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With the increasing global market demand, prohibitive drug cost, and 

biosimilars competition, the biopharmaceutical industry is under pressure to speed up 

the development and manufacturing of biological products. To increase biologics 

production while maintaining product quality, the industry attempts to 1) improve the 

processes through intensification and optimization, and 2) explore new process designs. 

With this shift comes increasing complexity leading to a large number of process 

variables to be monitored, controlled, and optimized. Moreover, the Quality-by-Design 

(QbD) initiative introduced by FDA to take product quality into account during the 

process design, is driving the biopharma industry to acquire deeper process insights. 

With the increasing demand for process understanding and the pressure in cost 

reduction, the industry is turning to in silico solutions to assist with such a transition. 

Given the industrial trend, this dissertation aims to apply process systems engineering 

(PSE) tools to empower the in silico development of biopharmaceutical manufacturing 

processes.  

The first part of the thesis, as presented in Chapters 2-4, focuses on the 

applications of PSE tools on individual unit operations, specifically various 

chromatography units, to support process characterization and optimization. In Chapter 

2, a surrogate-based feasibility analysis method is proposed to identify the design space 

of continuous Protein A chromatography, aiming to strike a balance between 

computational complexity and model prediction accuracy. Machine learning-based 

optimization framework is introduced in Chapter 3 to address the nonconvex and 
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nonlinear constrained optimization challenges encountered in biopharmaceutical 

separation. This framework is applied to a case study involving the separation of a 

ternary protein mixture using ion-exchange chromatography. The focus of Chapter 4 is 

to develop hybrid models with enhanced model predictability to describe the unclear 

and complex binding behavior within the hydrophobic interaction chromatography. The 

aim is to reduce the investment effort required for developing mechanistic model while 

extracting the missing relationships that cannot be captured by the mechanistic model. 

Considering the trend in transitioning from batch to continuous processes, the 

second part of the thesis focuses on conducting proof-of-concept study to evaluate the 

feasibility of transitioning from batch to continuous biomanufacturing mode through 

the establishment of in silico platform, as presented in Chapter 5.  

The applications of PSE tools in the biopharmaceutical processes, specifically 

through process modeling and system analysis, have demonstrated significant potential 

in enhancing process understanding and facilitating process development / 

improvement. The methodologies and frameworks proposed in this dissertation can 

provide further insights into the cost-effective development and manufacturing of high-

quality biological drugs, promoting further investigation and implementation of in silico 

technology in biopharmaceutical industry. 

 

 



 1 

INTRODUCTION: APPLICATION OF MODELING IN ADVANCED 

BIOPHARMACEUTICAL MANUFACTURING PROCESSES 

Tremendous growth has been witnessed in the biopharmaceutical market over 

the past few years, as evidenced by the increasing biological drug approvals by the EU 

and the US regulatory agencies [1-4]. Driven by patient demand and competition in the 

biosimilar market, the biopharmaceutical industry is under pressure to speed up the 

development and manufacturing of biological products [5]. However, the development 

of resource-intensive bioprocesses is invariably accompanied by high manufacturing 

costs, which makes biotherapeutics inaccessible to a significant part of the population 

[6]. To improve the efficiency of development and manufacturing of biologics while 

adhering to quality and regulatory requirements, the biopharmaceutical industry 

attempts to 1) improve the processes through intensification and optimization, and 2) 

explore new process designs. For instance, there is a transition from traditional fed-

batch bioreactors to more complicated perfusion processes [7, 8] and from single-
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column batch chromatography to multi-column continuous operation [6, 9, 10]. 

However, this transition significantly increases the complexity of bioprocessing, 

necessitating the monitoring of additional process variables to ensure both reliable 

operations and product quality. Moreover, the Quality-by-Design (QbD) initiative 

introduced by FDA to take product quality into account during the process design, is 

driving the biopharma industry to acquire deeper insights into the connection between 

bioprocess and bioproduct [11]. With the increasing demand for computational 

capabilities and process understanding, the industry is turning to in silico solutions to 

assist with such transition by constructing a digital platform, referred to as a digital twin 

(DT), to evaluate the updated process designs and operational schemes before making 

final decisions [12, 13].   

1.1 Digital Twin 

1.1.1 General Concepts and Framework of Digital Twin 

The concept of the digital twin (DT) can be traced back to 2002 when the 

“Conceptual Ideal for Product Lifecycle Management (PLM)” was first proposed by Dr. 

Grieves and presented to the industry at the University of Michigan [14-16]. Since the 

inception of DT, this terminology has progressively evolved over time, but the basic 

idea of DT has barely changed. The most widely accepted interpretation comes from 

Glaessegen and Stargel, that a DT is a combination of multi-physics, multiscale, and 

probabilistic simulation for a complicated process with the utilization of physical data, 

sensors, and models to reflect the behavior of its corresponding physical twin [13, 17]. 

A complete DT is composed of three key elements: a physical component that currently 

exists or will exist in the physical world (“physical twin”), a virtual/digital part that 
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exists in the virtual (“digital twin”), and the automated data and information exchange 

between the two components (“digital thread”) [18, 19]. The virtual plant dynamically 

receives data from the physical plant, enabling real-time monitoring, process analysis, 

optimization, while also providing operational guidance or execution signals back to the 

physical plant [20]. Moreover, the virtual plant receives various process data, meta data, 

customers’ feedback, market requirements, investment plans and selects strategies for 

physical plant to execute. To achieve these functions, data acquisition and data storage 

systems, modeling and analysis software, control, and digital/cloud platforms are 

designed, as illustrated in Figure 1.1.   

 

Figure 1.1: Schematic illustration of different components of DT.   

An early demonstration of the commercial application for a fully integrated DT 

was documented by General Electric (GE) in a patent application, in which “Predix” 
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platform is developed for generating DT to supply historical and real-time process 

information and to run data analytics and optimization [19]. Nonetheless, from the 

perspective of practical application, simplified or partial DT is more favorable for the 

industry because it is much easier to realize in the actual production process. In 

particular, a digital shadow is one of the simplified DT concepts in which there is only 

a one-way flow from physical to digital components but no channel for reverse data 

communication [13, 21].  

The digital twin is attracting increasingly more attention recently due to the rapid 

development of the Internet of things (IoT), Industry 4.0 technologies, advanced data 

analytics, and artificial intelligence [22, 23]. A complete DT could provide a 

comprehensive and holistic understanding of the process by constructing a network of 

dependencies between real-time data and their underlying meta information. 

Specifically, the establishment of DT provides an efficient way for achieving the cyber-

physical integration of manufacturing practices, which could help obtain all accessible 

process information across different scales and sites and enable real-time information 

communication with the physical process control system [24, 25]. By virtue of the 

digital object like process analysis and optimization, in silico process model could be 

developed and updated in sync with data from the physical component to provide 

guidance for the actual procedures and further improve the overall efficiency and 

mitigate the risks in operation and maintenance. In general, the applications of DTs have 

demonstrated their capabilities in facilitating remote sensing, real-time monitoring, data 

acquisition, information exchange, process visualization, and process knowledge 

extraction [13, 26-29]. Integrated DTs have been applied in various industries including 
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aerospace, semiconductor, energy production, smart product manufacturing, 

automotive transportation, and healthcare [17, 19, 23].  

1.1.2 Development of Digital Twin in Biopharmaceutical Processes 

A typical platform for biopharmaceutical processes can be divided into upstream 

(USPs) and downstream processes (DSPs), where USPs are mainly used for protein 

production and DSPs are for protein purification [30]. USPs involve inoculation and 

seed cultivation to scale up cell lines, as well as cell culture to produce proteins of 

interest. DSPs in biologic production consist of various unit operations, including 

product recovery, primary capture, virus inactivation, polishing, virus removal, and 

ultrafiltration/diafiltration (UFDF) steps [31, 32]. Product recovery aims to separate the 

biomass and most impurities from the media through the combination of centrifugation 

and depth filtration [33]. Primary capture is performed to remove most of the process-

related impurities like culture media components, host cell proteins, and DNA. For 

primary capture, Protein A affinity chromatography is a standard method for most all 

monoclonal antibodies (mAbs) and related products because of its high selectivity and 

efficiency [34, 35]. Virus inactivation and removal steps are crucial for ensuring virus 

clearance, thereby meeting the regulatory requirements [36, 37]. The polishing step 

aims to eliminate product-related impurities that have similar properties to the target 

protein, such as fragments, aggregates, charge variants, residual process-related 

impurities, as well as viruses [38]. Commonly used chromatographic techniques during 

this step include ion-exchange chromatography (IEX), hydrophobic interaction 

chromatography (HIC), and mixed-mode chromatography (MMC). UFDF is conducted 

to obtain the therapeutic protein at the desired concentration and exchange buffer [39]. 
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Among these unit operations, primary capture and polishing step are the most significant 

operations to achieve protein purification [40]. 

The implementation of DT in biopharmaceutical manufacturing could help 

accelerate the process development and gain thorough understanding of the process 

while reducing the efforts of performing time and resource intensive experiments [13, 

41]. The realization of DT would allow for real-time monitoring, prediction of crucial 

quality attributes, identification of design space, and process optimization to provide 

real-time feedback and guide the operating procedures [1, 3]. Moreover, with the 

development of simulation platforms and the fast-growing biological drugs market, 

biopharmaceutical companies nowadays have been working toward applying digital 

twin concepts during process development and commercial manufacturing. The 

advanced computational hardware expands the capabilities of modeling which allows 

faster and more reliable model building.  

To accelerate process scale-up and reduce experiments required, Pfizer built a 

two-phase bioreactor computational fluid dynamic (CFD) simulation to predict the 

transport and fluid dynamics inside of bioreactor from small to large scale. Their GPU 

workstation allows parallel computations which can complete massive simulations 

within a limited time and rule out nonideal physical conditions [42]. Biopharmaceutical 

companies intend to collaborate with digital transformation companies to build their 

digital twin system. For example, GlaxoSmithKline (GSK) cooperates with Siemens 

and ATOS to operationalize digital twins by building a real-time vaccine manufacturing 

simulation platform. The project aims to reduce the development times and optimize the 

quality of their vaccine product [43, 44]. In addition, BioNTech also worked with 

Siemens to digitalize their facility to produce COVID-19 vaccine and reduce the 
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transformation timeline from one year to five months by applying automation and 

digitalization technologies [45]. Sanofi announced a partnership with Dassault Systems 

in order to use their 3DEXPERIENCE platform to visualize and optimize operation 

activities. The collaboration covers the end-to-end data management system, virtual 

operation, process development scale-up and production industrialization [46]. From 

the above examples, it is clear that digital twin platforms contain key components 

including a robust modeling platform, data acquisition and centralized data management 

system. Control strategies should also be included for virtual plant and physical plant 

"communication" [47].  

 

Figure 1.2: A fully integrated DT framework for biopharmaceutical manufacturing. 

In summary, to realize a digital twin for existing physical plants, a complete 

virtual plant can be built, and a physical-virtual plant communication needs to be 
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established, as depicted in Figure 1.2. The digital twin platform includes the components 

of process analytical technologies, process modeling, and physical-virtual plant 

integration. The framework also highlights the methodologies and lists detailed inputs 

and outputs of each unit operation that can be measured and optimized. Among all, 

process modeling acts as a foundation, as the different modeling and analysis methods 

are critical to ensure that the data are appropriately analyzed, and the processes are 

accurately represented in silico.  

1.2 Modeling and System Analysis of Biopharmaceutical Processes  

To realize DT in biopharmaceutical manufacturing, it is essential to develop a 

comprehensive virtual representation of the physical plant, wherein process modeling 

plays a critical role. Process modeling, which transforms process knowledge into 

mathematical representations, could aid in reducing the experiment effort and gaining a 

deeper understanding of the process behavior. Based on the types of unit operations and 

modeling objectives, different modeling approaches such as mechanistic, surrogate, and 

hybrid modeling are commonly employed. Mechanistic modeling, established on the 

basis of governing phenomena, offers an in-depth understanding and insights into 

underlying mechanisms. However, its accuracy heavily relies on the current 

understanding and knowledge of the processes. A surrogate model serves as a 

computationally inexpensive representation of a complex system or process, commonly 

constructed using statistical techniques, machine learning (ML) algorithms, or other 

mathematical methods trained on data from the original system. By leveraging the 

existing process knowledge and information derived from the collected data, hybrid 

modeling combines mechanistic models with surrogate models to improve accuracy and 

capture the complex dynamics of the processes. After the development of unit operation 
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models, these models can be integrated together to construct the flowsheet model, 

representing the integrated processes [48, 49].  

Following the development of models to virtually simulate physical processes, 

the further applications of process systems engineering (PSE) tools allow for in-depth 

system analysis and facilitate their application to real processes for analysis and 

improvement. Typically, the PSE tools include sensitivity analysis, feasibility analysis, 

economic analysis, sustainability analysis, and optimization techniques. Sensitivity 

analysis primarily serves as a tool for risk assessment by identifying the critical process 

parameters (CPPs) that influence the critical quality attributes (CQAs). It examines how 

variability in the model inputs results in the variations in model outputs [50]. Especially 

in complex processes with numerous parameters, sensitivity analysis plays a vital role 

in reducing the dimensionality of the overall parameter space, which further helps lower 

computational complexity or experimental efforts in subsequent analyses [51]. 

Feasibility analysis can be used to characterize the design space (feasible region) of a 

given process through feasibility function [52]. Identification of design space, 

determined by the ranges in which a given process must operate to ensure product 

quality, can help comprehend the main effects of process variables and their interactions 

on product quality, facilitating a deeper understanding of the process and establishing 

effective control strategies [53, 54]. Economic analysis is mainly used to assess the 

economic feasibility of industrial processes for decision-making and has been 

extensively applied across various engineering domains [55, 56]. This analysis involves 

evaluating process efficiency through process models and analyzing factors such as cost 

of goods (COGs), equipment cost, capital and operating expenditures, profitability, and 

cash flow [57]. Sustainability analysis is employed to estimate the potential 
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environmental impacts of products or processes, utilizing methodologies such as life-

cycle assessment [58, 59]. Process optimization is a valuable tool in identifying the 

optimal operating conditions to achieve objectives such as maximizing yield or 

productivity while maintaining product quality. This type of analysis, conducted 

through process modeling, can significantly reduce required experimental efforts and 

costs [60].  

In this section, current progress on process modeling and their applications in 

system identification and analysis of biopharmaceutical processes are reviewed based 

on each type of modeling strategy.  

