproduce profiles of desired species within user defined
accuracy. A formulation is also presented which can restrict the number of reactions in
the reduced set by varying the integration time. This enables one to maintain desired
simplicity in the reduced model. The next step is determination of the range of conditions
over which a particular reduced model can be accurately applied. This is achieved by us-
ing the knowledge of feasibility analysis extensively applied in the field of process design.
A new approach is presented for efficient approximation of arbitrary shaped feasible re-
gion using ideas of surface reconstruction. Feasibility analysis in high dimension is still a
field of active research, and conventional techniques for feasibility analysis proves to be

computationally infeasible for the present problem. An alternate method for evaluation of



boundary points by reducing the dimension using principal component analysis is found
to have satisfactory performance. A multiperiod formulation is also presented in the con-
text of mechanism reduction, which facilitates generation of reduced model possessing a
desired flexibility. Having determined the means of generating reduced models and defin-
ing the feasible region, the next step towards integration of adaptive reduction with flow
simulation is the generation of adequate reduced mechanisms which can cover the accessed
region. This requires identification of nominal conditions at which the reduction needs to
be performed, which is achieved by clustering the data set and determining representative
points for each cluster. An algorithm is presented following which a library of reduced
models can be generated, which covers the entire accessed region of the flow simulation.
The developed scheme is implemented first in the stochastic reactor model to validate its
performance. Finally a detailed reactive flow model is developed for combustion simula-
tion. The adaptive scheme is incorporated in the flow model, where the flow simulation
uses reduced kinetic models developed using the data from stochastic reactor model. The
performance of the adaptive model is verified using against the detailed model.

The thesis is organized as follows: Chapter 2 presents the methodology for generation
of the reduced mechanism, and formulations for restricting the number of reactions in
the reduced model. This is followed by the feasibility analysis of the reduced mechanism
presented in Chapter 3. Chapter 4 gives the detailed description of the proposed adaptive
chemistry scheme, followed by the incorporation of the scheme in a detailed reactive flow
model, presented in Chapter 5. A summary of the overall approach and detailed discussion

of the areas requiring further attention are presented in Chapter 6.



Chapter 2

Mechanism reduction

Over last couple of decades there has been considerable effort towards development of
suitable technique for reduction of complex kinetic mechanism to enable detailed simula-
tion of reactive flow models. The main challenge of this effort is in the development of
a completely automated procedure for the generation of reduced models, which can be
easily incorporated in the CFD codes. The mathematical programming based approach
was found to meet these requirements, and has the additional advantage of generating
reduced models tailored to desired mechanism characteristics. Detailed description of the
formulation of mechanism reduction problem and the solution technique are presented in

this chapter.

2.1 Formulation for reaction reduction

The reduction technique adopted in this work follows the main idea of mathematical
programming approach proposed by Androulakis (2000). This approach assumes that the
detailed kinetic network of the concerned process is known with considerable accuracy,
and it aims at eliminating reactions/ species which are of lower importance in determining
the profiles of the desired species. Hence the objective is to minimize the total number
of reactions retained in the reduced model, while the constraint is to predict the profiles

of the important species with desired accuracy. Such an optimization problem for an
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isobaric batch reactor can be formulated as follows :

Ng
min Ar
AeANR =
subject to x <0 (2.1)
tr reduced () _ full )\ 2
where, x = (Z/ (yk (lel Ui )> dt
kew vt Yk (t)
tr Tlgeduced(t) _ Tgu”(t) Qd 1/2
+ Full t (2.2)
tr Tk (t)
M,
dyet) _ BxMy (2.3)
dt p
ar i Ry My hy (2.0
dt p pC,
Re=Y 0 (v — vl )u (2.5)
i=1
N o Ny "
g =k [[ X5 — ke [ X0 (2.6)
k=1 k=1
kg, = Kfie_Efi/RTa ky; = Kme_E”/RT (2.7)

where, A, is a binary variable used to denote the presence (A, = 1) or absence (A, = 0)
of a particular reaction. The objective function Zf,vjl A, represents the total number of
reactions in the reduced set, which has to be minimized, subject to a specified accuracy
(0). The integral error measure x, given by Equation (2.2), defines the approximation
error of the trajectories of the key observable quantities for the interval of interest. In
the above formulation, y, denotes the mass fraction whereas X represents the molar
concentration of specie £ used in the calculation of the reaction rates. Equations (2.3)
and (2.4) represent the material and energy balances for the reactor model, where Ry is
the net rate of production of specie k; My, is the molecular weight of specie k; p denotes the
mixture density, which is a function of composition and temperature. Ry is evaluated from
the knowledge of intrinsic rates ¢; of individual reactions and stoichiometry, as given by
Equation (2.5). For combustion systems, the basic form of ¢; is expressed by the power
law expression of mass-action kinetics, as given by Equation (2.6). The temperature

dependence of the specific reaction rate constant is given by Arrhenius law (Equation

(2.7)).
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Formulation (2.1) - (2.7) of mechanism reduction corresponds to an integer nonlin-
ear programming problem which can be solved using a Branch and Bound framework
(Androulakis, 2000). The solution procedure can be greatly enhanced by a priori deter-
mination of a subset of important reactions, thereby reducing the total number of binary
variables considered in the Branch and Bound framework. The approach adopted to deter-
mine a critical set of reactions (Ngmin) that cannot be removed from the mechanism is as
follows: if dropping reaction i from the detailed network (\; = 0) while retaining all other
reactions (A\; = 1,7 = 1,..., Ng,j # i) produces a reduced network with N} = Np —1
reactions that approximates the complete network with an error ¢’ > §, then reaction i
must be retained in the reduced set and need not be treated as a variable in the optimiza-
tion problem. Hence, the optimization is now constrained on the remaining Nz — Ngmin
reactions, from which the minimum number of reactions needs to be identified. However,
compensating errors can be present, whereby removing reaction A or reaction B can re-
sult in an error, but removing reactions A and B together might cancel out individual
errors. Such compensating errors cannot be identified by the heuristics. Hence, when
such a preprocessing step is employed, the final reduced reaction set obtained might not
be optimal.

In the present work, Genetic Algorithm (GA) has been used as the solution procedure
for the mechanism reduction problem, following the work of Edwards et al. (1998). GA
(Goldberg (1989), Michalewicz and Schoenauer (1996)) represent a class of search and
optimization procedures that are patterned after the biological process of natural selection
and they lend themselves to solution of a wide range of optimization problems. When
GA is applied to optimization problem, each optimization variable is typically encoded
as a string of bits, and these strings are appended together to form a chromosome. Each
individual in a population has a particular chromosome value that can be decoded to
evaluate the parameter values and objective function, also called the fitness function.
Populations are evolved through several generations until the objective function cannot
be improved any further.

In the present formulation the optimization variables are the Ny binary variables as-
sociated with the reactions. Hence parameterisation for GA is straightforward since each
binary variable A\, becomes a bit in the GA chromosome. For a particular combination of

A the reduced differential equation sets are integrated to evaluate the discrepancy func-
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tion. Since GA cannot explicitly handle nonlinear constraints of an optimization problem,
there has been considerable research towards efficient constraint handling while using GA.
Most of the constraint handling methods are based on the concept of (exterior) penalty
functions (Michalewicz and Schoenauer, 1996) that penalize the infeasible solution and try
to solve an unconstrained problem using a modified fitness function. The unconstrained
optimization for problem (2.1) - (2.7) can be formulated as:
Np

)\IEI}\iJgR 2 Ar + (penalty x maz{0,x — d}) (2.8)
where the penalty term becomes zero when the constraint is not violated ( x < ¢), and
it takes the value of a large positive quantity (penalty X (x — §)) otherwise. Note that
the penalty coefficient needs to be large enough to ensure that all the infeasible solutions
have fitness value worse than any of the feasible solutions. Unlike classical search and
optimization methods, GA approach begins its search with a random set of solutions,
instead of just one solution.

For the solution of problem (2.1) - (2.7), the first step of the GA procedure involves the
random generation of a large population of binary strings ( reaction combinations ) where
each member of the population represents a reduced reaction set. For each reduced set
within the initial population the corresponding ODEs are integrated to evaluate the dis-
crepancy function and hence the fitness function, as given in Equation (2.8). The integra-
tion is performed using LSODE (Hindmarsh, 1983) while the rate expressions and all the
necessary thermodynamic properties are evaluated using the CHEMKIN-III package (Kee
et al., 1996). The generated population of solutions are modified by the GA operators (re-
production, crossover, mutation) to create new and better populations. This procedure is
repeated until a predefined termination criteria is satisfied. There are several advantages
of using GA for the mechanism reduction problem as compared to Branch and Bound
procedure. First, the computation time of Branch and Bound depends highly on the
quality of the initial reaction set produced within the preprocessing heuristic step, since
the closer it is to the optimal solution the less number of nodes are required. However,
as mentioned before, the method of generating the initial guess can prevent optimality of
the solution. Since GA does not require such a reaction subset to start the solution proce-

dure, this problem is avoided. Second, in the Branch and Bound procedure, at each node
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of the binary tree a nonlinear optimization problem needs to be solved, which requires
information of the gradient of the constraint function, that corresponds to an expensive
computational step. Moreover, since the NLP is in general nonconvex, no guarantee of
the global optimal solution is possible. GA does not require gradient evaluation since the
only information needed is the value of the discrepancy function for certain combinations
of reaction sets. On the other hand however, the optimal solution obtained by using GA
depends heavily on the termination criteria that are predetermined by the user, which
can be a limitation. For the present studies, the simulation was allowed to run sufficient
number of times until no significant change in the objective function was observed, which
is however not sufficient to guarantee optimality of the obtained solution. GA is adopted
in this work for the additional reason that the target is to generate a number of reduced
kinetic networks that will be used within the adaptive chemistry framework (Section 5),

and not the determination of a single optimal reduced network.

2.2 Formulation for species reduction

The above formulation minimizes the total number of reactions involved in the kinetic
source term, and the number of binary variables equals the total number of reactions. For a
typical combustion system,the number of reactions far exceeds the total number of species.
For example, methane combustion following GRI-3.0 mechanism involves 53 species and
325 reactions. For such a system a preprocessing step of species reduction was observed
to be more efficient in solving the optimization problem. Moreover, reducing the number
of species is of primary importance, since it directly reduces the number ODE’s required
to model the kinetic term. However, all the reactions in which the species participates
need not be important. Hence a second step of reaction reduction is performed on the
retained set, using the formulation consisting of Equations (2.1 - 2.7). The formulation

of species reduction is given be:
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N,
min As
AEANs <

=1

subject to x <6

= (2 / r (yzed““d(t) - y;f“”(t))2 o

k€K y/{u”(t)
7 Treduced(t) —Tfu”(t) 2 1/2
+ / e )
tr T; (t)
Ay (1) = B My k=1,...,N;
dt p
ar _ Z Rlechk
k=1
Ny N;
Ry = ZH()‘S)’" (1/,:z - l/,{;)qi (2.9)
i=1 s=1

where ), is a binary variable corresponding to each specie which determines if specie (s)
is present in the network. If a particular specie can be neglected, then the corresponding
As = 0 and all the reactions which involve that specie will be set to 0. However, all the
reactions in which the specie participates need not be important. Hence a second step of
reaction reduction is performed on the retained set, using the formulation (2.1) - (2.7).
Following this procedure, mechanism reduction was performed for the methane com-
bustion system, with the detailed mechanism described by GRI-3.0 consisting of 53 species
and 325 reactions. The initial conditions at which reduction was performed is : Hs mass
fraction of 2.92056 x 107%, Oy mass fraction of 0.468255, C' H4 mass fraction of 0.290531
and temperature of 1208.64 K. The species reduction with an allowable error of 0.1 re-
sulted in a reduced set consisting on 21 species and 99 reactions. Figure (2.1) illustrates
the performance of the reduced set in predicting the temperature and C'H, profiles. The
reaction reduction is then performed over this reduced set with the same allowable error,
which resulted in the final reduced set consisting of 17 species and 29 reactions. Figure

(2.2) illustrates the temperature and C Hy profiles predicted by this final reduced set.
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‘ Solve problem (11)M Restart GA

‘ Calculate volume of feasible region

Check for
convergence

STOP

Figure 2.3: Algorithm for adaptive reduction

2.3 Computationally efficient time stepping reduc-
tion

Following the procedure mentioned above, it is possible to generate a reduced mechanism
at a particular condition which can predict the profiles of the watched species within user
defined accuracy. However, such a reduced model can end up being too large for efficient
implementation in the complex flow models, since there is no restriction imposed on
the size of the reduced reaction set. The procedure is extended here so as to simplify the
reduced model without sacrificing accuracy. This is achieved by restricting the integration
time over which the reduced model needs to predict the species profiles.