1.2.1 Mechanistic Modeling  

In biopharmaceutical manufacturing, protein-based, or mRNA-based products 

are produced using a series of production steps including a bioreactor followed by 

separation, purification steps and final formulation steps. For bioreactor modeling, 

mechanistic models can correlate operating conditions such as dissolved oxygen (DO), 

pH, temperature, feeding strategy, media compositions to cell activities, metabolite 

concentrations, system homogeneity, and fluid dynamics. The models can predict and 

optimize process productivity, and product quality [61].  Inside of bioreactor, there is a 

complex system with multiphase transport phenomena, and dynamically changed cell 

populations characterized by complicated bioreactions [62]. These phenomena can be 

captured by the structured or unstructured kinetic model, flux balance analysis model, 

and CFD simulation. The kinetic model can be majorly used to predict and optimize 

titer and product quality by adjusting the temperature downshift and feeding strategies. 

Feeding strategies include feeding frequency, amount [63] as well as additional 

components  [64, 65]. Apart from titer and quality, population balance model is used 
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[66] to predict the host cell protein (HCP) accumulation during the cell culture. 

However, kinetic models cannot include all metabolic reactions to avoid computational 

expensive calculations. In stoichiometric model (such as flux balance analysis and 

metabolic network analysis), the main assumption is considering that the intracellular 

reaction is under a pseudo-steady state and net flux is zero [67]. Using this model fluxes 

can be estimated for metabolic cycles inside the cell to understand metabolic bottlenecks 

under different operating conditions [68-70]. To capture the cell dynamics, a dynamic 

metabolic flux analysis is developed, which discretizes the time domain to multiple 

intervals and calculates the flux change during each of these intervals [71, 72]. Another 

approach is to integrate the stoichiometric model with the kinetic model [73]. As 

mentioned in the previous section, CFD simulation can be used to capture gas-liquid 

transfer and mixing heterogeneity of the bioreactor. CFD simulation can be integrated 

with kinetic modeling methods to predict titer under different operating conditions by 

using oxygen addition, nutrient heterogeneity, and agitation rate.  

Among the downstream operations, column chromatography has played a 

dominant role in biopharmaceutical protein purification with high selectivity over the 

past two decades [74, 75]. Generally, in the production of mAb-related products, Protein 

A chromatography is applied during the primary capture step to remove process-related 

impurities [76, 77], while different modes of chromatography are utilized in the 

polishing step to further remove product-related and other residual impurities [78-80]. 

Current research on chromatography modeling has focused on the understanding of 

solute transport in mobile phase (inter- and intraparticle) and adsorption behavior in 

stationary phase [74]. With different assumptions and simplifications, there are different 

mechanistic models to describe mass transport of the moving phase inside the column, 
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including equilibrium dispersive model, lumped kinetic model, and general rate model 

(GRM) [81-83]. Among them, general rate model is the most comprehensive one that 

accounts for convection and axial dispersion in the interstitial column volume, film mass 

transfer of solute from the interstitial to the intraparticle pore space, pore and/or surface 

diffusion within the resin particle, and protein adsorption [84, 85]. The transport model 

is coupled with a kinetic model to describe the adsorption phenomena that drive the 

chromatographic separation. There are different mathematical forms of kinetic 

expressions in the literature [74, 86], and among these, the Langmuir model is a simple 

and widely used model to illustrate the intraparticle binding mechanism. Nonetheless, 

since the Langmuir model assumes independent binding sites and cannot account for 

the dependence of salt on the adsorption, the steric mass action (SMA) model, which 

incorporates the steric hindrance effects, is introduced for ion-exchange 

chromatography [86, 87]. After the mechanistic model building, parameter estimation 

and model validation are required to avoid overfitting and ensure the reliability and 

generality of the model. These developed mechanistic models can further contribute to 

the prediction of chromatographic behaviors and performance metrics like purity, yield 

and productivity, identification of the design space and process optimization [78, 88-

91]. Bhoyar et al. [92] developed a robust mechanistic model capable of predicting full 

Protein A chromatograms. This model holds the potential for predicting 

chromatographic behaviors in larger columns under varying flow rates, as well as 

different elution schemes and buffer conditions. Cebulla et al. [93] utilized mechanistic 

model-based optimization technique to separate von Willebrand factor fragments and 

human serum albumin. This approach resulted in higher product purity and reduced 

buffer consumption, compared to the originally conducted experiments.  
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Additionally, in order to capture the heterogeneity of internal flow in the radial 

direction of the column, computational fluid dynamics modeling is also applied to 

simulate the dynamic fluid flow [94, 95], but the application of CFD is limited due to 

the expensive computational cost, high knowledge requirement of the internal column 

geometry, and difficulty in experimental validation. It is worth noting that two 

dimensional general rate model (GRM2D) was recently developed by the CADET 

(Chromatography Analysis and Design Toolkit), which is an open-source package under 

the supervision of Dr. Eric von Lieres [96]. The newly built GRM2D model is adapted 

from GRM by introducing a radial coordinate to consider the inhomogeneity transport 

along the radial dimension [97]. 

Membrane-based unit operations like virus filtration and ultrafiltration are also 

indispensable in the biopharmaceutical downstream process [98, 99]. Virus filters are 

widely employed to ensure the safety of biotherapeutic proteins, and size-exclusion is 

normally considered the dominant mechanism for virus clearance [100]. The blocking 

model theory with varying blocking indexes combined with cake filtration model could 

accurately characterize the virus filtration behaviors such as the membrane fouling and 

filtration flux under different buffer conditions. In addition to the size-exclusion 

mechanism, there exist other mechanisms like adsorption described by the Langmuir 

and Freundlich theories [36, 37, 100-103]. Ultrafiltration modules are typically used to 

adjust the concentration of the target protein component and the buffer media 

composition [38]. Reliable transport-phenomena-based models have been developed to 

represent the ultrafiltration process, for which it is modeled via the combination of 

Stagnant Film Model for concentration polarization, Osmotic Pressure Model and 

Boundary Layer Model for the mass transfer through the membrane [41, 104, 105]. 
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Binabaji et al. [106, 107] developed a mechanistic model to describe the behavior of 

ultrafiltration under highly concentrated antibody solution and validated the model 

through experimental efforts. This model, capturing the intermolecular interactions and 

back-filtration phenomenon at high concentration, could help increase the filtrate flux 

and maximum achievable concentration by evaluating the effect of membrane modules 

and operating protocols via simulation.  

1.2.2 Surrogate Modeling  

Mechanistic models suffer from the need for high computation power, and their 

accuracy highly relies on the obtained process knowledge. The surrogate model, also 

known as data-driven or black-box model, is an efficient approach to simulate the 

process with limited understanding and high complexity. With large amounts of data 

involved, the computationally cheap surrogate model in a lower dimensional space can 

be obtained to represent the original complicated process. Surrogate-based model has 

been applied both in the upstream and downstream operations in biopharmaceutical 

processes [108, 109].  

In upstream, data-driven model has been used for cell-line selection [110], media 

optimization [111], process prediction, optimization, and scale up [112, 113]. 

Multivariate analysis has the capabilities of handing large amounts of data and 

information. Sokolov et al. [114] used principal component analysis (PCA) to find 

correlations between pH, temperature shift, and media composition with quality 

attributes including aggregate, fragments, charge variants, and glycans. The authors also 

used partial least square regression (PLS) model coupled with genetic algorithm to 

predict product titer and other quality attributes. Similarly Green and Glassey [115] use 

PLS and multi-way PLS to predict titer and quality attributes. The results show that 
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online measurements such as pH and DO could not provide good prediction on quality 

attributes. Combined with amino acids data, the quality attributes could be predicted, 

which is not limited to lab scale but also manufacturing scale [116]. The predictability 

of the model can potentially be used as a control chart to identify the deviations during 

the operation [112]. One limitation of the PLS model is that it can only capture the linear 

correlations. To deal with this issue, modelers can choose machine learning methods 

such as neural networks (NNs), random forests, extreme gradient boosting, support 

vector machines, Gaussian processes, etc. Alavijeh et al. [112] reviewed the advantages 

and disadvantages of each of the methods from the requirement of data source, model 

efficiency and robustness. Bashokouh et al. [111] used NN with multilayer feed-forward 

structure to perform a predictive model of titer and then apply the optimization 

algorithm to find optimum amount of fetal bovine serum in media, temperature and 

incubation time for maximum productivity.  

The different applications of data-driven model have also been demonstrated in 

downstream unit operations like column chromatography [117, 118]. Wang et al. [119] 

applied NN modeling in protein chromatography for the estimation of adsorption and 

mass transfer parameters by mapping the in silico experimental chromatograms to the 

corresponding model parameters. Li et al. [120] developed two different types of 

surrogate models for efficient optimization of the simulated moving bed 

chromatography and compared the performance of original full-order and reduced-order 

models in terms of the computational time and accuracy. Additionally, Sachio et al. 

[121, 122] applied machine learning-based approaches to enable quick and efficient 

identification of the design space for Protein A chromatography, which is useful in the 

quantification of process flexibility, assessment of different operating points, and resin 

https://www.sciencedirect.com/science/article/pii/S277250812200031X#bib0225
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screening. Moreover, Bayesian optimization was employed for inverse fitting 

parameters in ion-exchange and hydrophobic interaction chromatography operations, 

providing low computational demand and further facilitating rapid process development 

[117].  

Besides the application in chromatographic processes, ANNs and regression 

models are trained based on the CFD simulation data of the membrane spacers under a 

wide range of potential commercial designs and the resulting surrogate model could 

accurately predict pressure loss and mass transfer coefficients [123]. In order to capture 

the complicated fouling dynamics, Zhang et al. [124] utilized the data collected from a 

pilot-scale ultrafiltration membrane system to obtain three different data-driven models 

(linear regression, NNs, and random forest), compared the performance of three 

modeling techniques, and optimized the backwash sequence timing.  

1.2.3 Hybrid Modeling  

Mechanistic and surrogate models could both be used to simulate the process, 

but they have different requirements for the process understanding and data. 

Mechanistic model requires a priori basis of knowledge about the process, and it is 

challenging to postulate appropriate assumptions and develop a precise model, but the 

model can be highly generalizable with physical or empirical interpretation of the 

process. Surrogate model is determined exclusively from data, so the quantity and 

quality of data significantly affect the model performance. Due to the lack of first-

principle knowledge, the computationally efficient surrogate model has poor 

interpretability and generalizability. Thus, hybrid modeling is introduced to combine 

the advantages and alleviate the drawbacks of the two models. The missing knowledge 

in the mechanistic model can be represented by a surrogate model, constructing a hybrid 
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model. It was observed that this strategy has the potential to significantly improve the 

model predictive performance [24, 125, 126].  

The hybrid model of bioreactor modeling shows higher accuracy, extrapolation 

and interpolation capabilities than both the mechanistic and data-driven models [127]. 

Narayanan et al. [128] used kinetic models to build mass balance equations. Then the 

authors applied BlackBox-PLS2 and stepwise-PLS2 to predict rate constant from 

operating parameters and metabolite concentrations. This method integrates kinetic 

models and data-driven models. Similarly, Stosch et al. [129] also used hybrid model to 

analyze the effects of temperature, pH, cell concentration, and feed rate on productivity. 

Another approach is to have kinetic models and data-driven models connected in series. 

Kotidis and Kontoravdi [130] developed HyGlycoM model to predict glycan 

concentrations under different feeding strategies. The model comprises two kinetic 

models for cell metabolism and nucleotide sugar donors (NSDs) and uses the output – 

NSDs concentration as inputs of the NN model to estimate the glycosylation process. 

Instead of using machine learning methods, the model-based design of experiment was 

applied to optimize media composition and feeding strategies. In this method, 

mechanistic model built in MATLAB is integrated with DesignExpert (AspenTech) a 

software for design of experiment and basic statistical analysis [131]. In this case, the 

design of experiments can run in silico which will significantly reduce the resource 

consumption for lab experiments and at the same time accelerate process development. 

Data driven model can be also integrated with stoichiometric model to understand 

metabolic shifts during the cell culture [132], and predict amino acid concentration 

[133], or quality attributes [134].  
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In addition to its application on the upstream bioreactors, hybrid modeling 

strategies are also applied in the chromatography and ultrafiltration procedures [135]. 

Narayanan et al. [136, 137] developed different hybrid models with varying degrees of 

process knowledge incorporated and evaluated their performance in terms of the 

interpolation and extrapolation capabilities, prediction accuracy and application into 

continuous chromatography system. Specifically, lumped kinetic model (LKM) is 

selected for the mass transport because the fluid dynamics inside the column are well 

described, while NN is introduced to represent the missing knowledge in the adsorption 

dynamics. The developed hybrid model outperformed the mechanistic model in terms 

of prediction accuracy and robustness. To investigate the Protein A resin lifetime, 

Gaussian Processes were first applied to correlate the aging parameters with cleaning 

and loading conditions, followed by integrating the GP to the lumped kinetic model to 

construct the hybrid model [138]. The developed model could give insights into the 

aging mechanism, which could further provide guidance about how to extend the resin 

lifetime and decrease the cost of goods through process analysis and optimization. Tang 

et al. [139] combined physics-informed neural networks (PINN) with LKM for fitting 

and predicting experimental breakthrough curves. However, this approach necessitates 

large datasets, and the model performance needs to be greatly improved.   

 With respect to ultrafiltration, Krippl et al. [140] established a hybrid model to 

predict the flux evolution and duration of ultrafiltration process under different 

operating conditions like various proteins, membrane types, input parameters and 

filtration modes. The prediction and robustness of this hybrid model are superior to the 

mechanistic film theory model, which could be further integrated into the virtual plant 

of digital twin. Thiess et al. [141] combined a regression model with a physicochemical 
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model to characterize and quantify the effect of module geometries of ultrafiltration 

cassettes on mass transfer and pressure drop. 

1.2.4 Flowsheet Modeling  

Besides individually modeling the unit operations, flowsheet models could be 

built by integrating these single unit procedures. The resulting flowsheet models could 

help capture process dynamics under process variation, and further identify design space 

and optimum operating conditions through system analysis and optimization [142]. 

Flowsheet model is an essential part of a complete DT, but it is considerably challenging 

to develop a flowsheet that can fully represent the physical plant due to the high 

complexity of the integrated process and the intense requirement of computational 

power resources. Consequently, current research on flowsheet development either 

focuses on coupling the downstream unit operations, or building the integrated process 

model in the commercial simulation software [143]. 