The overall proposed approach of adaptive reduction consists of two steps as illustrated
graphically in Figure (2.3). In the first step the entire integration time is uniformly divided
into certain number of intervals and a reduced reaction set is obtained for each of the
interval through the solution of problem (2.1) - (2.7). In the second step, these intervals
are systematically refined to restrict the number of reactions in each of the reduced sets

within a prescribed number. The optimization problem solved in the first step of the
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approach for each time interval is formulated as :

Ng

min Ar

AEANR
r=1

subject to x < (2.10)

int
reduced (t) Sull

X = Z/tmt full(t)yk (t)>2dt

G T (t) — TI (1) 212
+ Nint ( Tfu” ) dt)
" k (t)

where yi, T}, are obtained by reactor equations (2.3) - (2.7); N is user defined number

of intervals into which the integration time was divided; tfv”"”t and tjcvi"t are the initial
and final times for an interval respectively, defining the range over which the differential
equations needs to be integrated. To perform the reduction at each interval, the initial
conditions for integration is set to the corresponding PSR conditions at that instant. The
allowable error was also uniformly divided over each interval. It is observed that when the
time domain is divided uniformly, a large number of reactions are retained in the reduced
set for the initial stiff portion of the profile. However, after certain time the number
of reactions retained in the reduced sets are consistently low. The intervals containing
unacceptably high number of reactions are identified and considered at the second step
of the procedure for further refinement. The purpose of the second step is to identify the
reduced set with acceptable number of reactions, and also determine the time over which
the reduced set can be integrated to attain the prescribed accuracy. This is achieved by

solving the following optimization problem :

maxty
Ngr
subject to Z)\'I‘ < Nattowabie (211)
r=1
x < < (Smt(t)
tf reduced Jull 2
— Y (t)
X = Z / ull ) dt
kEk f (t)
+/(HMWWJWWy@W
full
t Tk (t)

where vy, T}, are obtained by the reactor equations (2.3) - (2.7); Nayowabie represents the
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maximum allowable size of the reduced set, which is user defined depending on number
of reactions which can be handled by the CFD code; t; represents the time over which
the differential equations for reduced reaction set can be integrated while still retaining
the desired accuracy of the species profiles. This optimization problem is solved using
Genetic Algorithm, where both reaction time and A, are treated as variables. With
this formulation, the aim is to obtain various reduced sets of Nyjowase reactions or less,
along with the integration time over which the particular set is valid. To maintain a
desired accuracy over the entire integration time, the allowable error is expressed as a
linear function of time. Hence if an error of ¢ is allowed between tr and t;, for each

optimization subproblem the allowable error is expressed as:

) = Gyt = ) (2.12)
where ¢; and ¢; are the initial and final time for the current iteration. Problem(2.11)
is solved in an iterative manner, starting with an initial time (¢)*"*) identified from the
first step of the algorithm, and marching forward towards the final time (t}v"”t) of that
particular interval. At each iteration, the ODEs representing the reactor behavior is
integrated from an initial time #; which corresponds to the optimum time of the previous
iteration. The current integration is performed until ¢; which is an optimization variable.
This reduction scheme was performed for the kinetic scheme of CO/H; combustion in
air, consisting of 47 reactions and 14 species. The initial conditions considered are: H,
mole fraction = 0.005, Oy mole fraction = 0.189, C'O mole fraction = 0.095, Ny mole
fraction = 0.711, Ty = 1600K. The reduced reaction sets obtained by fixing Nyyowapie = 7

is illustrated in Figure (2.4), and the performance of these reduced sets in the prediction

of temperature and H, profiles in a perfectly stirred reactor is illustrated in Figure (2.5).

2.4 Summary

A detailed formulation of the mechanism reduction scheme was presented in this chapter,
which allows automatic generation of reduced kinetic models. The scheme was used to
reduce methane/air combustion system, where a two step procedure of species reduction
followed by reaction reduction was found to be of particular advantage. The presented

scheme could significantly reduced the dimension of the mechanism while retaining consid-
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erable accuracy in the prediction of species profiles. A scheme for restricting the number
of reactions in the reduced mechanism is also presented and was tested for CO/air mech-

anism.



Chapter 3

Feasibility Analysis of Reduced

Mechanism

The reduced mechanism obtained by the procedure mentioned in the previous chapter
maintains its accuracy over a restricted range of species concentration and temperature.
Since using a reduced mechanism in a region where it is not valid will introduce significant
error, it is imperative to have an accurate description of the feasible region of operation.
Existing techniques of feasiblity analysis has the disadvantage of underestimating the
feasible region. Moreover, the required number of simulations is prohibitively high in
systems of higher dimensions. An alternative method of feasibility analysis for mechanism

reduction problem is presented here, which overcomes the problems of existing techniques.

3.1 Range of Validity of Reduced Mechanisms

A single reduced mechanism has the property of predicting the profiles of the observed
species within certain user defined accuracy at the initial condition of species concentra-
tion and temperature at which the reduction was performed. While this reduced model
can accurately predict the system performance over a certain region in and around the
nominal condition of reduction, but if integrated at entirely different conditions, there is
no guarantee on the accuracy of prediction of the reduced model. This is illustrated in
Figure (3.1), where in plot (a) the integration was performed under the same condition

at which the reduction was performed, namely H, mass fraction = 2.92056 x 107°, O,

21
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Figure 3.1: Performance of the reduced mechanism (a) at nominal condition of reduction

and (b) at conditions away from the nominal

mass fraction = 0.468255, C'H, mass fraction = 0.290531 and T = 1208.64 K, and in
plot (b) the integration was performed at a different condition of H, mass fraction =
9.35160 x 1072, O, mass fraction = 1.28092 x 10~'2, C H, mass frac = 1.13365 x10~* and
T = 2806.78 K. It is observed that although the reduced model predicts the temperature
profile at the nominal condition with great accuracy, at conditions away from the nominal
its performance deteriorates significantly. Hence it is neccessary to quantify the range of
species concentration at which the reduced model can predict the species profiles within
user defined accuracy. This leads to the problem of feasibility analysis, formulated by
Swaney and Grossmann (1985) , (1985b). The idea of feasibility/flexibility analysis was
developed in the context of chemical process design and operation, where an important
problem is to maintain feasible steady state operation for a range of uncertain conditions
that may be encountered during a plant operation. Thus the design flexibility can be de-
fined as the ability of a design to tolerate and adjust to variations in parameter conditions
which may be encountered during operation. Thus the problem of optimal flexible design
consists of (a) determination of a process configuration at a chosen nominal point and (b)
determination of the range of process parameters the optimal configuration can tolerate.

The present problem of kinetic model reduction can be considered, following the same
ideas as for the process synthesis problem, wherein the problem of determining an optimal

reduced model at a nominal point is identical to step (a), and determining the range of
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species concentration over which the reduced model is valid is similar to step (b). Hence
the techniques of flexibility analysis used for process design problems can be applied
in the present problem of mechanism reduction, as was successfully demonstrated by
Sirdeshpande et al. (2001).

Following the idea of Halemane and Grossmann (1983), for given nominal conditions
6N, if AG; and A@; are the maximum expected deviations of the parameters from the

nominal point, the expected range of each parameter is :
o) — A0 <0, <0Y + AGS (3.1)

To determine the flexibility of a mechanism, a new parameter ¢ is introduced, using which

the expected parameter range can be expressed as :
0 — o A0 < 0; <O + oG (3.2)

The aim of flexibility analysis is the determination of the optimal value of ¢ for which the
reduced mechanism predicts the profiles within user defined accuracy. One way of deter-
mining this is by the vertex enumeration strategy (VES), where an optimization problem
needs to be solved at each vertex of the expected parameter range. The coordinates of

the vertices (V*) for a two-parameter problem are :

VEi={0, + o AQTO, + o AOS} (3.3)
VZ={0, + o Ab], 0, — c AOS} (3.4)
V3 ={0, — o AO], 0, — o AOS} (3.5)
Vi ={0, — o AGTO, + o AGS} (3.6)

(3.7)

At each vertex, the following optimization problem is solved :

maxr o

subject to x(01(0),02(c0),...,) <0 (3.8)

The flexibility index is taken to be the smallest value among all the optima obtained
from the solution of the optimization problem at all vertices. The VES assumes that

the point of constraint violation occurs at one of the vertices of the expected parameter
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range. Physically, this method inscribes the largest hyperrectangle within the range of
operation, being centered at the nominal point and its sides are proportional to the ex-
pected deviations, A@T, A@~. Although this approach succeeds in quantifying the feasible
region, it can lead to large underestimation of the region, particularly if the nominal point
is located close to one of the constraints. Sirdeshpande et al. (2001) proposed estimation
of the feasible region by inscribing a convex hull using the boundary points evaluated by
solving a number of the optimization problems. A convex hull of a set of points is the
smallest convex set that contains all the points. There exists a number of different algo-
rithms in the computational geometry literature that are designed to compute the convex
hull for a given set of points. A review can be found in Berg et al. (1997). Recent work
on convex hull has been focussed on variations of a randomized, incremental algorithm
where points are considered one at a time. Quickhull algorithm (Barber et al. (1996)), is
such an approach which proceeds using two geometric operations : oriented hyperplane
through (n4) points and signed distance to hyperplane. In particular, the following steps

are followed for each processed point :

1. Locate the visible facets for the point. A facet is visible if the point is above the

facet. The selection is made by evaluating the signed distance from the facet.
2. Construct a cone of new facets from the point to the visible facets.

3. Delete the visible facets thus forming the convex hull of the new point and the

previous processed points.

Following the above procedure, determination of the feasible region of an n parameter
problem would require solution of 2" optimization problems, which is impractical for high
values of n. This is of particular concern for the applicability of this procedure in the
problem of mechanism reduction, since the dimension of the kinetic problem is expected
to be of the order of the number of species present in the system, and the evaluation of the
constraint function is also expensive. An alternative approach for determining the bound-
ary points of the feasible region of a reduced mechanism is to start from the nominal point
and proceed along the direction where the error constraint is most sensitive to changes
in the initial conditions. Such directions can be determined by performing a sensitivity

analysis of the error constraint with respect to initial conditions, followed by the principal
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component analysis of the sensitivity matrix. The use of principal directions facilitates
the possibility of reduction of dimension by selecting only the significant directions.

Thus the boundary points are determined by solving the following problem :

maxroc

subject to x(y1(0),y2(0),...,T(0)) <0 (3.9)

where ¢ is a scaled deviation of parameters ¥, ys, ..., 7" along the principal direction of

the deviation error, defined as :

Q) =33 [&’j(a) T &’j(ao)] (3.10)

where & j(a) = &(t;, ) denotes the error between detailed and reduced mechanism at
each selected time point (¢;,7 =1,2,...,¢) and for each of the m observed species. o is

a measure of initial species concentration y;, given as:
o =Iny;,i=1,2,...,p (3.11)

&.,j(a) can be seen as the deviation of the reduced profile from the detailed profile under
particle conditions, and & ;(a) is the same deviation under the nominal condition at
which reduction is performed. The classical Gauss approximation gives (Vajda et al.

(1985)):

Q(a) = Q(a) = (Aa)"STS(Aa)

Aa; = a; — o (3.12)

where Ac; is the deviation of the particle condition from the nominal condition of re-

duction. S is the array of normalized sensitivities at each time points ?1,%o,...,1,, given
as: _
S1
S
s=|""

Sq
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The principal directions can be obtained by performing singular value decomposition
of STS expressed as:

STS =UTAU (3.13)

where A is a diagonal matrix formed by the eigenvalues )\; of STS and U denotes the
matrix of orthonormal eigenvectors u;,7 = 1,2,...,p. Bard (1974) defined the principal
components as:

U =0T (3.14)

Solving the optimization problem along each of the principal directions leads to the
determination of boundary points, which are used to define the approximation of the
convex hull of the region of validity. Note that by utilizing the principal component
analysis the dimension of the problem can be greatly reduced, thus allowing for more
efficient representation of the feasible region. Hence this analysis can be used to identify
the dominant variables in the kinetic network reduction problem, thereby making the

described feasibility analysis technique applicable to this problem.

3.2 Multiperiod Formulation

The problem discussed in the previous section is primarily to analyzes the performance
of a reduced mechanism under variable parameter conditions, which is essentially a post
processing step. Hence the problem of mechanism reduction contains no information
regarding the range of validity of a particular reduced mechanism. Hence it is possible
that a reduced mechanism which is optimal at the nominal point retains its optimality over
a very narrow parameter range. This can be avoided by including the effects of parameter
uncertainty in the reduction stage, with the aim of determining a reduced model which
retains prescribed flexibility. A method to address this issue in design under uncertainty

problem is the multiperiod formulation, proposed by Halemane and Grossmann (1983).
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For the case of mechanism reduction, it amounts to the determination of an optimal
reduced kinetic model, which retains its accuracy over a desired range of initial conditions
of species concentrations and temperature. Sirdeshpande et al. (2001) illustrated the
performance of this procedure in a Hy/Os combustion system. The idea is to generate a
population comprised of N, vectors of uncertain parameters, using a sampling technique.
Each member k£ of the population is known as a scenario, and is represented by the
parameter vector #¥. The optimization problem is formulated as :

m}\in Zz:; Ai

subject to e\ 08) <ek=1,...,N, (3.15)

This problem is similar to problem (2.1) - (2.7), except that the number of error constraints
to be satisfied is IV, instead of one, thus making it more computationally intensive. Having
obtained an optimal solution, the feasibility problem is solved to verify if the reduced set
covers the desired range of conditions. If not, a critical point, from the the set of scenarios
considered, is added to the population and the procedure is repeated by solving problem
(3.15) with a larger population.

This technique was further tested considering uncertainty in the values of reaction
rate constants. This problem becomes particularly important for the suggested reduction
scheme since it is entirely based on the availability of a detailed kinetic model consisting
of deterministic reaction rate constants. However, such kinetic parameters are experi-
mentally determined and is expected to be uncertain. An optimal reduced model which
remains accurate over the uncertain range of kinetic parameter can be determined by
solving problem (3.15), wherein the scenario 6 corresponds to a set of rate constants.
The determination of the optimal reduced set is followed by the feasibility analysis of the

reduced set, formulated as :

max y
0K»

subject to kP <kp; <kiP i=1,...,Ng (3.16)

The upper and lower bounds on the reaction rate constants are computed through the
uncertainty factors k%7 = k39" /UF; and k{F = k3™ x UF;, where k9™ represents the

nominal value of the rate constant. Finding a value of x > € indicates that the mechanism
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System SRSM multiperiod
H,/O, 2-8,14 2-8
H,/CO/Air  14,6,10,12-15,17  1-4,6,10,12-15,
17,22,25,35,37,38,43  17,22,24,25,32-35

Table 3.1: Comparison of the reduced reaction model obtained by using SRSM and mul-
tiperiod

does not have the desired flexibility and the optimal % values resulting from the solution
of problem (3.16) are introduced as a new scenario for problem (3.15). This generates a
new mechanism which is again checked for feasibility, and this procedure is repeated until
X < €. This procedure was performed in both Hy/Os system and Hy/CO/Air system,
and was compared with similar simulation performed with the stochastic response surface
(SRSM) based method (Balakrishnan et al. (2002)). The SRSM belongs to the family of
surface-response methods where the system outputs are expressed as polynomial functions
of the uncertain parameters. The polynomial expansion coefficients are used to extract
sensitivity information from the reaction mechanism, which provides a direct measure
of the effect of changes in a rate constant on the output concentration of species. This
sensitivity information was used to determine the reduced set of reactions and is compared
with the reduced mechanism obtained from the multiperiod formulation in Table (3.1).
The feasibility analysis approach presented in section (2.1) performs well for well de-
fined, convex functions. However, the present problem of feasibility analysis of reduced
mechanism gives rise to non-convex, even disjoint feasible region, the approximation of
which becomes extremely difficult with analytical techniques. The conventional feasibil-
ity analysis technique, though applicable in the mechanism reduction problem, largely
underestimates the feasible region, thus making its application inefficient. Use of mul-
tiperiod formulation can increase the actual feasible region, by incorporating feasibility
information in the mechanism reduction stage. However, it does not solve the problem
of inefficient approximation of the feasible region. Moreover, it increases the size of the
reduced mechanism by forcing it to be feasible over a larger region in the composition

space.
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3.3 Feasibility Analysis using Surface Reconstruction

A new approach is developed in this work for efficient approximation of arbitrary shaped
feasible region using the ideas of shape reconstruction practiced in the field of computer
graphics. The main problem definition for surface reconstruction is that given a set of
range points, reconstruct a manifold that closely approximates the surface of the original
model. Range data is a set of discrete points in three dimensional space which have been
sampled from the physical environment or can be obtained using laser scanners which
generate data points on the surface of an object. The problem naturally arises in a
variety of practical situations such as range scanning an object from multiple view points,
recovery of biological shapes from two-dimensional slices, interactive surface sketching
etc. Surface reconstruction finds extensive applications in the areas of automatic mesh
generation and geometric modeling, molecular structure and protein folding analysis. .
The problem of feasibility analysis is analogous to the ideas of surface reconstruction,
since the main effort of feasibility analysis lies in identifying and accurately estimating the
boundary of the feasible region. In the previous approaches this boundary is approximated
by linear inequalities, either by incorporating a hyper-rectangle Swaney and Grossmann
(1985) or by describing an approximation of the convex hull Goyal and Ierapetritou (2002)
inside the feasible space. These methods can have satisfactory performance in case of
convex, connected feasible regions, but will be inaccurate for the cases of nonconvex
or disjoint feasible regions. On the other hand, the surface reconstruction scheme can
successfully describe both nonconvex and disjoint regions defining the bounding surface

by piecewise linear functions.

3.3.1 « shape approach

There are various approaches described in literature for determining the shape of a pat-
tern class from sampled points. Many of these approaches are concerned with efficient
construction of convex hulls for a set of points in the plane. Jarvis Jarvis (1977) pre-
sented one of the initial works in the area of considering the problem of computing the
shape as a generalization of the convex hull of a planar point set. He presented several
algorithms based on nearest neighbours that compute the shape of a finite point set. Akl

and Toussaint Akl and Toussaint (1978) proposed a way of constructing a convex hull
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by identifying and ordering the extreme points of a point set, and the convex hull serves
to characterize the shape of such a set. Fairfield Fairfield (1979) had put forward a no-
tion of the shape of a planar set based on the closest point voronoi diagram of the set.
Different graph structures that serve similar purposes are the Gabriel graph Matula and
Sokal (1980), the relative-neighborhood graph Toussaint (1980) and their parameterized
version, the [ - skeleton Kirkpatrick and Radke (1985).

A mathematically rigorous definition of a shape was later introduced by Edelsbrunner
et al. Edelsbrunner et al. (1983). They proposed a natural generalization of the convex
hulls which they referred to as o — hulls. The a-hull of a point set is based on the notion
of generalised discs in the plane. The family of a-hulls includes the smallest enclosing
circle, the set itself, and an essentially continuous set of enclosing regions in between these
two extremes.

Edelsbrunner et al. also define a combinatorial variant of the a-hull called the a-shape
of a planar set, which can be viewed as the boundary of the a-hull with curved edges
replaced by straight edges. Conceptually, a-shapes are a generalization of the convex hull
of a point set ., with « varying from 0 to co. The a-shape of ./ is a polytope that
is neither necessarily convex nor connected. For o = 0o, the a-shape is identical to the
convex hull of .. However, as « decreases, the a-shape shrinks by gradually developing
cavities. When a becomes small enough, the polytope disappears and reduces to the data
set, itself.

To provide an intuitive notion of the concept, Edelsbrunner describes the space R? to
be filled with styrofoam and the point set .# to be made of more solid material, such as
rock. Now if a spherical eraser with radius « curves out the styrofoam at all positions
where it does not enclose any of the sprinkled rocks (the point set .#), the resulting
object formed will be called an a-hull. The surface of the object can be straightened
by substituting straight edges for the circular ones and triangles for spherical caps. The
obtained object is the a shape of .. It is a polytope in a fairly general sense : it can be
concave and even disconnected; it can contain two-dimensional patches of triangles and
one-dimensional strings of edges, and its components can be as small as single points.
The parameter o controls the degree of details captured by the « shape.

It is possible to generalize all the concepts involved in the construction of « shape

(i.e. « hulls, @ complexes, Delaunay triangulation, Voronoi diagrams) to finite set of
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points . in %9, for arbitrary dimension d. This generalization, combined with an ex-
tension to weighted points is developed in Edelsbrunner Edelsbrunner (1992). However,
the implementation details of the problem becomes progressively more complex with in-
creasing problem dimensionality, and the worst-case complexity of the problem grows

exponentially.

3.3.2 Selection of o

The computed « shape of a given set of sample points explicitly depends on the chosen
value of «, which controls the level of details of the constructed surface. Mandal et al.
Mandal and Murthy (1997) presents a systematic methodology for selecting the value of
« in R?. They visualize the problem of obtaining the shape of .# as a set estimation
problem where an unknown set & € 4 is to be estimated on the basis of finite number of
points X1, Xo,..., X,, € &/. As n increases .(n) will cover many parts of &/ and hence
the value of a for .#(n) should depend on the sample size (n), thus « is a function of
n. Additionally « should also be a function of the inter-point distance of the sampled
n points of .#(n). To account for the dependence on inter-point distance, the authors
have constructed the Minimum Spanning Tree (MST) of the sampled data points. If
l, represents the sum of edge weights of the MST, where the edge weight is taken to
be the Euclidean distance between the points, then the appropriate value of « for the

construction of « shape is given by :
hy =1/ — (3.17)

where n is the total number of sample points. To illustrate the performance of o shape
in capturing the shape of an object, a disjoint, non-convex object is chosen, as illustrated
in Figure (3.2). The sampled points represent a 2-d object, which is the input to the «
shape construction code. The « shape identifies from the input data set, points which lie
on the boundary of the object. These points are joined by a line to describe the surface
of the object. The above figure also illustrates the dependence of the captured shape on
the chosen value of a. The « value estimated by performing the minimum spanning tree
operation is 120, at which value the « shape was found to capture the nonconvex as well

as the disjoint nature of the object. By further increasing the value of o the performance
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Figure 3.2: Performance of « shape for different « values : (a) 120 (b) 200 (¢) 100000
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Figure 3.3: Performance of o shape with random points

of a shape deteriorates, as illustrated in Figure (3.2b), and at very high « value the «
shape forms a convex hull of the object (Figure (3.2c)). Hence the level of details captured
by the o shape strongly depends on the chosen value of o, and progressively decreasing
the value of o will capture the shape more accurately. For the case of uniform sampling,
where the distance between the sampled points is uniform, the predicted shape is not very
sensitive to the value of « for lower o values. However, extreme reduction of the value of
a will result in the original data set, and will fail to capture any shape.

In case of random sampling, where the inter-point distance is not constant, the pre-
dicted shape is more sensitive to the lower « values. For lower values of « it scoops out
holes from within the samples which are not actually present, but is an outcome of sam-
pling. Such an example is illustrated in Figure (3.3) for the same object described by a
set of random samples. The shape produced by an « value of 6 has the accurate outside
boundary, but it inserted unnecessary holes inside the body. A higher value of o = 7
however eliminated the holes. For progressively lower a values, the number of holes go on
increasing, and finally for extreme low value it degenerates to original data set without

capturing any shape.
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Figure 3.4: Algorithm of feasibility analysis using a shape

3.4 Feasibility analysis using a shape

The overall aim of feasibility analysis is the determination of the range of parameters over
which a particular process is feasible. A formal definition of this problem is to obtain a
mathematical description of the region in parameter space bounded by the process con-
straints. This region can be considered analogous to an object, the shape or surface of
which can be estimated using the « shape technique. The input to any surface reconstruc-
tion algorithm needs to be a set of points representing the object, whose surface needs
to be determined. Hence the first step is the generation of good sample data points to
represent the feasible region under consideration. The a-shape can then be constructed
for the sampled data, using the « estimate obtained from the minimum spanning tree of
the data set. The « shape essentially identifies points from the input data set that lie on
the surface of the object. These points are then connected by a line in two dimension and
triangle in three dimension, giving rise to a polygon enclosing the feasible region. Figure
(4.3) illustrates the above mentioned steps.