Several attempts have been observed in building the integrated process model 

for downstream operations. Coupling with the control system, the mechanistic models 

of different chromatographic systems are integrated to construct a flowsheet model to 

realize real-time decision making and automatically optimize the operations conditions 

[144]. In order to save computational time, data-driven and hybrid models are employed 

to build the flowsheet mode as well. Given the upstream product and antigen-binding 

fragment manufacturing process, Liu et al. [145] developed an integrated data-driven 

model for multiscale optimization to find the optimum chromatography decisions for 

purification like the number of chromatography columns and their sizes, the number of 

cycles per batch, and the operational flow velocities. Zahel et al. [146] established an 

integrated process model for three chromatographic steps with regression approaches 
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and then incorporated Monte Carlo simulation into the model, which can be used to 

estimate process capabilities, examine the product quality under process variations, and 

provide risk-based decision. Hybrid model is also developed by Pirrung et al. [147] to 

optimize the chromatography decisions in terms of the chromatography modes, 

operating sequence and conditions. Moreover, an integrated residence time distribution 

(RTD) model for an integrated continuous downstream process is developed to describe 

the inside mass flow, accelerate the start-up phase, and track the propagation of 

disturbances [148]. Recently, Rischawy et al. [149] first developed an integrated 

mechanistic model for the entire biopharma downstream process. This model 

incorporates capture, pH virus inactivation, depth filtration, adjustment, anion exchange 

chromatography, pH adjustment, cation exchange chromatography, virus filtration and 

ultrafiltration/diafiltration steps. The developed model has been calibrated on lab scale, 

validated at a manufacturing scale of 12,000 L, and tested to accurately respond to real 

input parameter variability in manufacturing scale, including protein concentration, 

volume, size variant composition, ion concentration, and pH. 

On the other hand, flowsheet model for the biopharmaceutical process has been 

constructed in different process simulators, such as SuperPro Designer and BioSolve 

[150-152]. Although these modeling simulations are based on mass balance calculations 

and cannot provide detailed analyses of interconnections between different units, the 

simplified flowsheet models can help develop process design, evaluate various 

processing scenarios and achieve decision-making from the economic and 

environmental aspects, especially at the early-stage development. Petrides et al. [143] 

built an integrated flowsheet model for a batch biopharmaceutical process of mAbs in 

SuperPro Designer for process scheduling, debottlenecking and economic analysis. 
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Recently, a transition from batch to continuous biopharmaceutical operations has been 

noticed [98, 153, 154]. It is significant to assess the feasibility and viability of this 

transition and make decisions with the help of the flowsheet model. A lot of efforts have 

been made for the comprehensive comparison between different operating modes (such 

as batch, continuous and hybrid) and scenarios in terms of economic and ecological 

assessment [150, 155-158].  

1.3 Challenges in Modeling Biopharmaceutical Processes  

The fast development of digital twin capabilities and the successful attempts in 

engineering applications such as aerospace have drawn significant attention from the 

biopharmaceutical industry and the associated policymakers. Although building blocks 

of digital twin (e.g., models and PAT tools) and policy guidelines (e.g., United States’ 

Executive Order on Advancing Biotechnology and Biomanufacturing Innovation [159], 

China’s Five-Year Plan for Development of Smart Manufacturing [160], and European 

Union’s Digitizing European Industry Initiative [161]) are in place, several challenges 

and gaps still exist, inhibiting the adoption of the technology in biopharmaceutical 

industry. 

1.3.1 Development of Appropriate Models for Complex Biopharmaceutical 

Processes 

In order to have an accurate virtual representation of digital twin in 

biopharmaceutical industry, having appropriate models to describe the physical 

biopharmaceutical manufacturing processes is critical for digital twin implementation. 

In current literature, even though various modeling methods have been developed and 

libraries of models are being incorporated into simulation software, their suitability for 

complex industrial development processes needs to be closely examined. For instance, 
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hydrophobic interaction chromatography is one of the widely used techniques in 

downstream polishing steps, but the binding mechanism inside is quite complex, which 

poses a challenge to the development of appropriate models that accurately describe its 

behavior. In addition, the developed models are highly dependent on the appropriate 

parameterization using data. In the early pharmaceutical development stage, the 

available data may be biased as they are not collected for model development, 

interfering with the evaluation and validation of the developed models. Such constraint 

in data quantity and data quality often leads to a reduced capability in using the models 

for process prediction and analysis.  

1.3.2 Computational Complexity in System Analysis Applications 

To keep pace with the advancements of artificial intelligence (AI) and digital 

twins and align with the quality by design initiative, the biopharma industry has 

attempted to embrace advanced model-based approach to expedite process 

development. Mechanistic models, rooted in prior process knowledge, have been 

employed for process characterization and optimization. Nonetheless, as these models 

evolve to consider precise representations of process dynamics, the computational 

complexity also increases, hindering the implementation of these models for system 

analysis like feasibility analysis and optimization. For instance, the design space for 

continuous frontal chromatography process [162] and twin-column countercurrent 

solvent gradient purification (MCSGP) [163] were identified based on mechanistic 

model by sampling the full operating space, but this approach would result in a tradeoff 

between model accuracy and computational cost. Increasing the sample size may result 

in improved accuracy of the identified design space, but it would increase the sampling 

cost simultaneously. 
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1.3.3 Proof-of-Concept for New Process Design  

The commercial-scale production of biopharmaceuticals is currently performed 

in batches in which each unit operation is run sequentially, requiring human intervention 

to handle the product inflow and outflow between different unit operations [98, 164]. In 

addition to the large amount of workforce required, there are some other vital 

shortcomings associated with batch manufacturing, including low productivity and 

batch-to-batch variability in product quality [89, 165]. With the increasing global 

market demand, prohibitive drug cost, and biosimilar competition [166-168], batch 

operation has become inefficient and unable to meet those demands. Thus, a more cost-

effective and flexible manufacturing platform is desired, such as continuous 

manufacturing. Conducting proof-of-concept (POC) or what-if study with physical 

implementation requires significant costs due to the investments in equipment, labor, 

capital, operating costs, etc. Thus, it is both necessary and advantageous to turn to in 

silico simulations to perform such feasibility studies by establishing end-to-end 

flowsheet models. Under the consideration of computational power limitations, it must 

be noted that for a fully integrated digital twin to be functional, the different unit 

operations models of various degrees of complexity need to be properly connected, 

enabling efficient information flow from upstream to downstream.  

1.4 Research Goals 

Considering the aforementioned challenges, the research in this dissertation 

aims to apply various process systems engineering tools to empower the in silico 

development of biopharmaceutical manufacturing processes. The objectives include 

improving model suitability/robustness, reducing computational effort, and supporting 

process assessments. For applications of PSE tools in supporting development, the 
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research specifically focuses on a key unit operation of downstream processing: 

chromatography, as illustrated in Figure 1.3. Chapters 2-4 introduce different modeling 

and system analysis methods incorporating machine learning (ML) algorithms to 

support process characterization and optimization of Protein A chromatography (ProA) 

in primary capture, as well as ion-exchange chromatography (IEX) and hydrophobic 

interaction chromatography (HIC) in polishing steps. Considering the trend in 

transitioning from batch to continuous processes, the research also targets to establish 

an end-to-end continuous platform for biomanufacturing, acting as an in silico proof-

of-concept (POC) study for new processes in Chapter 5.  

 

Figure 1.3: General overview of the research goals. 

1.4.1 Design Space Identification for ProA 

ProA is a standard procedure for initial capture to remove most of the process-

related impurities, but it suffers from high resin cost. To address this issue, multi-column 

periodic chromatography has attracted wide attention because continuous 
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chromatography can obtain higher productivity and resin capacity utilization, and 

consume less of the buffer. Model-based approach is a valuable strategy to help 

determine the design space of the continuous capture process, facilitating process 

understanding and improving product quality.  

To balance the computational complexity and model predictions, Chapter 2 aims 

to utilize a novel approach to identify the design space of continuous chromatography. 

Specifically, surrogate-based feasibility analysis with adaptive sampling is proposed 

and applied to establish the design space of the twin-column semi-continuous capture 

(CaptureSMB) process. The effects of process variables (including interconnected 

loading time, interconnected flow rate, and batch flow rate) on the design space are 

comprehensively examined based on an active set strategy. Besides, essential factors 

like recovery-regeneration time and constraints of column performance parameters 

(yield, productivity, and capacity utilization) are thoroughly investigated. The impact of 

design variables such as column length is also studied. 

1.4.2 Machine Learning-based Optimization for IEX 

Ion-exchange chromatography is an essential but complicated step in the 

biopharmaceutical downstream process, with multiple factors affecting the separation 

efficiency. Model-based optimization can help expedite process developments with 

limited time and resource investments. However, employing mechanistic models 

directly for optimization often encounters challenges due to high computational 

complexity. Additionally, finding optimal solutions in highly nonlinear and nonconvex 

processes can be difficult. 

Therefore, Chapter 3 aims to apply a machine learning-based optimization 

framework to address the abovementioned challenges. Specifically, Gaussian Process 
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Regression (GPR) models are utilized as substitutes for the mechanistic model in 

calculating the constraints and objective function. To further reduce the required 

sampling, feasibility and optimization stages are incorporated into the framework, with 

a penalty introduced at each stage into the expected improvement function to guide the 

search process. This ML-based framework is applied to a case study to separate a ternary 

protein mixture using IEX. The effects of peak cutting criteria on the optimal results 

were examined, followed by a detailed analysis of design space. 

1.4.3 Hybrid Model Development for HIC 

HIC is often employed as a polishing step to remove aggregates for the 

purification of therapeutic proteins in the biopharmaceutical industry. To accelerate the 

process development and save the costs of performing time- and resource-intensive 

experiments, advanced model-based process design and optimization are necessary. 

Due to the unclear adsorption mechanism of the salt-dependent interaction between the 

protein and resin, the development of an accurate mechanistic model to describe the 

complex HIC behavior is challenging.  

Therefore, Chapter 4 focuses on utilizing a hybrid modeling strategy to develop 

accurate models that represent the HIC process. To reduce the development effort of 

isotherm equations and extract missing information from the available data, a hybrid 

model is constructed by combining a simple and well-known multi-component 

Langmuir isotherm with a neural network. The accuracy of the developed hybrid model 

is compared with that of mechanistic model. Additionally, an extrapolation capability 

test was conducted to assess the generalizability of the hybrid model. Process 

optimization is also carried out to find the optimal operating conditions under product 

quality constraints using the developed hybrid model.  
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1.4.4 Proof-of-Concept Study for Continuous mAb Production 

The most widely used method for biological production of mAbs is operated in 

batch operation mode. However, due to the fast expansion of market demand, 

continuous biomanufacturing emerges as a promising alternative to current batch 

operation as it offers benefits in terms of improved productivity, product quality, and 

reduced footprint.  

Chapter 5 aims to conduct a proof-of-concept study by constructing a fully 

integrated in silico end-to-end continuous platform to evaluate the feasibility of 

transitioning from batch to continuous biomanufacturing processes. During the process 

design phase, innovative technologies like intensified seed expansion and continuous 

high cell density perfusion operations, single-pass tangential flow filtration, and single-

use technologies are integrated, alongside media and buffer preparation steps, are 

incorporated. After the development of flowsheet model, economic and environmental 

analyses are conducted to assess the economic efficiency and environmental footprints. 

Moreover, scenario analysis is performed to assess the impacts of bioreactor scale and 

upstream titers on the process economics as well as on the environmental footprint. 

Process bottlenecks are identified and eliminated, and the integration of membrane 

chromatography is also examined. 
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DESIGN SPACE IDENTIFICATION OF CONTINUOUS PROTEIN A 

CHROMATOGRAPHY 

2.1 Introduction 

The treatment of cancer and autoimmune diseases based on monoclonal 

antibodies (mAbs) has been identified as one of the most successful strategies [6, 169, 

170]. Currently, the most widely used method for biological production of mAbs is 

batch operation mode in which each unit operation is operated in sequence, and the 

outflow of the previous unit is collected in a holding tank before transferring to the next 

unit [13, 98, 164, 171]. However, due to the rapid growth of market demand, continuous 

bioprocessing becomes a potential alternative for the production of mAbs by providing 

higher productivity and yield and smaller footprints [57, 99, 150]. Significant progress 

has been achieved in the upstream process like cell culture, which shifts the pressure of 

achieving continuous biopharmaceuticals to the downstream operations, especially for 

primary capture [31], which has not however received as much attention in the literature. 

However, capture is sometimes combined with upstream processing and harvest in 

 

 

Chapter 2 is adapted from the following journal article written by the author of this 

dissertation:  

 

Ding, C., Ierapetritou, M., A novel framework of surrogate-based feasibility analysis 

for establishing design space of twin-column continuous chromatography. International 

Journal of Pharmaceutics, 2021, 609: 121161.  

Chapter 2 
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determining strategies for process integration, which puts extra pressure on delivering 

high productivity in the primary capture step.   

Protein A affinity chromatography is a standard procedure for the initial capture 

of almost all mAb products to remove most of the process-related impurities like culture 

media components, host cell proteins, and DNA [34]. To address the issue of high resin 

cost, continuous capture process, like multi-column periodic counter-current 

chromatography (PCC), has been developed, because continuous chromatography can 

obtain higher productivity and resin capacity utilization, and consume less of the buffer 

[9, 172, 173]. Several continuous capture chromatographic systems are available with 

different operation modes and column numbers, such as twin-column CaptureSMB [76, 

174], 3-column and 4-column PCC [175-177], BioSMB process [178] combining PCC 

with disposal technology, and sequential multi-column chromatography (SMCC) [179].  

In an attempt to acquire thorough process understanding of continuous 

biomanufacturing, FDA introduced the Quality by Design (QbD) initiative to provide 

regulatory flexibility and manufacturing efficiency to produce biotherapeutics with 

higher product quality [180-182]. The process understanding acquired from QbD 

initiative is beneficial for the identification of the design space, which is determined by 

the ranges in which a given process must operate to ensure product quality [53, 54]. 

Design space analysis can help comprehend the main effects of process variables and 

their interactions on product quality, facilitating the improvement of continuous 

bioprocess. Besides the experimental examination of the design space based on the 

design of experiments (DOE) [183], modeling can be utilized to lower the experimental 

work and delve into the effects of critical process parameters (CPPs) on the critical 

quality attributes (CQAs) [74]. Morbidelli’s group has identified the design space of 
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continuous frontal chromatography process [162] and twin-column countercurrent 

solvent gradient purification (MCSGP) [163] based on the mechanistic models and 

pointed out the existing tradeoffs between model accuracy and computational 

complexity. 