Having defined the surface or shape of the feasible region, the next step involves the
determination of whether a particular point belongs to the feasible region. Since the
feasible region has been approximated by a polygon, a simple way to check if a point
is inside the polygon is by using one of the point-in-polygon tests Haines (1994). One
method to determine whether a point is inside a region is the Jordan Curve Theorem,
which states that a point is inside a polygon if, for any semi-infinite ray from this point,

there is an odd number of intersections of the ray with the polygon’s edges (Figure (3.5)).
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Conversely, a point is outside a polygon if the ray intersects the polygon’s edges an even
number of times, or does not intersect at all. Following this, whenever a parameter needs
to be checked for feasibility in a polygon estimated feasible region, a semi-infinite ray is
drawn from the point in any direction, and the number of intersections is determined,

which decides on whether the point is feasible or not.

Figure 3.5: Point-in-polygon test: odd number of intersections means point is inside, even

number of intersections means point is outside

3.4.1 Sampling technique

Obtaining a good representation of the feasible region is the first and very important step
in the a-shape technique of feasibility analysis. In many problems, typically, the feasible
region covers only a very restricted region of the entire parameter space. Hence sampling
techniques covering the entire range of uncertain parameter proves to be inefficient, par-
ticularly when the evaluation of the process constraints is an expensive operation. Most
of the common sampling techniques sample the parameter space based on the distribution
of the uncertain parameter, which are considered to be uniform for the cases considered
here for simplicity of presentation. Under this condition it will lead to uniform sampling
of the entire parameter space, irrespective of whether the sampled points are feasible or
not. A new sampling technique is thus introduced here, which takes advantage of the
fact that typically a small section of the entire parameter space is feasible. The sampling
problem is formulated as an optimization problem and is solved using Genetic Algorithm

(GA). The use of GA as a solution procedure proves to be very efficient for this problem
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since the search scheme has the inherent property of concentrating around regions having
good solutions, which is the feasible solution for the problem addressed here.

The purpose of the sampling step is to have a good approximation of the feasible
space by minimum evaluation of the expensive feasibility function. The formulation of

the sampling problem as an optimization problem is given by:

V eas
max Vy
subjectto (f1)g <0

(f2)s <0

(fu)e <0 (3.18)

where Vi.qs is the volume of the feasible region, evaluated by constructing the a-shape
using the sampled feasible points. The optimization variables are the parameter values 6,
which are sampled by GA to optimize the objective, and fi, fo..., f,, are the constraints
of the feasibility problem evaluated at #. However, in this formulation there is no optimal
value of the variable # which will maximize the volume, but we are interested in the entire
sampled set of feasible # values, using which the volume is evaluated by constructing an
a-shape over the entire set of feasible  values. Since the objective is to maximize the
volume of the feasible space, whenever a chosen value of 6 satisfies the constraint functions,
the volume is evaluated to update the objective function. When the value is not feasible
there is no need to reevaluate the volume since it will not change, but the fitness function
is penalized by assigning it a small value. By solving this problem using GA reduces
the required number of function evaluations by minimizing the unnecessary evaluation
of infeasible parameter space. In order to solve the optimization problem by GA, the
optimization variables are encoded as a string of bits, and these strings are appended
together to form a chromosome. The solution procedure starts by generating a population
of solutions, where each individual in the population has a particular chromosome value
which can be decoded to evaluate the parameter values and the objective function, also
called the fitness function. As shown by DeJong DeJong (1975), large population sizes

exhibit slower convergence than small population, but they tend to converge to better
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solution. In the interest of balancing execution time and optimality, the population size is
chosen to be of the order of the chromosome size, as suggested by Edwards et al. Edwards

et al. (1998).

Tlchromosome < Npopulation < 2nchromosome (319)

The populations are evolved through several generations, following rules like reproduction,
crossover, mutation, until the objective function cannot be improved any further. The
primary objective of reproduction operator is to emphasize good solutions and eliminate
bad solutions in a population. This is achieved by first identifying above-average solutions
in a population, making multiple copies of the good solutions and eliminating bad solutions
from the population in order to accommodate multiple copies of the good solution. Some
common methods for achieving this is by tournament selection, proportionate selection,
ranking selection etc. Goldberg (1989). In all the examples presented in this work,
tournament selection was chosen to be the reproduction operator. While reproduction
can make more copies of the good solution and eliminate bad solution, however, it cannot
create a new solution. The crossover operator is applied next to take care of that, where
two strings are picked randomly from the mating pool and some portions of the strings
are swapped among themselves to create two new strings. If the new strings created by
a crossover are good, there will be more copies of them generated by the reproduction
operator in the next mating pool. Otherwise if the new strings are not good, they will
not survive beyond next generation, since reproduction will eliminate them. A uniform
crossover between randomly selected pairs is used for this work.

The parameters chosen for GA operations largely govern the computational time as
well as the quality of the solution. If the selection operator emphasizes too much on
the population-best solution by assigning many copies of it, then the population loses its
diversity very quickly. The crossover and mutation operators should be strong enough to
retain the diversity of solution and create solutions fairly different from the parent solution.
In the absence of this, the simulation can converge to suboptimal solution. On the other
hand, if the reproduction operator is weak and the crossover operator very strong, the
GA’s search procedure behaves like a random search process. The GA parameters chosen

for all the examples presented here are P ossover = 0.5 and a small mutation probability

Pmautation = 0.02.
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The working principle of GA is that by applying these three operators, the number of
strings with similarities at certain string positions are increased from one population to
the next. These similarities, referred to as schema in GA literature, represents a set of
strings with similarity at certain string positions. Thus the schema can be thought of as
representing certain regions in the search space, or specific ranges of the parameter value.
Hence by having more copies of a schema with a better function value, one can reach the
optimal solution without searching the entire variable space, but by manipulating only a
few instances of the search space.

This feature of GA is of particular importance for the present problem since only a
limited region of the variable space is feasible, and exploring the entire variable space to
have an idea of the feasible region becomes computationally expensive. As mentioned
above, the working principle of GA is based on generating multiple numbers of the good
solutions. Hence by evaluating the volume for each of the feasible parameter value (6)
will reduce the efficiency of the procedure because of the repetition of the same solutions.
To avoid this, a memory of the sampled parameter value is maintained and updated. For
every generated chromosome in the population of the GA simulation, the stored parameter
values are searched to check for uniqueness of the new solution. If the new solution is

unique, then the constraints are evaluated, else it is updated from the memory.

3.4.2 Range of validity of reduced kinetic model

Figure (3.6) represents a typical feasible region of reduced C'H4 mechanism consisting of 17
species and 59 reactions, where the detailed model consists of 53 species and 325 reactions.
The nominal point of reduction for this problem is Oy = 0.005 mass frac., CH; = 0.38
mass frac., T = 950K. As illustrated in Figure (3.6), the feasible region can be highly
nonconvex, even disjoint, for which cases the conventional techniques cannot be used.
The problem is solved using the convex hull approach, where the boundary points are
identified by moving in different directions from the nominal point. Figure (3.7) illustrates
the predicted feasible region by the convex hull. The reduced mechanism is feasible in
two disjoint regions, a small region in the low O, concentration, and considerable portion
towards the higher O, concentration. However, the nominal point lies on the low O,

region, hence restricting the convex hull estimate within this small portion, and preventing
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Figure 3.8: Sampled feasible region of a reduced model of GRI-3.0 mechanism

it from providing any estimate of the major range of feasible operation. Figure (3.6) is
generated by performing grid search over the variable space, where at each point one
needs to determine the deviation of the reduced model from the detailed mechanism due
to change in conditions of species concentration and temperature. This evaluation is
an expensive operation, and performing grid search over the entire variable space is not
feasible. The sampling technique described in section (3.1) is used to have a representation
of the feasible space. The three variables, O, mass fraction, C H; mass fraction, and
temperature are coded using 5 bits for each parameter, giving rise to 15 bit chromosome.
The GA simulation is run with a population size of 20, evolved through 250 generations,
which will require 5000 function evaluations. However, due to the retained memory of
the previous calls, the number of function evaluations were reduced to 1809, of which 778
points were determined to be feasible. The generation of this feasible region using GA
requires approximately 25 hrs, whereas using random sampling to generate 778 feasible
points requires 70 hrs. Figure (3.8) illustrates the sampled feasible region as compared to
actual feasible region obtained by grid search. An « shape is then constructed with these
sampled data set. In a three dimensional space a shape identifies points on the boundary
of the object, which are to be joined in a triangle to form the surface of the object. Having
obtained the surface of the feasible region, the next step is determination of whether a
point lies inside the feasible region, which can be done using the point-in-polygon test.

Using this procedure the predicted feasible region is constructed, as illustrated in Figure
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Figure 3.9: Predicted feasible region of a reduced model

(3.9). The « shape procedure is found to capture 71% of the actual feasible space, which
can still be improved by generating more sample points by allowing the GA simulation of
the sampling step to evolve for more generations. This is a large improvement over the
convex hull approach, which covers only 3% of the overall feasible space, mainly because
of the disjoint nature of the feasible space. Moreover, as illustrated in Figure (3.7), the
convex hull approach also overestimates the feasible region, which is a consequence of the
nonconvexity of the feasible space. Since « shape can accurately capture the nonconvexity

of the shape, it results in no overprediction.

3.5 Summary

An alternative formulation is presented for feasibility analysis of reduced mechanisms
using the surface reconstruction ideas. The problem definition is to evaluate and quantify
the uncertain parameter range over which the reduced model retains its validity. In the
present approach the feasible region is viewed as an object, with the constraints defining
the boundary of the object. The surface reconstruction ideas are used to define the
shape of the object. The procedure starts by first sampling the feasible region to obtain a
representation of the feasible space. An « shape is then constructed of the sampled points,
which identifies points forming the boundary of the object. These points are joined to

have a polygonal representation of the feasible region. Finally, determination of whether a
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point is feasible or not can be done by a point-in-polygon check. The presented procedure
was found to have much better performance over conventional techniques of feasibility
analysis.

The multiperiod formulation enables generating reduced mechanisms possessing ac-
curacy over desired range of species concentration and temperature. Such a multiperiod
formulation was also found to overcome the problem of presence of uncertainty in the
determination of kinetic parameters, since it enables determination of reduced reaction
set valid over a given range of rate constants. Simulations performed for CO/H, and

H, /05 system were found to have good agreement with the SRSM results.



Chapter 4

Formulation of Adaptive Reduction

Having determined an efficient scheme for obtaining reduced kinetic models and evaluating
the range of validity, the next step is the integration with reacting flow simulation. The
reactive flow models typically span a broad range of conditions with respect to species
concentration and temperature. The detailed model retains information regarding kinetic
behavior of the system under all the different conditions of species concentration and
temperature. However, when the detailed model is reduced, the reduced model loses
such generality, since it retains information of system behavior under specific conditions
given by its range of validity. If the same reduced model is used under all the conditions
encountered in the reactive flow model irrespective of its validity, it will incorporate
inaccuracy in the predictive capacity of the simulation. To overcome this problem the
adaptive reduction scheme is proposed in this work, where the aim is to adapt the reaction
model to the changing condition of the flow simulation. This is achieved by generating
multiple reduced models addressing different conditions of the system. The flow simulation
will use a particular reduced model only where it is feasible, meaning it retains its accuracy
in prediction of the actual system behavior. Whenever the flow simulation encounters a
condition for which the present selection fails, it will search for a different reduced model
valid for such condition, and integrate it.

Thus, the main aim is to generate a library of reduced model, the feasible region of
which together cover the entire range of conditions encountered in the reactive flow sim-
ulation. However, this requires apriori knowledge of the accessed region of the detailed

reactive flow simulation involving detailed kinetic model, which is not possible. An alter-

43
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native method is to have an estimate of the accessed region, which can be obtained by
solving the detailed flow simulation with a reduced mechanism or a simplified flow simu-
lation with detailed kinetic mechanism. In the present work the stochastic simulation of
zero-dimensional reactor model is used for the estimation of the accessed region, primarily
because it is computationally tractable even with the detailed kinetic model, and covers

a broad range of conditions in the composition state space.

4.1 Stochastic reactor simulation

The stochastic reactor simulation falls in the broad category of probability density function
(PDF) approach to model turbulent flows. At each point in the flow field, a complete
statistical description of the state of the fluid is provided by the velocity-composition
joint pdf. This is the joint probability density function (pdf) of the three components of
the velocity and of the composition variables (species mass fraction and enthalpy). The
principle method is to solve a modelled transport equation for the velocity-composition
joint pdf, where the effects of convection, reaction, body forces and the mean pressure
gradient are explicitly considered and do not need to be modeled (Pope (1985)).

In the present work two different alternatives are evaluated for the estimation of the
accessed region, that of the homogenous flow simulation of a partial stirred reactor with
micromixing described by the Interaction-by-Exchange-with-Mean (IEM) model and the

pairwise mixed stirred reactor model.

4.1.1 Stochastic simulation of PaSR

The salient feature of the PaSR model is the unmixed nature of the reactive fluids at
the molecular level. Inside the reactor, the mean thermo-chemical properties are assumed
to be spatially homogeneous but imperfectly mixed at molecular level. That is, the
reactive fluids are not completely diffused into each other at the molecular level, but
their mean values are uniform throughout the reactor due to turbulent stirring. With the
above assumption, Curl (1963) derived the probability density function (pdf) evolution
equation for a single reactive scalar. From general view of modeling turbulent reactive

flow, PaSR can be considered as a single grid cell embedded in a large computational
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scheme. Therefore, PaSR offers a good test bed for exploring the influence of the unmixed
nature on chemical kinetics, for evaluating the performances of reduced chemistry, and
for assessing various mixing models. A stochastic modeling approach for PaSR has been
developed by Correa (1993) for premixed combustion and by Chen (1997) for nonpremixed
combustion, where the pdf is represented by an ensemble of N, particles, each having a
unique composition. The pdf P(Y}) of mass fraction Y} of the species in the reactor is

represented by the IV, ensemble :
Yy v®, v k=1, N, (4.1)

A time marching scheme is used for the stochastic simulation which is carried out by the

following sequential procedure:

1. Throughflow is simulated by randomly selecting fluid particles from the ensemble
of N, particles at the specified mass flow rate. The properties of these selected
particles are set to the properties of the incoming mixture, and their age is reset to
zero. The number of fluid particles to be replaced at each time step (At) is given
by (Borghi, 1988):

At
Nreplaced = —Np (42)

T'I'CS
2. Fluid particles in the reactor are allowed to mix at the prescribed mixing frequency.
This can be achieved by using either Coalescence-Dispersion (CD) or IEM as the

micromixing model.

3. The mixed fluid particles are then allowed to react according to chemical kinetic

rate equations.

Modelling PaSR with TEM model

While using IEM to model molecular mixing, reaction and mixing are considered simul-
taneously, and fractional time stepping is not required. The governing equation for each
particle is given by:

dy," () Ty L pm) (n)
e —w(Y," = Ye)+ R M /p"™M k=1,..,Ngn=1,..,N, (4.3)

where w is the mixing frequency, R,(c") is the molar production rate of specie k per unit

volume of the n'* particle, My, is the molecular weight of specie k and p{™ is the density
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of the n'* particle. The corresponding equation for the particle temperature is:

dr™ = (1) T O (1) () n
Cp— =—w D Ve —h) + Y B RY M/ p (4.4)
k=1 k=1

The first term on the right hand side of Equation (4.3) describes linear deterministic
relaxation to the mean, which is the main characteristic of the IEM model. The second
term is the reaction rate term for specie k£, which introduces significant complexity and
stiffness.

For each of the N, particles, Equation (4.3) is solved for each of N, species and
Equation (4.4) for temperature. The quantities required in the IEM model are updated
from the ensemble. This procedure is repeated until a stochastic steady state is achieved.
If, however, a large change occurs in the current particle (the one under integration), the
mean quantities will be affected during the current time step and the IEM model term
will be incorrect. This places a restriction on the maximum allowable change within the
global time step, and hence a restriction on the maximum allowable time step. PaSR
simulation is performed with progressively smaller time steps until convergence of mean

statistics is established.
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4.1.2 Stochastic simulation of PMSR

At any time ¢, the PMSR consists of an even number N of particles, the i** particle
having composition ¢ (¢). The overall simulation of PMSR proceeds in the same way as
for PaSR, where all the reactor particles are assigned initial conditions at ¢ = 0, and then
the simulation is advanced in discrete time steps until a statistically stationary state is
attained. Between these discrete times, the composition evolves by a mixing fractional
time step and a reaction fractional time step.

In PMSR, the reactor particles are arranged in pairs such that particles 1 and 2, 3
and 4, ..., N — 1 and N are partners. The mixing fractional step consists of pairs (p and

g, say) evolving by a simple first order linear model :

p)
dz; = — (6™ — ¢D) /Tic
do@
O = (69— )i (1.5

where 7., is the specified mixing timescale. The other physical processes present in
the PMSR model are inflow and outflow to and from the reactor and reassignment of
particle pairs, which ensures mixing between all particles in the reactor. With 7,.s being
the specified residence time, outflow and inflow consists of selecting 1/2NAt/7,.s pairs at
random and replacing their compositions with inflow compositions, which are drawn from
a specific distribution. With 7,4, being the specified pairing timescale, 1/2NAt/Tpqir
pairs of particles (other than the inflowing particles) are randomly selected for pairing.
Then these particles and the inflowing particles are randomly shuffled so that they have
the probability of changing partners. Figure(4.2) illustrates the accessed region for PMSR
in temperature-Hy and temperature-O, space. It is observed that a considerable portion
of the temperature and species composition space is accessed by the PMSR simulation,
and hence provides satisfactory initial estimate of the composition space accessed in a

more rigorous reactive flow model.

4.2 Clustering the accessed space

Having obtained an estimate of the accessed composition space, the next objective is

to generate reduced reaction models which can cover the entire accessed space. To ac-
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Figure 4.2: Accessed region for a PMSR in Temperature - CH, - O space

complish this, one needs to identify nominal points at which such mechanism reduction
needs to be performed. This can be obtained by clustering the data of temperature and
species concentration to identify patterns in the data set and representative points for
such patterns.

Data Clustering is a branch of data mining problem. Given a large set of multi-
dimensional data points, the data space is usually not uniformly occupied. Data Clus-
tering identifies the sparse and the crowded places, and hence discovers interesting data
distributions and patterns in the underlying data. The problem of clustering can be de-
fined as follows: given n data points in a d- dimensional metric space, partition the data
points into k£ clusters such that the data points within a cluster are more similar to each
other than data points in different clusters. Clustering techniques have been studied ex-
tensively in many different fields such as statistics, machine learning, data mining, with
numerous methods proposed and studied. Existing clustering algorithms can be broadly
classified into partitional and hierarchical. Partitional clustering algorithms attempt to
determine k partitions that optimize a certain predefined criterion function. A hierarchi-
cal clustering is a sequence of partitions in which each partition is nested into the next
partition in the sequence. An agglomerative algorithm for hierarchical clustering starts

with the disjoint set of clusters, which places each input data point in an individual clus-
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ter. Pairs of items or clusters are then successively merged until the number of clusters
reduces to k. At each step, the pair of clusters merged are the ones between which the
distance is the minimum. The widely used measures for distance between clusters are as

follows :

dmean(cia C]) = ||mz - mJH
dave(Ci, C) =1/ (nan; > |lp— pIl|

peC; preC;y
dmaz(Ci, Cj) = pelax sz
Amin (Ci, Cj) = peéfﬂlecj sz

where, m; is the mean for cluster C; and n; is the number of points in C;. Hence, with
dmean @S the distance measure, at each step, the pair of clusters whose centroids or means
are the closest are merged. On the other hand, with d,,;, as the distance measure, the pair
of clusters merged are the ones containing the closest pair of points. The performance of
a particular clustering algorithm or the distance measure to be employed depends heavily
on the nature of the dataset used. All of the above measures usually yield similar results
when the clusters are compact and well separated. However, if the clusters are close to
one another, or if their shapes and sizes are not hyperspherical and uniform, the results
of clustering can vary quite dramatically. However, neither the centroid based approach
( using dean ) nor the all-points approach ( using d, ) works well for non-spherical
or arbitrary shaped clusters. The shortcoming of the centroid-based approach is that it
considers only one point as representative of a cluster, which is the cluster centroid. For
a large or arbitrary shaped cluster, the centroids of its subclusters can be reasonably far
apart, thus causing the cluster to be split. The all-points approach, on the other hand,
considers all the points within a cluster as representative of the cluster. This approach
makes the clustering algorithm extremely sensitive to outliers and to slight changes in
the position of the data points. In recent years, a number of clustering algorithms have
been proposed for large databases. Raymond and Han (1994) proposed a partitional
clustering method for large datasets, where each cluster is represented by its medoid, the
most centrally located point in the cluster, and the objective is to find the £ best medoids
that optimize the criterion function. In Ester et al. (1993) proposed the CLARANS

algorithm which outperforms the traditional k-medoid algorithm, but its runtime cost
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could be prohibitive for large datasets. In Zhang et al. (1996) the authors presented a
clustering method called BIRCH, which first preclusters the data into sub-clusters, then
treats each of the sub-clusters as representative points to run the hierarchical clustering
algorithm. BIRCH and CLARANS work well for convex or sperical clusters of uniform
size, but are not suitable for nonspherical clusters having varied sizes.

As observed in Figures (4.1) and (4.2), the data set in the present problem, which is the
accessed region determined by the PMSR in the temperature-composition space, is large
and of arbitrary shape, hence eliminating the possibility of using the above algorithms.
For clustering such arbitrary shaped collection of points, a density-based algorithm called
DBSCAN was proposed in Ester et al. (1996), which works on two user defined pa-
rameters: the radius Eps of the neighborhood of a point and the minimum number of
points MinPts in the neighborhood. While DBSCAN can find clusters with arbitrary
shapes, it has the problem of being extremely sensitive to the parameters and not being
very robust. A recently proposed hierarchical based algorithm named CURE (Clustering
Using Representatives) Guha et al. (1998) has the salient features of recognizing arbi-
trarily shaped clusters, having linear storage requirement and time complexity of O(n?)
for low-dimensional data, and is also stable. CURE adopts a middle ground between the
centroid-based and all-point extremes. It starts by selecting a constant number ¢ of well
scattered points, which are next shrunk towards the centroid of the cluster by a fraction
«. These points are used as representative of the cluster, and the clusters with the closest
pair of representative points are merged at each step of the algorithm. The ¢ represen-
tative points help in capturing the physical shape and the geometry of the cluster, and
shrinking these points gets rid of surface abnormalities and mitigates the effect of outliers.
The kind of clusters identified by CURE can be tuned by varying the value of a between
0 and 1. It reduces to centroid-based algorithm for o« = 1, and to all points approach for
a = 0. It uses space that is linear in input size n and has a worst case time complexity
of O(n?logn). In the present work CURE has been used to cluster the datasets, and it
was observed that considering larger number of representative points indeed captured the
shape of the cluster better than having a single point. However increasing the number of

representative points to more than 5 deteriorated the results.
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4.3 Generation of library of reduced model

Having obtained the clusters, and the representative points for each cluster, one of the
cluster centers is chosen at which mechanism reduction is performed following the pro-
cedure illustrated in Chapter 2, where first the detailed kinetic model is formulated for
species reduction at the initial condition given by the cluster center, to arrive at an in-
termediate reduced model. This model is further reduced by the formulation of reaction
reduction, to come up with the final reduced kinetic model at the particular initial con-
dition. The next step is the determination of the range of validity of the reduced model
within which it retains the desired accuracy. This requires an estimate of the feasible re-
gion, which can be obtained by sampling the temperature-composition space following the
technique described in Section 3. In order to obtain a mathematical definition of this feasi-
ble space, an « shape is constructed, which identifies the boundaries of the feasible space.
The accessed data points are then checked to identify points which lie inside the gener-
ated feasible region using the point-in-polygon strategy. The feasible points are removed
and the updated data set is reclustered to obtain another nominal point for reduction.
This procedure is followed iteratively, as illustrated in Figure (4.3) until enough reduced
mechanisms are generated to cover the entire accessed region. The reclustering procedure
is necessary since the feasible points for a particular reduced mechanism can cover an
entirely different region than defined by the initial cluster for which the nominal point
was the cluster center. Hence by the proposed iterative procedure the optimum number
of reduced mechanisms covering the entire accessed space of the PMSR is obtained.