In this work, to reduce the computational burden introduced by the mechanistic 

models, surrogate-based feasibility analysis with an adaptive sampling approach [184] 

is proposed to approximate the original models and predict the design space. The 

introduction of surrogate model results in a reduced computational cost, but the 

accuracy of the surrogate model is highly dependent on the quality and quantity of the 

sampling set [108]. To deal with this issue, an adaptive sampling algorithm is utilized 

because this algorithm can help search towards the less explored regions and the 

boundary of the feasible region [185]. To validate the applicability of the proposed 

methodology, twin-column CaptureSMB is used as a case study although the approach 

is general to be used for any potential configuration. In summary, mechanistic models 

to describe the continuous capture process are first constructed, followed by establishing 

the surrogate models built on the relationship between the inputs (process variables 

including interconnected loading time 𝑡𝐼𝐶 , interconnected flowrate 𝑄𝐼𝐶  and batch 

flowrate 𝑄𝐵 ) and the outputs (the maximum value among productivity, yield, and 

capacity utilization constraints) acquired from the mechanistic models. After 

determining the design space of each case study, the impacts of each process variable 

on the design space are thoroughly investigated based on the active set strategy. In 

addition, crucial factors that affect the design space, including recovery-regeneration 

time and constraints of column performance like yield, productivity, and capacity 
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utilization, are also comprehensively examined. The influence of one of the most 

important design variables, the column length, is also investigated.  

2.2 Process Description and Process Model 

2.2.1 Operating Principles of CaptureSMB 

A full cycle of the twin-column cyclic chromatography (CaptureSMB) process 

in steady-state is illustrated in Figure 2.1. Each cycle comprises two “switches” with an 

interconnected (IC) and a batch (B) step. During the IC phase (Step 1), two columns are 

connected in series and column 1 is overloaded beyond its dynamic binding capacity 

with the interconnected flowrate 𝑄𝐼𝐶 and loading time 𝑡𝐼𝐶. The breakthrough from the 

first column is captured by the second column. Once the first column is fully loaded, 

the two columns are washed in sequence to flush the unbound material into the second 

column using a wash buffer. During the batch phase (Step 2), the two columns are 

disconnected. Column 1 undergoes the recovery and regeneration step (R-R, including 

washing, elution, clean-in-place, and re-equilibration) while loading continues using 

column 2 with the feeding flowrate 𝑄𝐵 and loading time 𝑡𝐵. To ensure that this system 

operates in continuous mode, the R-R time (𝑡𝑅𝑅) is set to be equal to the batch loading 

time (𝑡𝐵). At the end of the switch, the two columns switch their functions to perform 

similar steps (Steps 3 and 4) to complete one cycle. In summary, based on the operating 

principles described, the three process variables - interconnected loading time 𝑡𝐼𝐶 , 

interconnected flowrate 𝑄𝐼𝐶, and batch flowrate 𝑄𝐵 - are the ones defining the process 

design space and are considered for further system analysis and process optimization. 
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Figure 2.1: Schematic diagram of a CaptureSMB system for continuous capture.   

2.2.2 Process Model 

Lumped kinetic model (LKM) with Langmuir isotherm [81] is employed to 

describe the mass transport and kinetic adsorption inside the column, with the 

assumption of isothermal adsorption and radial homogeneity. Although the model used 

for this process is an approximate model, the main purpose of this work is to illustrate 

the application of the novel framework in identifying the design space of continuous 

chromatography. More detailed and accurate models like general rate model [186] or 

shrinking core model [136, 187] will be considered in our future work.  The mass 

balance for the mobile phase and stationary phase of LKM are illustrated in Equations 

2.1 and 2.2, respectively. 

 
𝜕𝑐

𝜕𝑡
= −𝑢

𝜕𝑐

𝜕𝑧
+ 𝐷𝑎

𝜕2𝑐

𝜕𝑧2 −
1−𝜀𝑐

𝜀𝑐

𝜕𝑞

𝜕𝑡
 2.1 

 
𝜕𝑞

𝜕𝑡
= 𝑘𝑚(𝑞∗ − 𝑞) 2.2 

where 𝑐  and 𝑞  are the protein concentrations in the mobile and stationary phases, 

respectively; 𝑡 and 𝑧 denote the time and axial coordinate; 𝜀𝑐 is the total porosity; 𝑢 =

𝑄/(𝐴𝑐𝑜𝑙𝜀𝑐)  is the superficial velocity; 𝐷𝑎 is the apparent axial dispersion coefficient; 

𝑘𝑚  is the lumped mass transfer coefficient; and 𝑞∗  is the equilibrium solid phase 

concentration of the protein. 
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Equations 2.3–2.4 shows the Danckwerts’ boundary conditions employed in the 

process [84]. At the column inlet, it is presumed that the change in axial concentration 

relates to the difference between the feed and the column inlet concentration. At the 

column outlet, there is no axial concentration gradient. The column is assumed to be 

initially free of proteins in both the mobile and stationary phase, as described in 

Equations 2.5–2.6. In addition, the apparent axial dispersion coefficient 𝐷𝑎  can be 

estimated based on the reduced van Deemter relation as shown in Equations 2.7.  

 𝑢 𝑐𝑖𝑛(𝑡) = 𝑢 𝑐(𝑡, 0) − 𝐷𝑎  
𝜕𝑐

𝜕𝑧
(𝑡, 0) 2.3 

 
𝜕𝑐

𝜕𝑧
(𝑡, 𝐿) = 0 2.4 

 𝑐(0, 𝑧) = 0 2.5 

 𝑞(0, 𝑧) = 0 2.6 

 𝐷𝑎 = 𝐴 
𝑑𝑝

2
 𝑢 2.7 

where A is the van Deemter coefficient and 𝑑𝑝 is the average resin particle diameter, 

respectively. Note that 𝑐𝑖𝑛(𝑡) is time-dependent protein inlet concentration because of 

the different procedures (breakthrough uptake, load, elution, etc.) in the column.  

For the lumped mass transfer coefficient 𝑘𝑚 , an empirical correlation is 

employed in Equation 2.8 [188]. The adsorption mechanism is described using 

Langmuir isotherm as displayed in Equation 2.9. 

 𝑘𝑚 = 𝑘𝑚𝑎𝑥 [𝑆1 + (1 − 𝑆1)(1 −
𝑞

𝑞𝑠𝑎𝑡
)𝑆2] 2.8 

 𝑞∗ =
𝐻⋅𝑐

1+
𝐻⋅𝑐

𝑞𝑠𝑎𝑡

 2.9 
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where 𝑘𝑚𝑎𝑥  is the maximum lumped mass transfer coefficient; 𝑞𝑠𝑎𝑡  is the saturation 

capacity of the resin; 𝑆1 and 𝑆2 are the saturation dependent kinetic constant and order; 

H is the Henry coefficient.  

In terms of parameter estimation, van Deemter coefficients 𝐴  and 𝐵  are 

estimated by linearly fitting the reduced plate height against the mobile phase velocity. 

Mass transfer (𝑘𝑚𝑎𝑥, 𝑆1, 𝑆2) and adsorption parameters (𝑞𝑠𝑎𝑡 and 𝐻) are obtained by 

inversely fitting the batch breakthrough curves (BTCs) under different feeding 

concentrations and flowrates. To solve the coupled partial differential equations, those 

equations were first discretized into 100 points along the axial coordinate using a first-

order central finite differences method, followed by using the solver ode15s in MATLAB 

to resolve the obtained system of ordinary differential equations.  

In this work, all the parameters to simulate the loading step of the continuous 

capture process are directly obtained from the literature [81] and listed in Table 2.1. It 

should be noted that the elution process is not considered in this work and the column 

is assumed to be empty after the recovery and regeneration step. Although this is an 

approximation of the entire process, the work presented here can be extended to capture 

those additional steps that will be considered in our future work. 

Table 2.1: A list of used model parameters. 

Parameters Units Value 

A - 35.13 

𝜀 - 0.368 

𝑘𝑚𝑎𝑥 min–1 0.1800 

𝑆1 - 0.6245 

𝑆2 - 2.071 

𝑞𝑠𝑎𝑡  mg mL–1 92.2816 

𝐻 - 246.8 
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Table 2.1 continued. 

𝑑𝑝 𝜇𝑚 44 

𝛾 bar min cm-2 0.01020 

 

 

2.2.3 Evaluation of Process Performance 

Productivity, resin capacity utilization, purity, and yield are four important 

metrics to evaluate the column performance of continuous chromatography. It is 

assumed that the purity requirements can be fulfilled under the current operating 

conditions and will not be considered when determining the design space [81]. Thus, 

only three criteria - yield, productivity, and capacity utilization - are examined to 

identify the design space. The yield (Y) of the continuous capture process is defined by 

the amount of protein obtained relative to the theoretical maximum amount obtainable, 

which can be calculated from Equation 2.10. The productivity (P) is equivalent to the 

amount of target protein produced per unit time and unit resin volume, which is given 

in Equation 2.11. The resin capacity utilization (CU) can be defined as the amount of 

target protein that can be produced per unit resin volume and cycle normalized with the 

equilibrium binding capacity at the feed concentration, as shown in Equation 2.12. 

 𝑌(𝑡𝐼𝐶 , 𝑄𝐼𝐶 , 𝑄𝐵) = 1 −
2(𝑄𝐼𝐶 ∫ 𝑐𝑜𝑢𝑡

𝑡𝐼𝐶
0

(𝑡)𝑑𝑡+𝑄𝐵 ∫ 𝑐𝑜𝑢𝑡
𝑡𝐵

0
(𝑡)𝑑𝑡)

𝑛𝑐𝐹𝑒𝑒𝑑(𝑡𝐼𝐶𝑄𝐼𝐶+𝑡𝐵𝑄𝐵)
 2.10 

 𝑃(𝑡𝐼𝐶 , 𝑄𝐼𝐶 , 𝑄𝐵) = 𝑌
𝑐𝐹𝑒𝑒𝑑(𝑡𝐼𝐶𝑄𝐼𝐶+𝑡𝐵𝑄𝐵)

𝑛𝑉𝐶𝑜𝑙(𝑡𝐼𝐶+𝑡𝐵)
 2.11 

 𝐶𝑈(𝑡𝐼𝐶 , 𝑄𝐼𝐶 , 𝑄𝐵) = 𝑌
𝑐𝐹𝑒𝑒𝑑(𝑡𝐼𝐶𝑄𝐼𝐶+𝑡𝐵𝑄𝐵)

𝑉𝐶𝑜𝑙(1−𝜀𝑐)𝑞𝐹𝑒𝑒𝑑
∗  2.12 
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where 𝑐𝐹𝑒𝑒𝑑 is the feeding protein concentration; 𝑉𝐶𝑜𝑙 is the volume of one column; 𝑛 

represents the number of columns; 𝑐𝑜𝑢𝑡 denotes the column outlet concentration, which 

is obtained by solving the coupled PDE equations in Equations 2.1–2.2.  

2.3 Methodology 

2.3.1 Feasibility Analysis 

Feasibility can be mathematically quantified by the definition of feasibility 

function 𝜓(𝑑, 𝜃) given in Equation 2.13. The feasibility function is utilized to illustrate 

whether a given process can satisfy all constraints 𝑓𝑗  by merely modifying control 

variable 𝑧 at fixed uncertain parameters 𝜃. 

 𝜓(𝑑, 𝜃) = min
𝑧

max
𝑗∈𝐽

{𝑓𝑗(𝑑, 𝑧, 𝜃)} 2.13 

where 𝑑 are the design variables like equipment size, 𝑧 represents the control variables 

that vary on the range 𝑍 = {𝑧: 𝑧𝐿 ≤ 𝑧 ≤ 𝑧𝑈}, 𝜃 denotes the uncertain parameters 𝜃 ∈

𝑇 = {𝜃: 𝜃𝐿 ≤ 𝜃 ≤ 𝜃𝑈}, 𝑓𝑗(𝑑, 𝑧, 𝜃), 𝑗 ∈ 𝐽 corresponds to the set of constraints restricting 

the feasible space. If 𝜓(𝑑, 𝜃) > 0 , it suggests that the process design is infeasible 

because of the violation of some constraints whereas 𝜓(𝑑, 𝜃) ≤ 0 means that the given 

process is feasible and 𝜓(𝑑, 𝜃) = 0 represents the boundary of the feasible region. 

In this article, no control variables are considered in the case study, which leads 

to the simplified feasibility function as shown in Equation 2.14.  

 𝜓(𝑑, 𝜃) = max
𝑗∈𝐽

{𝑓𝑗(𝑑, 𝜃)} 2.14 

In the twin-column continuous capture process, since we are interested in 

evaluating the design space of feasible operation, the process variables 𝜃 include the 

interconnected loading time 𝑡𝐼𝐶 , interconnected flowrate 𝑄𝐼𝐶  and batch flowrate 𝑄𝐵 , 
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while the design variable 𝑑 represents column length 𝐿. The design space of continuous 

PCC process is restricted by yield (Y), capacity utilization (CU), and productivity (P) 

constraints. Specifically, Y, CU and P are set to be higher than or equal to 80%, 85%, 

and 15 mg mL–1 h–1 in the case study, respectively. 

2.3.2 Surrogate Model - Kriging 

The surrogate model is employed to replace the original mechanistic models of 

continuous chromatography procedures to reduce the computational expense. 

Specifically, the surrogate model is trained based on the inputs (process variables like 

𝑡𝐼𝐶 , 𝑄𝐼𝐶 , and 𝑄𝐵 ) and the outputs (feasibility function values calculated from 

mechanistic model).  

Kriging is a commonly used surrogate model that was first developed by mining 

engineer Danie Krige. Ordinary kriging is a spatial interpolation method relying solely 

on the point observations of the target variable. In specific, this approach makes 

predictions of un-visited points by utilizing the sum of the Euclidean distance of the 

observed function values at nearby sampling locations [189]. It assumes that the 

variation is random and only related to spatial distance with a constant mean. An 

alternate to ordinary kriging is regression kriging [190, 191], which is based on a hybrid 

interpolation technique combining point observations and regression of target variables 

to estimate the un-sampled locations. In this approach, regression is first used based on 

auxiliary information, followed by employing simple kriging with a known mean of 0 

to interpolate the residuals from the established regression model. Regression kriging 

was chosen in our calculations because this method can produce better predictions [190, 

192]. The general form of a regression kriging model can be formulated in Equations 

2.15–2.16. 
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 𝑓(𝑥) = 𝒇(𝒙)𝑻𝜷 + 𝜀(𝑥) 2.15 

 𝒇(𝒙)𝑻𝜷 ≡ 𝛽1𝑓1(𝑥) + ⋯ + 𝛽𝑚𝑓𝑚(𝑥) 2.16 

where 𝒇(𝒙)𝑻𝜷 is a linear regression model constituted by 𝑚 known basis functions 

𝑓𝑗(𝑥) (𝑗 = 1,2, … 𝑚)  that define the global trend of mean prediction at location 𝑥 and 

𝑚  unknown parameters 𝛽𝑗  (𝑗 = 1,2, … 𝑚) ; 𝜀(𝑥)  is a residual term at 𝑥  that is 

commonly distributed with zero mean and covariance 𝜎2, as shown in Equation 2.17. 