For the present simulation for methane combustion, a total of 18 reduced sets were
generated covering 76 % of the region accessed by the PMSR model. All the reduced
models were obtained by running GA with a population size of 10, evolved through 500
generations, with an allowable error of 0.01. Figure (4.4) illustrates the different ranges
of conditions addressed by different reduced model.

The details of the size of all the reduced models is given in Table (4.1). It also
compares the average CPU time required to integrate each of the reduced model. The
CPU time required to integrate the detailed GRI-3.0 mechanism is 7.99 seconds, which is
much higher than the reduced models.

All of these reduced models are obtained under different conditions of temperature and



Generate initial estimate
of accessed space

Cluster the data points

Obitain reduced m_oqlglswnh - <—‘ Recluster uncovered points
cluster centers asinitial condition

Determine the range of

Check for points not covered
validity of reduced models

by reduced models

Final set of reduced models
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Reduced mechanism

Size of mechanism

Single integration

Nspecies | Nreactions CPU (s)
1 24 45 0.265
2 25 65 0.605
3 14 14 0.004
4 18 19 0.0064
5 29 105 0.0484
6 21 29 0.1884
7 27 64 0.0258
8 28 68 0.0292
9 27 82 0.6964
10 17 23 0.6048
11 24 47 0.02246
12 25 58 1.2008
13 26 48 1.1306
14 27 82 2.1998
15 6 5 0.0146
16 9 17 0.0368
17 13 18 0.0596
18 19 24 0.0504

Table 4.1: Reduced models used for adaptive simulation
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fuel and O, concentration. In order to ensure that the models indeed capture the physics
of the system the reduced models were tested for the known behavior of the system. For
example, the nitrogen oxide formation is known to be absent at low temperatures and takes
place only at higher temperature. Similar behavior is observed in the reduced models,
where the nitrogen oxide reactions were absent from the low temperature reduced models
and appear in the high temperature mechanisms. Also, the high temperature mechanisms
included the endothermic dissociation reactions, which is absent from the low temperature
mechanisms, which is also a physical behavior. The reduced models obtained at high
temperature is also consistent with the high-temperature methane oxidation mechanism
discussed in Glassman Glassman (1996).

Once sufficient number of reduced reaction models have been developed to cover the
entire estimated accessed region, the next step is the incorporation of the reduced sets
in the reactive flow models. Before incorporating the library of reduced model in the
detailed flow simulation, it is first incorporated in the developed PMSR model, since it
offers a perfect testbed for judging the performance of the proposed scheme.

As mentioned before, the PMSR simulation is a time marching scheme, where the
incremental time step is split into the mixing time step and the reaction time step. For
such a fractional time stepping approach, the flow time stepping will remain unaltered.
This time step will result in a set of species concentrations and temperature which are
passed on to the reaction time step, at which the system will react under the conditions
obtained from flow time step. This reaction step requires the integration of a set of
coupled stiff ODE’s, which needs to be integrated over the reaction time step. While
using the detailed model for kinetic source term, all the Ny, ODE’s consisting of Ng
reaction terms need to be integrated. The objective of the reduced model is to reduce the
number of ODE’s and their coupling by eliminating species and reactions participating
in the source term. While using a single reduced reaction model over the entire flow
simulation, the same set of reduced ODE’s needs to be integrated at the reaction step.
In the adaptive chemistry scheme, however, there is a library of mechanisms from which
the most appropriate one needs to be selected and integrated. Hence at every time it is
likely that a different set of reduced ODE’s are integrated. The accuracy of the reduced
model depends solely on the initial condition of the species concentration and temperature

at which it is used. Also each reduced set is characterized by an « shape defining the
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Figure 4.5: Integration with flow simulation

range of conditions over which it is accurate. Hence to select an appropriate reduced
mechanism during the PMSR simulation, one needs to check the feasible region of all the
mechanisms by performing the point-in-polygon test, to determine one which is feasible
at the local condition (Figure (4.5)). Hence, the flow time step will involve the solution
of all the species of the detailed mechanism, while the reaction time step will consider
only those species present in the selected reduced model, and the concentration of all the
other species will remain unaltered. This procedure was followed for PMSR simulation
for methane combustion. The library of reduced sets presented in table (4.1) is used
along with their corresponding feasible region, which is the information of points forming
the boundary of their range of validity. Depending on the local condition of the reactor,
different reduced models were chosen by the flow simulation.

As is observed in the figure, most of the reduced models have overlaps in the feasible
region. This means that more than one reduced model is valid under certain conditions.
When such a situation arises, it is judicious to choose the smallest of all the valid models.
With this aim, the library of the models are arranged according to increasing number of
reactions. When the flow simulation accesses this library, it will come out of the library
on identifying first valid model. This procedure was followed for the PMSR simulation of
CH, combustion, when the 18 reduced models were found to cover 76% of the conditions
encountered by the flow simulation. For the remaining 24% of the conditions there were

no valid reduced model in the library, hence the simulation integrated the detailed model
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Figure 4.6: Important reduced models selected at different time intervals

for these conditions.

For the PMSR simulation, at every time step all the reactor particles are under dif-
ferent conditions of species concentration and temperature, depending on which it selects
an appropriate mechanism. Hence at every time step each of the reduced models were
selected, but with different frequency. The reduced models chosen with higher frequencies
can be considered to affect the reactor condition the most. Figure (4.6) illustrates the
evolution of the three most important reduced models at different time intervals. Similar
simulation was also performed using a single reduced set for the entire flow simulation and
Figures (4.7) and (4.8) illustrates the performance of adaptive reduction in the prediction
of the species and temperature profiles as compared to using a single reduced model. The
adaptive scheme could predict the temperature profile with an error of 0.75 %, whereas the
single reduced model had an error of 11 %. The prediction of C H, profile was comparable
for both the cases, where the adaptive scheme had an error value of 0.1387, and the single
reduced model had that of 0.1125. The prediction of both the H and H, profiles was
more accurate for adaptive scheme, having an error of 9% and 7% respectively, while the
corresponding values for single reduced model was 32% and 21%. The average size of the
reduced model used for the adaptive scheme is approximately 54, while that of the single
model was 59. This shows that by adapting the reduced model to the changing condition
of the flow simulation, greater accuracy can be obtained with the same dimension of the

reduced model.
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4.4 Summary

In the proposed work an adaptive reduction scheme is developed to replace the detailed
complex kinetic network with a set of simple reduced networks, which can predict the
behavior of the detailed model with high accuracy within a limited range of conditions.
The procedure involves generating an initial estimate of the range of conditions encoun-
tered in a practical reactive flow simulation. This is followed by identification of nominal
points at which mechanism reduction needs to be performed. Using the two-step mech-
anism reduction scheme discussed in Chapter 2, a reduced model is obtained at each of
the cluster centers. Each of these reduced models are then analysed following the feasi-
bility analysis technique developed in Chapter 3. This procedure gives rise to a library
of reduced models, the feasible region of which together covers the accessed region of the
PMSR model. The integration of the adaptive chemistry scheme with the pairwise mixed
stirred reactor is also presented. Since the PMSR spans a large area in the composition-
temperature space, it provides a stringent test for any reduced chemistry scheme. The
excellent performance of the proposed scheme in the PMSR simulation does illustrate the
potential of the approach and indicates its suitability for using this approach in a more
rigorous flow simulation.

The overall approach of the adaptive scheme is to develop multiple reduced models
based on the conditions encountered by the PMSR simulations, and use these models in
different reactive flow simulations. However, it is possible that the conditions encountered
in the flow simulations where the adaptive scheme is applied is different from that of the
PMSR model. In such a case none of the reduced models in the library will be chosen
to replace the detailed model. To circumvent this problem, the feasibility analysis is
performed for the entire range of C'H,, Oy and temperature conditions, and is not limited
by the conditions accessed by the PMSR. Hence the feasible region of the developed models
cover a much larger range of conditions, thereby increasing the probability of choice of a

reduced model while solving different reactive flow models.



Chapter 5

Integration with Flow Simulation

Having determined an efficient scheme for obtaining reduced kinetic models and evaluating
the range of validity, the next step is the integration with the reacting flow simulation.
This requires generation of a library of reduced kinetic models, the feasible region of
which can cover the entire range of conditions to be encountered in the reactive flow
simulation. An efficient algorithm is presented for identification of nominal points for
performing reduction and subsequent feasibility analysis. An algorithm for incorporation
of the adaptive reduction scheme into the reactive flow simulation is also presented in

details.

5.1 Modeling reactive flows

Mathematical models describing the dynamics of reacting flows consist of systems of
partial differential equations (PDEs), which specify advection, diffusion, and reaction of
chemical species within a moving medium, and which couples the effects of non-reactive
hydrodynamics with the effects of heat release in the chemical reactions. In the present
study diffusion of chemical species and heat conduction and radiation effects are ignored,
in order to keep the model simple. The aim of this work is to incorporate the adaptive
reduction scheme in detailed flow models, and test its performance in detailed simulations.
Using the proposed framework, if the adaptive scheme can be shown to perform accurately
and efficiently in the detailed convection-reaction system then extending it to general

Navier-Stokes equation will be straightforward, and will be considered in the future. The
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advection-reaction system gives rise to the following conservative differential equation :

ou of 8_g_s

o + P + By (5.1)

where S is the reaction source term and

p
oV
u= per = vector of conserved quantities
PY1
| PYns |
and _ } _ - _ -
pu pv 0
pu? + P puv 0
UV o2+ P 0
f=1 (per+ P)u |, 8= | (per +P)v | S= 0
puYy puYL Pt
PUYn, PUYn, | Pn, |

The characteristic time scales of chemical reactions are typically much shorter than
the hydrodynamic time scales, which are determined by the local sound speed. Thus
careful construction of numerical methods that accurately and efficiently handle the widely
differing time scales and sharp gradients is of significant importance. Because of the
disparity in time scales, the equations for the reactive gas dynamics model become stiff,
with the reaction term much stiffer than the advection and diffusion terms. The method
of lines (MOL) is a common approach towards the numerical integration of advection-
diffusion-reaction equations, of which the reactive Navier-Stokes equations are a special
case. This method first discretizes the equations in space, resulting in a large coupled
system of ordinary differential equations (ODEs), which are then integrated in time. To
avoid prohibitively small time steps imposed by the stiffness of the reaction terms in the
ODEs, these terms can be integrated implicitly.

When applied to a system of ODEs obtained by MOL discretization, fully implicit

methods treat every term implicitly and require the solution of implicit fully coupled
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equations. In contrast, semi-implicit methods handle the advection term explicitly and
integrate the diffusion and reaction terms implicitly. The non-linearity of the reaction
terms makes the solution of such implicit equations computationally expensive, especially
when the number of chemical species is large. Moreover, since the time step restricted by
the stiff reaction terms has to be used for all processes, the computational cost of fully
implicit or semi-implicit method can be significant.

Alternatively, an operator-splitting or time-splitting approach may be used. In this
approach, the individual processes are decoupled and integrated sequentially, resulting
in equations that are easier to solve. Moreover, by integrating slower processes using
larger time steps, the overall computational cost can be reduced. The convective-reactive
equation can be solved in two steps by first solving for the hydrodynamics and then solving

for the reaction source term. The split equations are given by:

ou of Og

a + % —+ a—y =0 (52)
Ju
i S (5.3)

Solution of the advective term of a conservation equation involves the solution of a
Riemann problem, which can be computationally expensive. Thus the computational
time can be substantially reduced by using a larger advection time step by decoupling
it from the stiff reaction term. In the next step the ODEs consisting of the reaction
terms are integrated, which will require much smaller time steps. However, in addition
to the numerical errors arising in the integration of each term, the operator-splitting
approach also introduces splitting errors, which reduce the accuracy of approximation.
In the present study, the hydrodynamics was decoupled from the reaction using operator
splitting approach. At each time step, the hydrodynamic portion is integrated using
the Godunov scheme, and the reaction terms are integrated using the stiff ODE solver

DVODE.

5.2 Riemann Problem

For any equation, such as the one-dimensional Euler equations or the scalar conservation
equations, the Riemann problem has uniform initial conditions on an infinite spatial do-

main, except for a single jump discontinuity. For example, for the Euler equations, the
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Riemann problem centered at x = x and ¢ = ¢y has the following initial conditions:

u(z. ) = u,, =<

ug, > I
where uy, ugr are constant vectors. The Riemann problem has an exact analytical so-
lution for Euler equations, scalar conservation laws and any linear system of equations.
Furthermore, the solution is self-similar, which means the solution stretches uniformly in
space as time increases, but otherwise retains its shape. Hence u(z,t;) and u(z,ty) are
similar to each other for any two times ¢; and t5, since the solution depends on single
variable x/t rather than on z and ¢ independently. By reducing the number of indepen-

dent variables, self-similarity simplifies solution techniques and sometimes even leads to

analytical solutions, as in the case of the Riemann problem.

5.2.1 Riemann problem for Euler equations

The Riemann problem can be physically described by a one-dimensional tube contain-
ing two regions of stagnant fluid at different pressures, separated initially by a rigid
diaphragm. If the diaphragm is instantaneously removed, the pressure imbalance causes
a one-dimensional unsteady flow containing a steadily moving shock, a steadily moving
simple centered expansion fan and a steadily moving contact discontinuity separating the
shock and the expansion. This setup is referred to as the shock tube, as illustrated in Fig-
ure (). The flow in shock tube always has zero initial velocity. Removing this restriction,
the shock tube problem becomes the Riemann problem. Like the shock tube problem, the
Riemann problem problem may give rise to a shock, a simple centered expansion fan, and
a contact separating the shock and expansion; however, unlike the shock tube problem,
one or two of these waves may be absent. The exact solution of the Riemann problem

can be analytically derived as:

e Solution for shock :

7_‘1‘1+_2
B _P2 oyl m (5.4)
ai  pil4 e
T
uy =y + =2 (5.5)
V-1 +1
Y+1p2
S = T2 1)+ 1 5.6
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Figure 5.1: Performance of reduced mechanism with IEM as micromixing model

where S = speed of shock, a = speed of sound. u; and us are the states to the right

and left of the shock respectively.

e Contact discontinuity :

Ug = U3 5.7
(

(5.8)

P2 =DP3

where u, and ug are the states to the right and the left of the contact, respectively.

e Simple centered expansion fan :
2 x -1
= - 5.9
U(a) ’)/+]_(t+ 2 U4+a4), ( )
z 2 /xz vy-1 x
,t = ,t - — = (_ >__a 5.10
a(w,t) = u(w,t) = 7+1t+ g Ut as) — (5.10)
D
p=p4(—) L (5.11)
Gy

Finally, the unknown pressure ratio across the shock (i—f) can be expressed in terms of

the known pressure ratio (g;‘) as :
P2 =
%:%(1+72;41 [m—ul—% n )7 (5.12)
¢_(_ 1) +1
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5.3 Numerical methods for Euler equations

The solution techniques for Euler equations can be broadly divided into two categories -
flux approaches and wave approaches. Wave approaches can be further subdivided into
two categories - flux vector splitting approaches and reconstruction-evolution approaches.
Whereas flux approaches consider only fluxes, wave approaches model both fluxes and
waves, and especially the interactions between various families of waves, using either flux

vector splitting or Riemann solvers.

5.3.1 Flux approach

The flux approach of solving the Euler equation considers only flux, without making any
effort to model waves. The commonly used flux approaches are the Lax-Friedrichs method
and the Laz-Wendroff method.

Lax-Friedrichs method

The Lax-Friedrichs method for Euler equation is given by :

e, — f(ur ) (5.13)

n 1 n
= Sy ++uily) — 9

u; 5
Lax-Wendroff method

The Lax-Wendroff method for Euler equation is given by :

(F(ui ) —f(u ) + %Q[A?—H/Q((f(u?—kl) —f(uf’)) = Ao ((F(uf) —£(ui’ )]

n+1

u;

— "
=u;

5.3.2 Wave approach - Flux vector splitting

In this approach, the flux vector is written as :
f(u) =f"(u) +f (u) (5.15)

where the characteristic values of df " /du are all non-negative and the characteristic values

of df~ /du are all non-positive :
— >0,— <0 (5.16)
u

The vector conservation law can then be written as :

ou Oft of~

E+8—x+8—x_0 (5.17)



66

Then 9f " /0x can be discretized using FTBS (forward in time, backword in space) or some
other equivalent methods, and 0f /0x can be discretized using FTFS (forward in time,
forward in space) or other similar methods. The resulting method will be completely
stable for both left and right running waves.

To consider wave speed splitting, the flux jacobian matrix A(u) is written as :
A(u) = A% (u) + A7 (u), (5.18)

where the characteristic values of AT are non-negative and the characteristic values of A~
are non-positive.

At >0,4" <0 (5.19)

The vector conservation law can be written as :
— AT —+ AT —=0 (5.20)
T

The matrices AT and A~ are obtained by splitting the characteristic values of A into
positive and negative parts, which is called the wave speed splitting. In general the flux
vector splitting and the wave speed splitting are distinct. However, the Euler equations
have a special property that the flux vector is a homogenous function of order one, which
implies that :

f(u) = L Au (5.21)

This property makes the flux vector splitting and wave speed splitting essentially equiv-
alent for the Euler equations. The commonly practiced flux vector splitting methods for
Euler equations are the Stager-Warming method, Van Leer method, Liou-Steffen method,

Zha-Bilgen method.

5.3.3 Wave approach - Reconstruction-Evolution

Spatial reconstruction

Finite difference methods use sample points as their primary representation, since it de-
scribes solutions in terms of rates of change at individual points. However, it needs to
switch from samples to functional representations in order to differentiate or perform other

functional operations. Any function created from sample points is called a reconstruction.
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Temporal Evolution
In this step the solution is evolved from time level n to n+1 using characteristics or some
other techniques. Hence for an approximate u(z;11/2,t) for t* <t < gt

t"’+1

A 1
it12 = Kt/ fu(@ig1yo,t))dt (5.22)

i
Any reasonable approximation based on waves and characeristics naturally introduces the
minimal amount of upwinding required by the CFL condition.

Methods derived using this procedure are generally called reconstruction- evolution
methods, a term coined by Harten, Engquist,Osher and Chakravarthy ?. Alternatively
they are sometimes called Godunov-type method, after the earliest such first-order accurate
method. Reconstruction-evolution methods are extremely physical and elegant, though
in practice it can be computationally expensive.

Godunov method

Godunov’s method to obtain solution at (n + 1)At from solution at nAt involves 3 steps:

e Reconstruction : The reconstruction in this method is normally piecewise constant,

as illustrated in Figure (5.2).

i+1

u i+2

i-1 i i+1 i+2 X

Figure 5.2: Piecewise constant reconstruction of each cell

e Evolution : Each cell edge gives rise to a local Riemann problem, as illustrated in

Figure (5.3), which has to be solved at each cell interface (i + 1/2). The original
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Godunov method solves the Riemann problem exactly. Then the evolution of the

piecewise- constant reconstruction yields

. 1 tn+1

fin—f—l/Q = _/ f(uRiemunn(xi—f—l/Z;t))dt (523)
Since the solution to the Riemann problem is self-similar, Ugiemann (Zit1/2,1) is con-
stant for all time. Hence

fﬁkl/Z = f(uRiem(mn ($i+1/27 t)) (524)

where Ugiemann (Tit1/2,t) is found using any exact or approximate Riemann solvers.

i-1 i i+1 i+2 X

Figure 5.3: Each cell edge in a piecewise-constant reconstruction gives rise to a Riemann

problem

e Projection : The state variables are averaged over each cell [j —1/2, j+1/2] defining

a new piecewise constant approximation at time step At.

The method described above is used to simulate the Riemann shock tube problem,
for a single species, nonreactive case. The parameters used for the simulation are : P, =
1 atm, Py = 5 atm, p; = 0.0001 gm/cm?, py = 0.0005gm/cm?3. Figure () illustrates the
simulation results, and is observed that the Godunov method can accurately capture the

behavior of the system, without giving rise to any spurious oscillations.
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Figure 5.4: Projected solution at the next time step

To extend this method for the reactive flow simulation, the first step is to incorporate
multiple species in the simulation. In the presence of single species, the conservation
equations are solved for density, momentum and energy. In the presence of multiple
species (NNs), additional conservation equations have to be satisfied for the Ny —1 chemical
species. The performance of the multi-species, nonreactive flow simulation is verified by
again solving the shock tube problem. The pressure ratio considered is same as the
previous simulation. The shock tube is assumed to be consisting of pure nytrogen at
a temperature of 300K. Hence the density conditions are determined from the system
property. Figure () illustrates the performance of the simulation.

The next step is the incorporation of reaction in the simulation. As described before,
this is accomplished using the operator splitting scheme, where in each time step, the
advection term is solved using the Godunov scheme, and the reaction source terms are

integrated using a stiff ODE integrator. The overall PDE can be represented as:

PDE : u; +f(u), =S(u): 0<z <L,
IC : u(z,t") =u"

Given the initial conditions, the soution has to be evolved from its initial value u" at
a time t", by one step of size At, to a value u™*! at a time t"*! = ¢t" + At. The spatial
domain [0,L] is uniformly discretized into ¢ grid points, following the finite difference

approach. Hence u" is a set of discrete values u] at a time ¢". The discrete analog of the
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Figure 5.5: Simulation of Riemann shock tube problem using Godunov scheme

splitting scheme can then be represented as:

: _ A
PDE :u; + f(u), =0, _ gt ODE :fu = S(u) ]

IC :u(z,t") = u” IC :a™+!
The initial condition for the advection problem is the initial condition for the complete
problem. The time step At is determined using the stability constraint of the advection
problem, using CFL condition. The solution of the advection problem after a time At is

"+l and is used as the initial condition for the second initial value problem.

denoted by 0
This second problem accounts for the source term S(u), and is also solved for a complete
time step At, however, the integrator for the stiff ODE allows for internal subcycling of
timestep. This solution is regarded as the approximation to the solution u™*! of the full

problem at a time ¢"*!. This splitting scheme is first order accurate, and it is possible to

increase the order of aacuracy by using more complex splitting schemes.

5.3.4 Coflow nonpremixed methane-air flame

The unconfined, co-flow non-premixed methane/air flame is chosen to illustrate the perfor-
mance of the developed adaptive chemistry scheme. The burner consists of two concentric
tubes as illustrated in Figure (5.7). A stream of methane is injected through the inner
tube, surrounded by a stream of air, injected through the outer tube. A cylindrical chim-

ney confines the flame. Many computational and experimental studies have been carried
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Figure 5.6: Simulation of Riemann shock tube problem using Godunov scheme, with

multiple species

out for these flames in different physical configurations /cite.

The geometrical parameters used for the present problem are : inner radius r; = 0.2¢cm,
outer radius r, = 2.5¢m, chimney height L = 5¢m. At the inlet, the temperature is 300K
and the fuel velocity is u = 0,v = 20cm/s. The inlet air velocity is v = 0,v = 25¢m/s.
The flame is ignited by a hot patch (T = 1500K) next to the inlet. A grid size of 50 x 50
is used to cover the 5 cm X 5 cm computational domain. Simulations are performed using
both detailed kinetic model and the proposed adaptive scheme, to verify and validate the

performance of the adaptive scheme in detailed reactive flow models.