 𝐶𝑜𝑣(𝜀(𝑥𝑖), 𝜀(𝑥𝑗)) = 𝜎2𝑅(𝑥𝑖, 𝑥𝑗) 2.17 

where 𝑅 represents the correlation model. 

Compared with other surrogated models, the benefit of the Kriging model lies 

in that it can provide the estimated variance of the prediction [193], which can be useful 

for adaptive sampling. There are lots of regression and correlation models that can be 

employed to fit the Kriging model. In this work, three regression models and three 

correlation models shown in Table 2.2 are tested for the model training because these 

models exhibit good performance in our previous work [185]. The regression 

coefficients 𝜷 are estimated from least-square estimator and the hyper-parameter (𝜃𝑗) is 

predicted using maximum likelihood. More detailed introduction and derivation about 

kriging can be found in this review [108]. In this paper, Kriging model is constructed 

through the DACE toolbox [194] built-in MATLAB. In our simulation, the combination 

of quadratic regression & exponential correlation gives us the best model performance.  

Table 2.2: Regression models and correlation functions with dj=xj-xi and θj. 

Regression 

model 
𝒇(𝒙) 

Correlation 

function 
𝑅𝑗(𝜃, 𝑑𝑗) 

Constant  𝑎 Exponential 𝑒𝑥𝑝 (−𝜃𝑗|𝑑𝑗|) 

Linear  𝑎𝑖𝑥𝑖 + 𝑏 Gauss 𝑒𝑥𝑝 (−𝜃𝑗𝑑𝑗
2) 

Quadratic 𝑎𝑖𝑥𝑖
2 + 𝑏𝑖𝑗𝑥𝑖𝑥𝑗 + 𝑐𝑖𝑥𝑖 + 𝑑 Linear max {0,1 − θj|𝑑𝑗|} 
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2.3.3 Adaptive Sampling 

Adaptive sampling can help improve the accuracy of the surrogate model and 

reduce sampling cost simultaneously. By maximizing a modified expected 

improvement (EI) function [195] in Equation 2.18, an adaptive sampling strategy is in 

favor of searching towards the areas with high uncertainty and close to the boundary. 

 𝑚𝑎𝑥 𝐸𝐼𝑓𝑒𝑎(𝑥) = 𝑠𝜙 (−
𝑦

𝑥
) = 𝑠 ⋅

1

√2𝜋
exp (−

0.5𝑦2

𝑠2 ) 2.18 

where 𝐸𝐼𝑓𝑒𝑎(𝑥) is the modified expected improvement (EI) function value at 𝑥; 𝑦 and 

𝑠 represent the surrogate model predictor and corresponding standard error (√𝑀𝑆𝐸), 

respectively; 𝜙(. ) denotes the normal probability distribution function.  

The principle behind this maximization problem can be explained based on the 

partial derivatives: 

 
𝜕𝐸𝐼𝑓𝑒𝑎𝑠

𝜕𝑠
=

1

√2𝜋
𝑒𝑥𝑝 (−

0.5𝑦2

𝑠2 ) (1 +
y2

𝑠2) > 0 2.19 

 
𝜕𝐸𝐼𝑓𝑒𝑎𝑠

𝜕𝑦
= −

1

√2𝜋
𝑒𝑥𝑝 (−

0.5𝑦2

𝑠2 )
𝑦

𝑠
  2.20 

It is found that the derivative of 𝐸𝐼𝑓𝑒𝑎𝑠  with respect to 𝑠 in Equation 2.19 is 

always larger than 0, suggesting that 𝐸𝐼𝑓𝑒𝑎𝑠 monotonically increases as the prediction 

error 𝑠 increases. Consequently, maximizing EI function can help sample new points in 

the unexplored region. From Equation 2.20, it should be noted that 𝜕𝐸𝐼𝑓𝑒𝑎𝑠/𝜕𝑦  is 

negatively related to the surrogate predictor 𝑦. When 𝑦 < 0, this derivative is positive, 

implying that 𝐸𝐼𝑓𝑒𝑎𝑠 increases with the increase of 𝑦. Maximizing 𝐸𝐼𝑓𝑒𝑎𝑠 will increase 

𝑦 and force it to approach zero. On the contrary, if 𝑦 > 0, this derivative is negative, 

and maximization will decrease 𝑦 and push it to get close to zero. Thus, Equation 2.20 

suggests that maximizing EI function favors searching towards the feasible region 
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boundary. That is how adaptive sampling works to improve the model accuracy without 

exhaustively sampling the whole space. 

To maximize this modified EI function, a local optimization solver fmincon is 

utilized. The performance of fmincon depends on the initial guess, so Latin Hypercube 

DOE is employed to generate 1000 different points, followed by evaluating the modified 

EI function values at those points. The point with the largest value is chosen as the initial 

guess of optimization. Although 1000 points are selected, it is still very computationally 

efficient because the optimization is based on the generated surrogate model, rather than 

the computationally expensive original model. It was found that only 0.49 seconds are 

required to perform 1000 calculations and 0.062 seconds for the optimization based on 

the EI function in MATLAB R2019b. All the simulations were conducted on Intel® 

Xeno® E-2274G CPU with 32.0 GB RAM. 

2.3.4 Surrogate Model Accuracy 

Since surrogate model is an approximation of the original model, we want to 

evaluate the accuracy of the feasibility analysis. In this article, three metrics [185, 195], 

namely percentage of Correct Feasible region (CF%), percentage of Correct Infeasible 

region (CIF%), and percentage of Not Conservative feasible region (NC%), are used as 

performance measures. To be specific, CF% means the percentage of feasible regions 

in the original function which has been correctly identified by the surrogate model; 

CIF% represents the percentage of infeasible regions in the original function that has 

been properly identified by the surrogate model; NC% illustrates the percentage of 

overestimated feasible region by the surrogate model. Accordingly, if CF% and CIF% 

are close to 100% and NC% is close to 0, the surrogate model can approximate the 

original function with very high accuracy. 
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The relationship between those metrics is shown in Figure 2.2. The rectangle 

area is the entire range of two-dimensional uncertain parameters; the blue and green 

circles illustrate the feasible region of the original function and surrogate model, 

respectively. With the aim of calculating the three metrics, the entire space is split into 

four zones: CF (Correct Feasible region in orange); CIF (Correct InFeasible region in 

white); ICF (InCorrect Feasible region in green); ICIF (InCorrect InFeasible region 

blue). Thus, the three accuracy measures can be calculated in Equations 2.21-2.23.  

 𝐶𝐹% =
𝐶𝐹

𝐶𝐹+𝐼𝐶𝐼𝐹
 100 2.21 

 𝐶𝐼𝐹% =
𝐶𝐼𝐹

𝐶𝐼𝐹+𝐼𝐶𝐹
 100  2.22 

 𝑁𝐶% =
𝐼𝐶𝐹

𝐼𝐶𝐹+𝐶𝐹
 100 2.23 

 

Figure 2.2: A schematic figure for the model performance metrics. 

2.3.5 Proposed Methodology 

The basic idea of the proposed strategy is shown in Figure 2.3. Firstly, initial 

sampling points are selected based on a space-filling design of experiment (DOE) to 

construct the initial Kriging model. Specifically, a rectangular grid sampling plan is 

chosen for the initial DOE to cover the input space uniformly. Subsequently, new 
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sampling points are added to iteratively update the Kriging model based on the adaptive 

sampling strategy. The adaptive sampling will stop if the number of iterations exceeds 

the user-defined maximum iterations. In this work, 800 is chosen as the maximum 

number of iterations because the feasible regions will not change as the number of 

iterations continues to increase, as shown in Figure 2.4. In addition, a plot of EI function 

with iterations is also provided in Figure 2.5 as quantitative evidence to show that the 

estimated feasible region has converged. The final Kriging model is used to perform 

feasibility analysis to predict the feasible region.  

 

Figure 2.3: Framework of Kriging-based feasibility analysis with adaptive sampling. 
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Figure 2.4: Comparison of 2D feasibility plots of CaptureSMB process at different 

iteration numbers for adaptive sampling. 

 

Figure 2.5: Comparison of EI function plot at different iteration numbers when QIC = 

1.5 mL min-1. 
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2.4 Results and Discussion 

2.4.1 Model Validation 

The model parameters are directly obtained from the literature [81], but the 

breakthrough curves are still tailored to validate our developed model. The experimental 

data are extracted from [81] and the breakthrough curves under different feed 

concentrations and flowrates are fitted as shown in Figure 2.6. The root-mean-square 

error (RMSE) of each simulation ranges from 3.47% to 11.30% with an average of 

5.77%. This developed process model is applicable for simulating the basic trend of the 

elution behavior, although there are some deviations existing between the fitted curves 

and the experimental data.  

 

Figure 2.6: a) fitted breakthrough curves (line) at different flowrates with 

experimental data (dot) at the feed concentration of 1.2 mg mL–1; b) fitted 

breakthrough curves at different feed concentrations with experimental 

data. The flowrate is 1.0 mL min–1 for the runs with feeding concentrations 

of 1.2 and 4.6 mg mL–1, whereas the flowrate is 1.5 mL min–1 for the 

experiment with a feeding concentration of 3.2 mg mL–1.  
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2.4.2 Original Design Space 

A total of 603 sampling points were used to construct the three-dimensional (3D) 

design space, as shown in Figure 2.7a. The mechanistic model requires nearly 72 hours 

to finish 603  calculations, but it is much more computationally efficient using the 

proposed framework. The time based on the surrogate model comprises two parts: the 

time to run the surrogate-based feasibility algorithm to build the kriging, and the time 

to run 603 calculations of the final kriging model. Specifically, the first part (which 

includes time of 1000 calculations on the original simulations and time of optimizing 

the EI function) takes roughly 1.7 hours, while the second part only requires 0.2 hours. 

The space with the feasibility function value less than or equal to 0 corresponds to the 

design space as described in Section 2.3.1. To clearly observe the design space, Figure 

2.7b illustrates only the feasible region of the CaptureSMB process, which is located 

within the plotted circles.  

 

Figure 2.7: a) 3D contour plot showing the whole input space; b) 3D contour plot only 

showing the feasible region.  
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In order to visualize the change of feasible region with respect to each process 

variable, it is convenient to project the 3D feasible region onto 2D subspaces. 2D 

contour plots of feasibility analysis at nine different fixed input parameters are shown 

in Figure 2.8. The blue line of each subplot is the feasible region boundary, and the area 

within the blue represents the feasible region. When 3D feasible region is projected at 

different fixed interconnected loading time in Figure 2.8a–c, it should be noticed that 

the feasible region shifts towards the bottom left corner, i.e., smaller interconnected 

flowrate 𝑄𝐼𝐶 and batch flowrate 𝑄𝐵, with the increase of 𝑡𝐼𝐶. In addition, the area of the 

feasible region that satisfies the column performance constraints first increases and then 

decreases, indicating that appropriate process variables should be selected in order to 

maintain a larger design space. The same trend can be observed with the increase of 𝑄𝐼𝐶 

(Figure 2.8d–f) or 𝑄𝐵 (Figure 2.8g–i) in the CaptureSMB case study. In order to analyze 

the reasons for this change, an active set strategy is employed. More specifically, 11 

data points are selected at the feasible boundary when 𝑡𝐼𝐶 is set at 30.3 min, followed 

by calculating each constraint function value of those data points at 𝑡𝐼𝐶 of 10.5 and 50.2 

min. If this calculated constraint function value is larger than zero, this constraint can 

be regarded as active (binding), meaning that this constraint plays an important role in 

initiating the change of the feasible region. It is found that productivity and yield 

constraints are binding with the increase of 𝑡𝐼𝐶 , while productivity and capacity 

utilization constraints are active with the decrease of 𝑡𝐼𝐶. The same conclusion can be 

achieved when we analyze the change of the feasible region with respect to the other 

two process variables (𝑄𝐼𝐶 or 𝑄𝐵). The active constraints introducing the changes of 

feasible regions are summarized in Table 2.3. It is necessary to evaluate the accuracy of 

the surrogate model, so the corresponding performance metrics of each subset plot in 
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Figure 2.8 are summarized in Table 2.4. It can be observed that all the CF% and CIF% 

values are higher than 97% (close to 100%) and NC% is smaller than 2.66% (close to 

0), indicating that the developed surrogate model can predict the feasible region with 

high accuracy.  

 

Figure 2.8: 2D projections of the 3D feasible region at different values of the process 

variables for the CaptureSMB process.  

Table 2.3: Summary of active constraints when changing process variables. 

Process variables 

(𝑡𝐼𝐶 , 𝑄𝐼𝐶 , 𝑄𝐵) 
Shift 

P 

constraint 

CU 

constraint 

Y 

constraint 

↓ ↗    

↑ ↙    
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Table 2.4: Accuracy metrics at different fixed process variables in Figure 2.8. 

2D feasible 

region 

Fixed value CF% CIF% NC% 

Fixed 𝑡𝐼𝐶 (𝑚𝑖𝑛) 

10.5 97.52 99.68 2.11 

30.3 99.04 99.43 2.29 

50.2 96.80 99.74 2.66 

Fixed 𝑄𝐼𝐶 (𝑚𝑔/
𝑚𝐿) 

0.5 99.26 99.74 1.47 

1.5 97.76 99.67 1.70 

2.5 97.61 99.81 2.53 

Fixed 𝑄𝐵 (𝑚𝑔/
𝑚𝐿) 

0.5 97.73 99.78 1.82 

1.25 98.01 99.62 1.99 

2 97.06 99.44 2.10 

 

 

An interesting phenomenon is observed at large 𝑡𝐼𝐶 as presented in Figure 2.9. 

When 𝑡𝐼𝐶 is smaller than 45.8 min (Figure 2.9a), the feasible region shifts towards the 

bottom left corner with the increase of 𝑡𝐼𝐶 to satisfy the yield constraint, which conforms 

with the above analysis. Nonetheless, when 𝑡𝐼𝐶 is close to the maximum feasible value, 

a different trend is recognized, i.e., the feasible region shrinks inwards as 𝑡𝐼𝐶 increases. 

Based on the active set strategy, Y and P constraints are active on the right feasible 

boundary, while only P constraint is binding on the left feasible boundary. The active Y 

constraint on the right boundary makes it move to the bottom left corner to prevent 

product loss, demonstrating the same trend at small 𝑡𝐼𝐶 . However, at large 𝑡𝐼𝐶 , the 

change of active constraints on the left feasible boundary from Y and P constraint to P 

constraint contributes to the opposite shrinking trend. Specifically, the left boundary 

shifts to the right to increase flowrates, thus increasing the produced sample load inside 

the column and further improving productivity.  
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Figure 2.9: 2D contour plots at different fixed tIC for the CaptureSMB process. 