5.4 Incorporation of adaptive chemistry in low model

In the previous section the reactive flow model uses the same chemistry model through-
out the entire simulation. Hence the number and description of chemical species remains
unchanged for the whole simulation. The idea behind the adaptive scheme, however, is
to change the chemistry model with time and space, depending on the local species and
temperature conditions. The generation of multiple reduced model and construction of
the library of reduced model was discussed in Chapter (4). The feasibility analysis of in-
dividual reduced model was performed following the technique presented in Chapter (3),

and stored in the library corresponding to the reduced model. These simulations were
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Figure 5.7: Schematic of the specifications of co-flow methane-air flame

performed apriori and the complete library was constructed before starting the detailed
reactive flow simulation. The incorporation of the adaptive chemistry scheme in the reac-
tive flow model requires some minor modification of the model equations. First, the flow
model has to be written for all the species present in the detailed chemistry model, hence
at all time the system will retain all the chemical species. This is to enable the simulation
to change from one reduced model to another without violating species and mass conser-
vation, since two reduced model can contain different species. The conservative equations

are written by modifying the source term as:

0
0
0
0
Siod =
A1 pwi
A2 pws
| Ang P, |
where Aj, Ay, ..., A,, are a particular combination of binary variables representing a unique

reduced model. For example, if all the As are zero, then the entire source term becomes

zero, implying no-rxn condition. On the other hand, if all the As are 1, then all the
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Figure 5.8: Integration of the adaptive scheme with flow simulation

species will be integrated in the reaction step, implying the use of the detailed chemistry
model. These two are the extreme cases, any other combination of A will specify a reduced
chemistry model. In the context of operator splitting approach, this implies that at every
time step, the flow model will be integrated for all the 53 species of the detailed methane
chemistry (GRI-3.0). At the end of flow integration, and before starting the reaction
step, the appropriate reduced chemistry model needs to be determined from the library
of reduced model. This is accomplished by passing the conditions obtained at the end of
the flow step to the pre-constructed library, and checking the feasible region of the stored
reduced models by the point-in-polygon algorithm to find a model which is feasible under
present conditions. The chosen reduced model is specified by a particular combination of
A, using which the source term is reconstructed and integrated. This integration of the

adaptive chemistry scheme with the flow simulation is illustrated in Figure (5.8).

5.5 Summary

The development of a detailed reactive flow model is discussed in this chapter, along
with the integration of the adaptive chemistry scheme with the flow model. The operator
splitting scheme is used to decouple the flow equations from the reaction source term, since

it enables the use of different optimized methods for integration of individual terms. In



74

the absence of diffusion and heat conduction, the flow equation reduces to Euler equation,
consisting of multiple species, which is integrated using the Godunov scheme. The reaction
term is integrated using stiff ODE solver, DVODE, which allows subcycling of time steps.
The subcycling of reaction time step guarantees solution convergence, without restricting
the time step requirement of the flow step. The splitting scheme used in the present
work is first order, hence the whole scheme will be first-order accurate, even if individual
integration schemes are of higher order. However, it is possible to increase the accuracy
of the scheme by using Strang splitting or other higher order splitting schemes.

A scheme is presented to integrate the adaptive chemistry with the flow simulation, in
the context of split-timestep approach, where, before performing the reaction integration,
an appropriate reduced model is selected and integrated, thereby saving the computational
work load. However, the use of the proposed adaptive scheme is not restricted to the split

timestep approach, and can be generalized to any other integration scheme.



Chapter 6

Summary and future directions

In this thesis, a novel adaptive chemistry scheme is presented which enables accurate
simulation of reactive flow systems, which are otherwise computationally demanding. The
conventional approach to deal with such expensive computations is to approximate the
complex kinetic mechanism by a simple reaction model. Such simulations, though helpful
in providing an insight to the simulated system, fail to capture the detailed behavior of the
system in the absence of the detailed chemistry representation. The present work bridges
this gap by developing the adaptive chemistry scheme, where multiple reduced models
are developed and characterized by their range of validity. This enables the reactive flow
simulation to retain both accuracy and computational feasibility, by always using a locally-
accurate reduced chemistry model. The presented scheme is found to have satisfactory
performance, as illustrate by the example problems. However, it is possible to further

improve its performance, as will be discussed in this chapter.

6.1 Mechanism reduction

6.1.1 Application to very large mechanisms

In this work, the kinetic mechanism reduction problem is formulated as a mathematical
programming problem, and generation of a reduced model requires solution of an integer
programming problem. This scheme indeed gives rise to accurate and flexible reduced
models, but is itself an expensive operation since it requires multiple integration of the

stiff, nonlinear ODEs describing the kinetic source term. Also, the number of binary

[0
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variables handled by the MINLP formulation can be restrictive. Thus direct application of
this procedure in reduction of very large mechanisms, consisting of thousands of chemical
species may prove to be inefficient. For such cases, it may be efficient to use a bi-level
reduction procedure, where a first level reduction can be performed using less expensive
methodologies based of flux-analysis 7, followed by the more detailed reduction using the

integer programming approach.

6.1.2 Development of reduced models with specific characteris-
tics

The mechanism reduction procedure outlined in chapter 2 results in simplified kinetic
models which can predict the profiles of specific species within specified tolerance. How-
ever, in many of the combustion problems, what is of more importance is not just specific
species conentration, but certain specific combustion characteristics, which also provides
stringent test beds for the detailed as well as reduced kinetic schemes. Those include :

Shock-tubes

The shock tube experiments are an excellent test of high temperature reaction mech-
anism for hydrocarbon oxidation. The most common observable quantity in such systems
is the ignition delay time, generally defined as the time at which noticeable heat release
or pressure rise is observed in the reacting gases.

Flow reactors

The turbulent flow reactors provide an environment complimentary to that of shock-
tube. Here the temperatures are considerably lower than that of shock tube. The initiation
reaction plays virtually no role in the flow reactors, but the period of fuel comsumption
and production of stable intermediates is easily accessible.

Flame propagation

Laminar flames are among the earliest combustion problems to be studied theoretically
that required simultaneous consideration of both fluid dynamics and chemical kinetics for
its solution (Kailashnath (1991)). There has been numerous analytical and computational
studies of various flame related phenomena like flame ignition, flame quenching, flame
propagation velocities, flammability limits, flame instabilities, etc.

Generation of reduced kinetic models which can predict those combustion character-
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Figure 6.1: Sensitivity of laminar flame speed to individual species and reaction

istics with high accuracy is of great importance. The proposed approach of mechanism
reduction has great flexibility of generating a reduced mechanism which can predict pro-
files of specific species with desired accuracy. However, it is possible that the specified
species does not contribute significantly towards the desired combustion characteristic.
For example a simplified model of GRI-3.0 obtained considering C'Hy, Hy, Oy and T in
the error estimate was used to test the laminar flame speed prediction, which was found
to perform poorly with 52% deviation from the actual value. Hence in order to gener-
ate reduced mechanism which can accurately predict specific characteristics, the species
sensitivities to this specific characteristic is first evaluated. Considering flame speed, the
results of the sensitivity analysis for GRI-3.0 mechanism performed with respect to in-
dividual species and reaction is shown in Figure(6.1.2), where it is observed that O and
H are the species with higher sensitivity. All the other species resulted in less than 10%
change of flame speed. The reduction was then performed considering O,H and T in the
error function with a high tolerance limit in order to result in good prediction of the
profiles. The obtained reduced set consists of 18 species and 33 reactions, and predicts
the flame speed within 12% of the actual value. Present work is directed towards further
improvement of the prediction of the main combustion characteristics by incorporating
the calculation of the flame speed at the intermediate stages of the reduction algorithm,

guiding the approach towards accurate flame speed prediction.
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Species | % change in flame speed
H, 37
H 81
0 93
C 33

Table 6.1: Flame speed sensitivity analysis of GRI-3.0

6.2 Feasibility analysis

Accurate analysis of the range of validity of the reduced chemistry models is of utmost
importance for the success of the proposed scheme. The feasibility analysis scheme pre-
sented in chapter 3 is based on surface reconstruction ideas, where the range of validity
of the reduced model is first sampled, and the sampled points are given a mathematical
description. This scheme is extremely successful in capturing arbitrary shaped feasible
region, which is the case in the present problem. The primary limitation of this technique
is that it is efficient in low dimension, and its extension to higher dimension is computa-
tionally challenging. In the presented problem, the reduced models were checked for its
feasibility in a 3-dimensional state space of C' H; and O, concentration and temperature.
For all the problems handled this far using methane combustion, it is observed that fea-
sibility in this 3-dimensional space is sufficient to capture the accurate behavior of the
reduced models even in the presence of additional species. However, this may not be true
for more complex fuels and it may prove to be useful to extend this procedure to higher
dimensions. One way of dealing with this issue is by reducing the dimensionality of the
problem. The ideas of principal component analysis Vajda et al. (1985) can be utilized to
map the original uncertainty space to the reduced dimensional space of important eigen
directions. The « shape ideas can then be applied in the reduced space and the feasibility

information mapped back to the original uncertain space.

6.3 Adaptive chemistry scheme

The adaptive chemistry scheme presented in chapter 4 enables the flow simulation to

choose an appropriate reduced model from the library of precompiled reduced models.
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The success of this scheme in saving the computational workload largely depends on the
developed library, since in the absence of a locally accurate reduced model the simulation
will have to integrate the detailed model. While it is not difficult to generate a more
complete library of reduced models addressing widely diverse conditions in the state space,
but scanning the entire library to determine the accurate model can become a restrictive
operation. For the present simulation the library consists of 20 reduced models, for which
the search is not demanding, but it can become so for a much larger library. In the
present scheme, reduced models are arranged in the library in an ascending order of
their species numbers, and at every step the simulation searches in a top down direction,
starting from the simplest towards progressively complex models. This search can be
made more efficient by storing information about the connectivity or proximity of the
individual reduced models, accompanied by the memory of previously chosen reduced
model at each point. While selecting a reduced model the simulation will first check the
previous selection for its validity. If this is not valid, then it will look at the neighboring
models to find an appropriate one, and so on. This is likely to reduce the search time,
based on the understanding that the conditions in a grid changes gradually with time.
Given the small time steps required for convergence, it is unlikely that the conditions will

change so drastically to end up in a different domain of the state space.

6.4 Integration with flow simulation

In chapter 5, a detailed reactive flow model was developed based on the operator splitting
scheme, where the flow equations are integrated using Godunov scheme and the source
terms are integrated using DVODE. In order to implement the adaptive chemistry model
in the flow simulation, the first step is to develop a multi-species reactive flow code, where
all the species present in the detail chemistry model needs to be present. The approach
used in this work is that the flow equations will be integrated for all the species, but the
reaction source term will be integrated only for the reduced species. While integration of
the reduced chemistry model will reduce the computational workload, but integration of
the flow model using all the species may increase the workload for certain applications.
However, it is essential to retain all the chemical species in the system to conserve mass.

One approach to handle this problem can be to retain all the species, but to divide them
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into active and passive groups based on the species concentration, or some other relevent
criterion. The convective velocity can then be computed using only the active species,
assuming that the passive species will have negligible contribution to this velocity. The
passive species will then be convected using the same velocity determined by the active
species. This approach is likely to reduce the computational cost of the multispecies flow
integration. However, the exact details will largely depend on the particular integration
scheme used.

The example presented in chapter 5 integrates the Euler equation, where species dif-
fusion and heat conduction are neglected. While this model provides a good test bed to
validate the adaptive scheme, but is not justified in modeling a subsonic reactive flow sim-
ulation like deflagration. Such assumptions hold good for detonation simulations, where
molecular phenomenon like diffusion and conduction have negligible effect. Extension of
present work to detonation simulation will require development of reduced models under
high pressure conditions. The other possible extension is to incorporate the diffusion and
conduction effects and solve the Navier-Stokes equation for flame propagation.

This thesis successfully validates the use of adaptive chemistry scheme in reactive flow
simulations, but the main success of a model is in its predictive capacity, where it can
either predict conditions to help guide the experimental work, or capture phenomenon
which cannot be observed experimentally. Towards this end, the future direction of the
presented work is to include diffusion, conduction, along with Dufor and Soret effects,

which are known to influence deflagration process.
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