2.4.3 Effect of tRR on Design Space 

Recovery and regeneration time 𝑡𝑅𝑅 is an important factor with a great impact 

on the design space. In the CaptureSMB process, 𝑡𝑅𝑅 dictates the batch loading duration 

𝑡𝐵, further influencing other process variables and column performance. Thus, the effect 

of 𝑡𝑅𝑅  on the design space of the CaptureSMB process is investigated and the 

comparison of 3D feasible regions is illustrated in Figure 2.10. The evident difference 

of 3D feasible regions can be discerned with the change of 𝑡𝑅𝑅.  

 

Figure 2.10: Comparison of 3D feasible regions at different tRR. 
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To explore this difference systematically, the extreme values of three feasible 

regions are summarized in Table 2.5. From this table, it can be noticed that the decrease 

of 𝑡𝑅𝑅  increases the area of feasible regions by 19.1%, while the increase of 𝑡𝑅𝑅 

decreases by 18.5% of the original feasible area. The reduction of 𝑡𝑅𝑅  leads to an 

increase in the extreme values of 𝑄𝐵 and 𝑡𝐼𝐶 because the decrease of 𝑡𝑅𝑅 will reduce the 

preload within the column and activate the CU constraint. To satisfy the CU constraint, 

the loaded amount of product inside the column should be increased by increasing 𝑄𝐵 

and 𝑡𝐼𝐶 . On the contrary, the growth of 𝑡𝑅𝑅  will trigger the Y constraint, thereby 

decreasing the extreme values of 𝑄𝐵  and 𝑡𝐼𝐶  to avoid product loss. maximum 𝑄𝐼𝐶  is 

unchanged at different 𝑡𝑅𝑅, possibly due to the upper bound (UB) of 𝑄𝐼𝐶.  

Table 2.5: Comparison of the extreme values of feasible regions at different tRR. 

Variable Feasible bound 
𝑡𝑅𝑅 (min) 

43 35 27 

𝑄𝐼𝐶 (mL/min) 
max 3 3 3 

min 0.1 (↓) 0.15 0.25 (↑) 

𝑄𝐵(mL/min) 
max 1.8 (↓) 2.13 2.5 (↑) 

min 0.1 0.1 0.1 

𝑡𝐼𝐶 (min) 
max 45.7 (↓) 53.5 62.3 (↑) 

min 5 (↓) 6.1 9.4 (↑) 

Size  18.5% ↓  19.1% ↑ 

 

 

To examine the change of 𝑄𝐼𝐶  concerning various 𝑡𝑅𝑅 , the UB of 𝑄𝐼𝐶  is 

increased to 4 mL/min to run the simulation and the corresponding result is displayed 

in Table 2.6. Surprisingly, maximum 𝑄𝐼𝐶 is positively correlated with the change in 𝑡𝑅𝑅, 

exhibiting an opposite trend than 𝑄𝐵  and 𝑡𝐼𝐶 . Theoretically, with the increase of 
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flowrate, the mass transfer resistance becomes larger, resulting in broadening of the 

breakthrough curves and faster breakthrough. Another hypothesis for the decrease of 

the dynamic binding capacity at large flowrates might be because part of the protein 

does not diffuse further inside the particles, making the adsorption site unable to 

effectively capture the protein. However, it should be noted that this assumption cannot 

be validated by the lumped kinetic model employed to characterize the process. Thus, 

continuously increasing 𝑄𝐼𝐶 does not necessarily increase the dynamic loading of the 

column and might have adverse effects on capacity utilization, explaining why 

maximum 𝑄𝐼𝐶  decreases when 𝑡𝑅𝑅  decreases. With the rise of 𝑡𝑅𝑅 ,  maximum 𝑄𝐼𝐶 

increases because the growth of 𝑡𝑅𝑅  improves load conditions inside the 

chromatographic column, compensating for the unfavorable effects launched by the 

large flowrates. 

To further investigate the changes caused by 𝑡𝑅𝑅, Figure 2.11 shows the 2D 

contour plots at different 𝑡𝑅𝑅 under varying fixed process variables. It can be obviously 

seen that the feasible region shifts towards the bottom left corner as 𝑡𝑅𝑅 increases and 

moves to the top right corner with the decrease of 𝑡𝑅𝑅. By employing the active set 

strategy, P and Y constraints dominate with the growth of 𝑡𝑅𝑅 , while P and CU 

constraints are effective as 𝑡𝑅𝑅  decreases, as summarized in Table 2.7, which is in 

accordance with the analysis for the change in the feasible regions under different 

process variables. 

Table 2.6: Comparison of max QIC at various tRR. 

Variable UB Feasible bound 𝑡𝑅𝑅 = 43 𝑚𝑖𝑛 𝑡𝑅𝑅 = 35 𝑚𝑖𝑛 𝑡𝑅𝑅 = 27 𝑚𝑖𝑛 

𝑄𝐼𝐶 (mL/min) 4 max 3.93 (↑) 3.41 3.21 (↓) 
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Table 2.7: Summary of active constraints when changing tRR. 

𝑡𝑅𝑅(𝑚𝑖𝑛) Shift P 

constraint 

CU 

constraint 

Y 

constraint 

↓ ↗    

↑ ↙    

 

 

 

Figure 2.11: Comparison of the 2D contour plots at different tRR under varying fixed 

process variables for the CaptureSMB process. 
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2.4.4 Effect of Constraints on Design Space 

Constraints can directly affect the design space of the CaptureSMB process, so 

the impacts of different constraints on the feasible regions are studied. We first 

investigate the effect of each constraint on the design space individually, following by 

examining the impact of changing the three constraints simultaneously. 

2.4.4.1 Yield Constraint 

To delve into the effect of yield constraint, the extreme values of three feasible 

regions at different Y constraints (0.7, 0.8, and 0.9, respectively) are listed in Table 2.8. 

When Y constraint increases from 0.8 to 0.9, the feasible region is reduced by 53.2%, 

while the feasible region increases by 70.8% with Y constraint decreasing from 0.8 to 

0.7. From Table 2.8, it can be found that the change of Y constraint has a significant 

impact on the highest 𝑄𝐵 but little effect on maximum 𝑄𝐼𝐶 because 𝑄𝐵 is closely related 

to the product loss. In the continuous CaptureSMB process, the breakthrough from the 

1st column can be caught by the 2nd column, contributing to the little impact of Y 

constraint on the highest 𝑄𝐼𝐶 . maximum 𝑡𝐼𝐶  keeps constant because this value is 

determined by productivity constraint. Besides, the change of Y constraint constitutes 

some impacts on the minimum values of process variables.   

Table 2.8: The extreme values of feasible regions at different Y constraints. 

Variable Feasible bound 𝑌 ≥ 0.7 𝑌 ≥ 0.8 𝑌 ≥ 0.9 

𝑄𝐼𝐶 (mL/min) 
max  3 3 2.95 

min  0.1 0.15 0.25 

𝑄𝐵(mL/min) 
max  2.5 2.13 1.81 

min  0.1 0.1 0.1 

𝑡𝐼𝐶 (min) 
max  53.5 53.5 53.5 

min  5 6.1 8.31 

Size   70.8% ↑ -- 53.2% ↓ 
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2D feasibility plots under different constraint are shown in Figure 2.12. The 

feasible regions with larger Y constraint values should lie in those with smaller Y 

constraint values, conforming to the 2D contour plots in Figure 2.12. As Y constraint 

increases from 0.8 to 0.9, the feasible region shrinks towards the bottom left corner to 

prevent more product loss, while the feasible region expands towards the top right 

corner when the yield constraint decreases from 0.8 to 0.7. It should be noteworthy that 

the left feasible boundary remains almost unmoved, and only the right boundary shifts 

with the change of Y constraint, indicating that only the right feasible boundary is 

governed by the Y constraint.  

 

Figure 2.12: Comparison of the 2D contour plots under different Y constraints at 

varying fixed process variables for the CaptureSMB process.  
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2.4.4.2 Capacity Utilization Constraint 

The effect of CU constraint on the design space is studied, and the comparison 

of the extreme values at different CU constraints (0.75, 0.85, and 0.95) is shown in Table 

2.9. When CU constraint increases from 0.85 to 0.95, the feasible region is reduced by 

83.4%. The highest 𝑄𝐼𝐶 is substantially reduced from 3 to 1.38 mL/min because large 

𝑄𝐼𝐶 will adversely affect the dynamic binding capacity, as we analyzed in Section 2.4.3. 

There is no change of maximum 𝑡𝐼𝐶 observed because this value is determined by P 

constraint, but a significant increase of minimum 𝑡𝐼𝐶  can be observed as large 𝑡𝐼𝐶  is 

beneficial for CU. The lowest 𝑄𝐼𝐶 and 𝑄𝐵 are both slightly increased to increase the 

sample load inside the column. As CU constraint decreases from 0.85 to 0.75, the 

feasible region increases by 48%. The highest 𝑄𝐼𝐶 stays unchanged with the decrease of 

CU constraint due to the upper limit of 𝑄𝐼𝐶, while the minimum feasible extreme values 

of 𝑡𝐼𝐶, 𝑄𝐼𝐶 and 𝑄𝐵 are determined by the corresponding lower bounds. 

Table 2.9: Comparison of the extreme values of feasible regions at different CU 

constraints. 

Variable Feasible bound 𝐶𝑈 ≥ 0.75 𝐶𝑈 ≥ 0.85 𝐶𝑈 ≥ 0.95 

𝑄𝐼𝐶 (mL/min) 
max  3 3 1.38 

min  0.1 0.15 0.4 

𝑄𝐵(mL/min) 
max  2.13 2.13 2.01 

min  0.1 0.1 0.43 

𝑡𝐼𝐶 (min) 
max  53.5 53.5 53.5 

min  5 6.1 25.9 

Size   48% ↑ -- 83.4% ↓ 

 

 

To clearly visualize the effect of CU constraints on feasible regions, Figure 2.13 

displays 9 sets of 2D feasibility plots of different CU constraints at various fixed process 
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variables. No matter CU increases from 0.75 to 0.85 or from 0.85 to 0.95, the feasible 

region of 𝐶𝑈 ≥ 0.85 or 𝐶𝑈 ≥ 0.95 is still within the feasible range of 𝐶𝑈 ≥ 0.75 or 

𝐶𝑈 ≥ 0.85. 

 

Figure 2.13: Comparison of the 2D contour plots under different CU constraints at 

varying fixed process variables for the CaptureSMB process. 

If the CU constraint increases, the feasible region shrinks towards the top right 

corner to increase the sample load, while the feasible region expands towards the bottom 
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left corner when the CU constraint decreases. It can be also observed that the right 

feasible boundary remains unmovable, and only the left feasible boundary moves, 

implying that CU constraint is active on the left feasible boundary. Given that the long 

duration of interconnected loading is advantageous for CU, the 2D feasible regions at 

fixed 𝑄𝐵  or 𝑄𝐼𝐶  are located at large 𝑡𝐼𝐶 . Compared with that at smaller 𝑡𝐼𝐶 , the 

discrepancy of feasible regions under different CU constraints is neglectable at large 

fixed 𝑡𝐼𝐶, possibly because large 𝑡𝐼𝐶 will make the column fully loaded. 

2.4.4.3 Productivity Constraint 

Table 2.10 reveals the feasible bounds at different P constraints (10, 15, and 20 

mg mL–1 h–1). With the increase of P constraint from 15 to 20 mg mL–1 h–1, the feasible 

region decreases by 51.2%, while the area increases by 31.2% when P constraint 

decreases from 15 to 10 mg mL–1 h–1. It can be noted that maximum 𝑡𝐼𝐶  decreases 

significantly with the increase of P constraint and vice versa, because short time is good 

for productivity. Based on previous analysis, CU and Y constraints are responsible for 

maximum 𝑄𝐼𝐶  and 𝑄𝐵 , respectively, so the two values remain constant when P 

constraint is changed. Minimum 𝑄𝐼𝐶 and 𝑄𝐵 both increase slightly when P constraint 

rises but remain unchanged as P constraint decreases owing to their lower bounds. 

In order to further study the changes of feasible regions introduced by P 

constraint, the comparison of 2D feasiblilty plots under different fixed process variables 

are presented in Figure 2.14. No matter P constraint increases from 10 to 15 or from 15 

to 20 mg mL–1 h–1, the changing trend is the same, i.e., the feasible regions almost 

overlap at small 𝑡𝐼𝐶 but the difference between regions becomes larger with the increase 

of 𝑡𝐼𝐶 . The occurrence of this phenomenon indicates that lower 𝑡𝐼𝐶  benefits 

productivity, which also explains why the 2D feasible regions at fixed 𝑄𝐵 or 𝑄𝐼𝐶 are 
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located at small 𝑡𝐼𝐶 values when P constraint is increased. In addition, it can be found 

that the right feasible boundary hardly changes with P constraint increasing because Y 

constraint dominates this boundary. However, the left boundary shrinks towards the top 

right corner at large 𝑡𝐼𝐶  values, indicating that the left boundary is determined by P 

constraint under this situation, in line with the analysis of the opposite trend of Figure 

2.9. Regarding the feasible regions at fixed 𝑄𝐼𝐶, the change of feasible regions when 

changing P constraints decreases as 𝑄𝐼𝐶 increases. At first, a significant difference is 

identified between the feasible regions under different P constraints, but the difference 

becomes smaller and smaller with the increase of 𝑄𝐼𝐶 . There are two possible 

explanations for this occurrence. One is that the feasible range of 𝑡𝐼𝐶 is lower at fixed 

large 𝑄𝐼𝐶 compared with small 𝑄𝐼𝐶 as  𝑡𝐼𝐶 is an extremely important factor in deciding 

productivity. Another possible reason is that larger 𝑄𝐼𝐶  can produce more products 

during the same time period, resulting in the little change of feasible regions. However, 

this phenomenon cannot be observed at fixed 𝑄𝐵 possibly because the possible range of 

𝑡𝐼𝐶 at different 𝑄𝐵 is very similar.  

Table 2.10: The extreme values of feasible regions at different P constraints. 

Variable Feasible bound 𝑃 ≥ 10 𝑃 ≥ 15 𝑃 ≥ 20 

𝑄𝐼𝐶 (mL/min) 
max  3 3 3 

min  0.1 0.15 0.3 

𝑄𝐵(mL/min) 
max  2.13 2.13 2.13 

min  0.1 0.1 0.18 

𝑡𝐼𝐶 (min) 
max  70 53.5 30.34 

min  6.1 6.1 6.1 

Size   31.2% ↑ -- 51.2% ↓ 
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To visualize the effects of each constraint on the design space in CaptureSMB 

process more clearly, Table 2.11 and Table 2.12 summarize the changes in the feasible 

region initialized by increasing or decreasing constraints, respectively. 

 

Figure 2.14: Comparison of the 2D contour plots under different P constraints at 

varying fixed process variables for the CaptureSMB process. 
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Table 2.11: Summary of design space changes with individual constraint increases. 

Constraints 
Size 

(↓) 
Shifting Feasible bounds Remark 

Y (0.8→0.9) 53.2% 

Bottom left corner 

(only right feasible 

boundary) 

Greatly decrease 

the max 𝑄𝐵 

(2.13→1.81) 

Smaller process 

variables benefit 

Y 

CU 

(0.85→0.95) 
83.4% 

Top right corner 

(only left feasible 

boundary) 

Significantly 

increase the min 

𝑡𝐼𝐶 (6.1→25.9); 

Significantly 

decrease the max 

𝑄𝐼𝐶 (3→1.38) 

Larger process 

variables benefits 

CU, especially 

larger 𝑡𝐼𝐶 

P (15→20) 51.2% 

Shrink towards 

small 𝑡𝐼𝐶; 

Top right corner at 

large fixed 𝑡𝐼𝐶 (only 

left feasible 

boundary) 

Greatly decrease 

the max  𝑡𝐼𝐶 

(53.5→30.3) 

Lower 𝑡𝐼𝐶 

benefits P; 

Larger flowrates 

benefit P at fixed 

𝑡𝐼𝐶 

 

 

Table 2.12: Summary of design space changes with individual constraint decreases. 

Constraints 
Size 

(↑) 
Shifting Feasible bounds 

Y (0.8→0.7) 70.8% 
Top right corner (only 

right feasible boundary) 

Increase the max 𝑄𝐵 

(2.13→2.5) 

CU 

(0.85→0.75) 
48% 

Bottom left corner (only 

left feasible boundary) 

No change of max 𝑄𝐼𝐶 

possibly because of the upper 

bound of 𝑄𝐼𝐶; 

Little decrease of min 𝑡𝐼𝐶 

(6.1→5) due to the lower 

bound of 𝑡𝐼𝐶 

P (15→10) 31.2% 

Expand towards large 𝑡𝐼𝐶; 

Bottom left corner at large 

fixed 𝑡𝐼𝐶 (only left feasible 

boundary) 

Significantly increase the 

max  𝑡𝐼𝐶 (53.5→70) 



 61 

2.4.4.4 Simultaneously Changing Constraints 

After examining the influence of each constraint on the design space of the 

continuous CaptureSMB process, the impact of changing all three constraints 

concurrently is investigated. The three constraints (Y, CU, and P) are increased from 

0.8 to 0.9, 0.85 to 0.9, and 15 to 17 mg mL–1 h–1, respectively, as denoted by 

‘Alternative’. Table 2.13 lists the change of extreme values under different situations 

and the corresponding binding constraints for this change calculated from the active set 

strategy, which is in agreement with the above analysis of increasing each constraint. 

Besides, when increasing three constraints simultaneously, the feasible area decreases 

by 83.3%. 

Table 2.13: Comparison of the extreme values of feasible regions when increasing 

three constraints. 

Constraints Variable 
Feasible 

bound 

Base 

case 

Alternative 

with 

different 

constraints 

Active 

constraints 

𝑌 (0.8→0.9) 
𝐶𝑈 (0.85→0.9) 

𝑃 (15→17) 

𝑄𝐼𝐶(mL/min) 
max 3 2.23 (↓) CU, Y 

min 0.15 0.39 (↑) P, CU 

𝑄𝐵(mL/min) 

max 2.13 1.77 (↓) Y 

min 0.1 0.1 
Lower 

bound 

𝑡𝐼𝐶 (min) 
max 53.5 42.46 (↓) P 

min 6.1 16.02 (↑) CU 

Size     83.3% (↓)  

 

 

Figure 2.15 displays the difference of 2D contour plots when increasing three 

constraints simultaneously. The increase in Y constraint forces the right feasible 

boundary to move toward the bottom-left corner, and CU constraint is active for shifting 
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the left boundary toward the top-right corner. Besides, lower 𝑡𝐼𝐶 favors P and higher 𝑡𝐼𝐶 

profits CU, so the shifted feasible region is located at the middle of 𝑡𝐼𝐶  due to the 

tradeoff between P and CU. 

 

Figure 2.15: Comparison of 2D contour plots for simultaneously increasing three 

constraints in the CaptureSMB process. Base: Y≥0.8, CU≥0.85, P≥15; 

Alternative: Y≥0.9, CU≥0.9, P≥17.  
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2.4.5 Effect of Design Variables on Design Space 

After studying the effects of 𝑡𝑅𝑅 and constraints on the feasible regions, we also 

explore the column length of the CaptureSMB system to see how this affects the design 

space. As seen from Table 2.14, when the column length is decreased from 10 cm to 5 

cm, the area of design space drastically decreases to 24.6%. Specifically, no change is 

observed in 𝑡𝐼𝐶, but maximum 𝑄𝐼𝐶 and 𝑄𝐵 substantially decrease due to Y constraint, 

which is reasonable because the flowrates should decrease to prevent product loss as the 

column becomes short. 

Table 2.14: Comparison of the extreme values of feasible regions at different column 

lengths. 

Variable Feasible bound 𝐿 = 10 𝑐𝑚 𝐿 = 5 𝑐𝑚 

𝑄𝐼𝐶 (mL/min) 
max  3 1.82 

min  0.15 0.1 

𝑄𝐵(mL/min) 
max  2.13 1.08 

min  0.1 0.1 

𝑡𝐼𝐶 (min) 
max  53.5 53.5 

min  6.1 6.1 

Size   -- 75.4% ↓ 

 

 

From Figure 2.16, it can be found that the feasible region shifts towards the 

bottom-left corner, possibly due to yield constraint. An active set strategy is employed 

to help evaluate the reasons for this change. It is found that yield constraint is always 

active, which confirms the analysis for this change, and P constraint is binding at large 

𝑡𝐼𝐶 . In addition, CU constraint is active at large 𝑄𝐼𝐶  because large 𝑄𝐼𝐶  will lead to 

increased mass transfer resistance and negatively affect the sample load inside the 

column, as described in Section 2.4.3. It is worth noting that when we study the same 
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shifting trend of feasible regions caused by the process variables, only Y and P 

constraints are binding, but all three constraints are binding when the column length 

decreases.  

 

Figure 2.16: Comparison of the 2D contour plots under different column length at 

varying fixed process variables for the CaptureSMB process. 
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2.5 Conclusions 

This chapter proposed a systematic approach to identify the design space of 

continuous chromatography. In an effort to balance computational complexity and 

model predictions, surrogate-based feasibility analysis with adaptive sampling is 

applied to establish the design space of twin-column CaptureSMB. The effects of 

process variables, including interconnected loading time, interconnected flowrate, and 

batch flowrate, are inspected in the design space. It was found that productivity and 

yield constraints are active with the increase of process variables while productivity and 

capacity utilization constraints are binding with the decrease of process variables. 

The effects of each constraint on the design space are also investigated, followed 

by changing three constraints simultaneously. With the increase of yield requirement, 

the left feasible boundary almost keeps unchanged and only the right boundary shifts 

towards the bottom-left corner. When CU constraint increases, the right feasible 

boundary remains the same, and only the left feasible boundary moves to the top right 

corner. The interconnected loading time 𝑡𝐼𝐶 has significant impacts on the P constraint 

and the feasible region shifts to lower 𝑡𝐼𝐶  as P constraint increases. More detailed 

analyses about the effects of constraints on the design space are directed to the 

corresponding sections. Finally, the impact of the column length was thoroughly 

studied. It is found that yield constraint is always active, forcing the feasible regions to 

shift towards the bottom left corner (or left) to avoid product loss, but productivity and 

capacity utilization constraints are only binding at large 𝑡𝐼𝐶 and large 𝑄𝐼𝐶.  

In addition to the findings above, there are some other aspects that can be 

considered using the proposed framework and will be explored in future publications. 

For example, lumped kinetic model is used to train the surrogate model, but this model 

does not consider particle diffusion inside the resin. Thus, more detailed mechanistic 
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models like the general rate model or shrinking core model will be used to investigate 

the design space of the continuous capture process. Moreover, the developed process 

model in this work does not include the simulation of elution process, which might have 

some impacts on the calculated yield and productivity. More comprehensive studies will 

be performed to simulate the elution process and investigate the purity under the multi-

component systems. Furthermore, continuous chromatography systems with different 

column numbers will be also considered and compared. Additionally, the influence of 

modeling parameters caused by different resins on the design space will be examined.  
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MACHINE LEARNING-BASED OPTIMIZATION FOR ION EXCHANGE 

CHROMATOGRAPHY 

3.1 Introduction 

Ion-exchange chromatography (IEX) serves as a crucial separation technique in 

the biopharmaceutical downstream process, particularly for the polishing steps [57, 

155]. IEX is primarily employed for the separation of charge variants through either 

stepwise or gradient elution methods [78]. This central cut process is complicated, with 

multiple factors affecting its efficiency, including pH, buffer concentration, resin 

selection, elution strategies, and product pooling [82]. Solely relying on experimental 

approaches to characterize and optimize this multivariate process can be challenging, 

potentially leading to increased time and resource demands [196, 197]. To accelerate 

process development and reduce the associated costs of conducting time- and resource-

intensive experiments, Process Systems Engineering (PSE) tools, such as model-based 

optimization, could be implemented to solve the multiparametric problem, which could 

help ensure a robust and optimal separation process [149, 198]. 

 

 

Chapter 3 is adapted from the following journal article written by the author of this 

dissertation:  

Ding, C., Ierapetritou, M., Machine learning-based optimization of a multi-step ion 

exchange chromatography for ternary protein separation. Computers & Chemical 

Engineering, 2024, 184:108642.  

Chapter 3 
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In response to the rapid advancements of artificial intelligence (AI), Industry 

4.0, and Digital Twins (DTs), and in alignment with the Quality by Design (QbD) 

initiative, there is a growing demand for gaining a more profound understanding of the 

underlying processes [12, 13, 126]. Mechanistic models, rooted in both physical laws 

and process knowledge, have been extensively applied for process characterization and 

optimization [199]. In the chromatographic procedures, mechanistic modeling primarily 

focuses on describing the solute transport within the inter- and intra-particle mobile 

phase and the adsorption process occurring in the stationary phase [74]. The general rate 

model is widely recognized as the most comprehensive one for representing mass 

transport due to its capacity to account for convection, axial dispersion, film mass 

transfer, and pore diffusion. In the context of the adsorption within IEX systems, the 

steric mass action (SMA) model is notably adopted and outstands in capturing salt-

dependent effects [78]. For example, to leverage the potential of mechanistic modeling, 

Cebulla et al. [93] applied model-based approach to optimize the IEX process for 

isolating a fragment from human serum albumin. The resulting optimal operating 

conditions were shown to yield higher purity, reduced processing time, and decreased 

buffer consumption in comparison to the original experimental procedures.  

However, as these mechanistic models evolve to incorporate more precise 

representations of process dynamics, the corresponding computational complexity also 

increases [189]. Consequently, it can become inefficient and time-consuming to solve 

such complex problems with traditional optimization approaches. To address this 

challenge, machine learning (ML)-based strategies have emerged as a promising 

alternative to balance the computational burden and model accuracy [137, 200, 201]. In 

our previously published work [89], surrogate-based feasibility analysis was proposed 
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in order to identify the design space of twin-column continuous chromatography. 

Feasibility analysis could help find design space that represents the operational ranges 

ensuring product quality. To enhance the efficiency of solving the computationally 

expensive simulations involved in feasibility analysis, a surrogate model was utilized to 

represent the mechanistic model and this approach yielded a substantial 36-fold 

reduction in computational time. Our work was based on the direct design approach for 

the identification of the design space, but it is noteworthy that the inverse design, also 

referred to as the inverse problem, has also gained popularity in the field of natural 

sciences and engineering [202]. Although this framework could be directly extended to 

address the constrained optimization problems, it is crucial to recognize that in that case, 

the feasibility analysis and the objective function would go through different training 

phases, potentially leading to an increased sampling budget. If using the separate 

training strategies, the sampling effort might be directed toward the feasible region with 

large objective values for the feasibility analysis or the infeasible region with small 

objective values for the optimization part. To address this challenge, we have introduced 

a surrogate-based optimization methodology coupled with feasibility analysis [60] to 

effectively address optimization challenges within the constraints of operational and 

quality requirements in IEX processes. 

In this work, the ML-based optimization framework was applied to a case study 

focused on optimizing a multicomponent separation process involving ribonuclease, 

cytochrome and lysozyme. This case study, adapted and modified from a previous 

publication [90], aimed to maximize productivity while adhering to operational and 

quality constraints. To achieve this, Gaussian process regression models (GPR) models 

were constructed to approximate both the objective function and the constraints by using 
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data generated from the mechanistic model. To reduce the sampling budget, the 

optimization framework was divided into feasibility and optimization stages, each 

incorporating an adaptive sampling strategy. The optimal operating conditions, 

constraints, objective values, and required simulation time obtained through our ML-

based approach were compared to those obtained by directly applying traditional 

optimization algorithms, such as genetic algorithms (ga) using the mechanistic model. 

Moreover, the effects of peak cutting criteria on the optimization results and active 

constraint were investigated, and a detailed analysis of the process’ design space at the 

optimal solution was performed. 

3.2 Materials and Methods 

3.2.1 Case Study 

The investigation into the separation of a protein mixture, encompassing 

ribonuclease (RNase), cytochrome (cyt), and lysozyme (lyz), is pursued as a case study, 

as it is a prototype and benchmark example employed in the academic modeling [84, 

90, 91, 198, 203-205]. The separation process is achieved through the use of cation-

exchange columns (CEX) packed with SP Sepharose FF beads, with sodium chloride 

playing a crucial role in modifying the protein affinities. When modeling the isolation 

process, the central component (cyt) is the protein of interest, with the other two 

components considered as impurities. The parameters associated with column 

geometry, mass transport and binding behaviors of the three proteins for modeling are 

obtained from He et al. [90], which are listed in Table 3.1. 
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Table 3.1: Parameters related to column geometry, mass transport, and binding 

behavior of the proteins (i ∈ {RNase, cyt, lyz}) applied in the mechanistic 

model. 

Catalog Symbol Description Value Unit 

Column 

geometry 

𝐿 Column length 1.4E-2 𝑚 

𝑑 Column diameter 1E-2 𝑚 

𝑟𝑝 Particle radius 4.50E-5 𝑚 

𝜀𝑐 Column porosity 0.37  

𝜀𝑝 Particle porosity 0.75  

Mass 

transport 

𝐷𝑎,𝑥 Axial dispersion 5.75E-8 𝑚2𝑠−1 

𝑘𝑓,𝑖 Film mass transfer 6.90E-6 𝑚𝑠−1 

𝐷𝑝,𝑖 Pore diffusion 6.07E-11 𝑚2𝑠−1 

Isotherm 

Λ Ionic capacity 1200 𝑚𝑜𝑙 𝑚−3 

𝑘𝑎,𝑖 Adsorption coefficients [7.70, 1.59, 35.5] 𝑠−1 

𝑘𝑑,𝑖 Desorption coefficients [1000, 1000, 1000] 𝑠−1 

𝜈𝑖 Characteristic charges [3.70, 5.29, 4.70]  

𝜎𝑖 Steric factors [10.0, 10.6, 11.83]  

𝑐𝑟𝑒𝑓 
Reference salt 

concentration in the 

particle liquid phase  

Maximum inlet salt 

concentration 
𝑚𝑜𝑙 𝑚−3 

𝑞𝑟𝑒𝑓 
Reference salt 

concentration in the 

particle solid phase  

1200 (Equal to 

ionic capacity Λ) 
𝑚𝑜𝑙 𝑚−3 

 

 

The operation protocol for the CEX column is also taken from [90], as shown in 

Figure 3.1. Specifically, the column is first equilibrated with the protein-free running 

buffer with an initial salt concentration of 50 𝑚𝑜𝑙 𝑚−3. Subsequently, the column is 

loaded for a duration of 10 seconds at a constant ionic strength of 50 𝑚𝑜𝑙 𝑚−3, with 

lysozyme, cytochrome, and ribonuclease each at concentrations of 1 𝑚𝑜𝑙 𝑚−3 .  

Following the loading step, a 50-second washing phase is carried out at the same ionic 

strength. In the elution stage, multi-step gradient elution strategies are implemented, 

encompassing two linear gradient elutions with different time intervals (∆𝑡1, ∆𝑡2) and 
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various slopes (𝑚1, 𝑚2), along with one isocratic step at a constant salt concentration 

(𝑐𝑖𝑛𝑖𝑡0 + 𝑚1∆𝑡1 + 𝑚2∆𝑡2). The final step, which would typically involve the recovery 

and regeneration phase, is omitted during the modeling process and thus not depicted in 

Figure 3.1.  

 

Figure 3.1: Operating protocols for the CEX considered in the modeling. Elu1, Elu2, 

and Elu3 correspond to the multistep elution strategies. 𝑚1  and 𝑚2 

represent the slopes for the first two linear elution phases; ∆𝑡1and ∆𝑡2 

denote the time intervals corresponding to those elution phases; 𝑐𝑖𝑛𝑖𝑡0 

refers to the initial salt concentration at the beginning of the elution 

process. 

3.2.2 Mechanistic Model 

The mechanistic model should be formulated to describe the mass transport of 

the mobile phase and the adsorption phenomena of the stationary phase. The General 

Rate Model is selected for its ability to accommodate various levels of mass transfer 

resistance. As for the binding behavior inside IEX process, the Steric Mass Action 
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isotherm is employed as it accounts for the salt concentration, molecule charges and 

steric hindrance. 

3.2.2.1 General Rate Model 

The general rate model was applied in the exact form as implemented within the 

Chromatography Analysis and Design Toolkit (CADET) [96], as illustrated in 

Equations 3.1-3.2.  

 
𝜕𝑐𝑖

𝜕𝑡
= −𝑢

𝜕𝑐𝑖

𝜕𝑧
+ 𝐷𝑎𝑥

𝜕2𝑐𝑖

𝜕𝑧2
−

1−𝜀𝑐

𝜀𝑐

3

𝑟𝑝
𝑘𝑓,𝑖(𝑐𝑖 − 𝑐𝑝,𝑖(∙,∙, 𝑟𝑝)) 3.1 

 
𝜕𝑐𝑝,𝑖

𝜕𝑡
= 𝐷𝑝,𝑖 (

𝜕2𝑐𝑝,𝑖

𝜕𝑟2 +
2

𝑟

𝜕𝑐𝑝,𝑖

𝜕𝑟
) −

1−𝜀𝑝

𝜀𝑝

𝜕𝑞𝑖

𝜕𝑡
 3.2 

where 𝑐𝑖, 𝑐𝑝,𝑖 and 𝑞𝑖 correspond to the concentration of 𝑖𝑡ℎ component in the interstitial, 

stagnant and stationary phases. Four components are taken into consideration during the 

simulation, with 𝑖 values ranging from 0 to 3, representing the salt ions, Rnase, cyt, and 

lyz; respectively. The variables 𝑡, 𝑧 and 𝑟 represent the time coordinate, axial position 

along the column direction, and the radial position along the particle radius; 𝑢 denotes 

the superficial velocity, while 𝜀𝑐 and 𝜀𝑝 are the column porosity and particle porosity; 

𝐷𝑎𝑥 , 𝑘𝑓,𝑖 , and 𝐷𝑝,𝑖  represent axial dispersion, film mass transfer and pore diffusion 

coefficient of 𝑖𝑡ℎ component.  

The Danckwerts’ boundary conditions are implemented at the column inlet and 

outlet in Equations 3.3–3.4, along with the specified boundary conditions for the beads 

outlined in Equations 3.5–3.6 [206].  

 𝑢 𝑐𝑖𝑛,𝑖(𝑡) = 𝑢 𝑐𝑖(𝑡, 0) − 𝐷𝑎𝑥  
𝜕𝑐𝑖

𝜕𝑧
(𝑡, 0) 3.3 

 
𝜕𝑐𝑖

𝜕𝑧
(𝑡, 𝐿) = 0 3.4 

 𝜀𝑝𝐷𝑝,𝑖
𝜕𝑐𝑝,𝑖

𝜕𝑟2 ((∙,∙, 𝑟𝑝) = 𝑘𝑓,𝑖(𝑐𝑖 − 𝑐𝑝,𝑖(∙,∙, 𝑟𝑝)) 3.5 
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𝜕𝑐𝑝,𝑖

𝜕𝑟2
(∙ ,∙ ,0) = 0 3.6 

where 𝑐𝑖𝑛,𝑖(𝑡) is the time-dependent inlet concentration of the 𝑖𝑡ℎ component; 𝐿 and 𝑟𝑝 

represent the column length and the particle radius; respectively.  

3.2.2.2 Steric Mass Action 

Steric mass action was also implemented within CADET as shown in Equation 

3.7 [206].  

 
𝜕𝑞𝑖

𝜕𝑡
= 𝑘𝑎,𝑖𝑐𝑝,𝑖 (

�̅�0

𝑞𝑟𝑒𝑓
)

𝜈𝑖

− 𝑘𝑑,𝑖𝑞𝑖 (
𝑐𝑝,0

𝑐𝑟𝑒𝑓
)

𝜈𝑖

 3.7 

where 𝑐𝑟𝑒𝑓 and 𝑞𝑟𝑒𝑓 are the reference salt concentrations in the liquid and solid phases 

inside the beads, which are primarily utilized for the purpose of normalizing adsorption 

and desorption rates; for 𝑖𝑡ℎ  component, 𝑘𝑎,𝑖  and 𝑘𝑑,𝑖  denote the adsorption and 

desorption coefficients, while 𝜈𝑖  is the characteristic charge;  �̅�0  is the number of 

available binding sites, which can calculated from the number of bound counter ions 𝑞0 

by considering steric shielding, as depicted in Equation 3.8.  

 �̅�0 = Λ − ∑ (𝜈𝑗 + 𝜎𝑗)𝑞𝑗
𝑁𝑐𝑜𝑚𝑝−1

𝑗=1
= 𝑞0 − ∑ 𝜎𝑗𝑞𝑗

𝑁𝑐𝑜𝑚𝑝−1

𝑗=1
 3.8 

where 𝑞0  could be derived from an electro-neutrality condition, as described in 

Equation 3.9; 𝜎𝑗  is the steric factor of 𝑖𝑡ℎ component, and Λ is the ionic capacity for the 

CEX resin. The total number of components, denoted as 𝑁𝑐𝑜𝑚𝑝, should be 4 in this case 

study.  

 𝑞0 = Λ − ∑ 𝜐𝑗𝑞𝑗
𝑁𝑐𝑜𝑚𝑝−1

𝑗=1
 3.9 

For a more comprehensive understanding of the SMA model, publication [206] 

should be reviewed. The detailed description and corresponding values of all parameters 

related to column geometry, mass transport, and binding behavior of the proteins are 

summarized in Table 3.1.  
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3.2.3 Problem Statement 

Productivity, yield, and purity are critical indicators for assessing the 

chromatographic column performance. The calculation of these metrics follows the 

methodology outlined in [90]. All three metrics are calculated within the pooling time 

interval 𝑡𝑝, starting at time 𝜏. In this work, peak cutting for pooling is defined by setting 

the percentage of target protein concentration at the column outlet to a fixed threshold 

of 75%. While it is evident that the criteria for peak cutting can exert a substantial 

influence on the performance indicators of the column, it is noteworthy that this factor 

is not considered a decision variable in the optimization problem. Instead, various 

scenarios under different percentage thresholds are investigated to enhance our 

comprehension of the underlying process. 

The productivity of cytochrome (𝑃𝑟𝑐𝑦𝑡 ) is defined as the quantity of target 

protein produced per pooling time interval and per unit resin volume, as illustrated in 

Equation 3.10. The yield (𝑌𝑐𝑦𝑡) is determined by the withdrawn target product in relation 

to the corresponding feed mass, which can be calculated in Equation 3.11. The purity 

(𝑃𝑢𝑐𝑦𝑡 ) is defined as the ratio of the collected target protein (cytochrome) to the 

cumulative sum of the three protein components during the pooling interval, as 

expressed in Equation 3.12. 

 𝑃𝑟𝑐𝑦𝑡 =
𝑄 ∫ 𝑐𝑐𝑦𝑡(𝑡,𝐿)𝑑𝑡

𝜏+𝑡𝑝
𝜏

𝑡𝑝(1−𝜀𝑐)𝑉𝑐
 3.10 

 𝑌𝑐𝑦𝑡 =
∫ 𝑐𝑐𝑦𝑡(𝑡,𝐿)𝑑𝑡

𝜏+𝑡𝑝
𝜏

𝑡𝑙𝑜𝑎𝑑𝑐𝑖𝑛,𝑐𝑦𝑡
 3.11 

 𝑃𝑢𝑐𝑦𝑡 =
∫ 𝑐𝑐𝑦𝑡(𝑡,𝐿)𝑑𝑡

𝜏+𝑡𝑝
𝜏

∑ ∫ 𝑐𝑖(𝑡,𝐿)𝑑𝑡
𝜏+𝑡𝑝

𝜏
𝑖=3
𝑖=1

 3.12 

where 𝑄 denotes the volumetric flowrate; 𝑉𝑐 stands for the column volume; and 𝑡𝑙𝑜𝑎𝑑 

represents the loading time.  
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 min − 𝑃𝑟𝑐𝑦𝑡 (𝑥) 3.13 

 𝑠. 𝑡.  𝑃𝑢𝑐𝑦𝑡 (𝑥) ≥ 90% 3.14 

 𝑌𝑐𝑦𝑡(𝑥) ≥ 80% 3.15 

 𝑐𝑠𝑎𝑙𝑡(𝑥) ≤ 1 𝑀 3.16 

 𝑥𝑙𝑏 ≤ 𝑥 ≤ 𝑥𝑢𝑏 3.17 

In this study, productivity is selected as the performance variable for 

optimization, while the other two metrics (yield and purity) are required to meet certain 

predefined criteria. The goal of maximizing productivity is achieved by adjusting the 

multi-step elution strategies, as detailed in Section 3.2.1, where a total of 5 decision 

variables (𝑥 = {∆𝑡1, ∆𝑡2, 𝑚1, 𝑚2, 𝑐𝑖𝑛𝑖𝑡0 }) are presented. The overall optimization 

formulation problem with constraints can be found in Equations 3.13 – 3.17. The target 

values for purity and yield are considered to be 90% and 80%; respectively. It should 

be noted that these values are user-defined and can be adjusted according to specific 

requirements. Furthermore, it is essential to ensure that the salt concentration 𝑐𝑠𝑎𝑙𝑡 does 

not surpass 1 M during the elution process, aligning with practical applications. The 

lower and upper bounds of the decision variables in this optimization case study are 

summarized in Table 3.2, with reference to He et al. [90]. The upper bounds for certain 

variables (∆𝑡1, ∆𝑡2, and 𝑚2) are adjusted to smaller values. This adjustment is applied 

to 𝑚2 to ensure the satisfaction of the salt contraint. It has been also observed that 

optimizing with large values for ∆𝑡1 and ∆𝑡2 does not yield any benefits, as indicated 

by the optimization results. A total process time of 15,000 s was adopted in the 

simulation to guarantee the comprehensive evaluation of different scenarios throughout 

the optimization process.  
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Table 3.2: Lower (lb) and upper bounds (ub) of decision variables in optimization 

case study. 

Symbol Description lb ub Unit  

∆𝑡1 
Time interval for the 1st 

linear elution 
500 1000 𝑠 

∆𝑡2 
Time interval for the 2nd 

linear elution 
1000 5000 𝑠 

𝑚1 
Slope for the 1st linear 

elution 
1.0 × 10−3 1.0 × 10−2 𝑚𝑜𝑙 𝑚−3 𝑠−1 

𝑚2 
Slope for the 2nd linear 

elution 
1.0 × 10−3 1.0 𝑚𝑜𝑙 𝑚−3 𝑠−1 

𝑐𝑖𝑛𝑖𝑡0 
Initial salt concentration 

of elution 
20 200 𝑚𝑜𝑙 𝑚−3 

 

 

3.2.4 Optimization Framework 

Model-based optimization facilitates the determination of optimal operating 

conditions, leading to a reduction in experimental efforts and advancements in process 

development [56]. Instead of employing mechanistic model, this study introduces a 

methodology that incorporates machine learning to enhance the optimization process, 

aiming to efficiently maximize the productivity of the IEX separation process. In this 

context, Gaussian Process Regression (GPR) model (also known as Kriging) is 

employed as a surrogate for the complicated mechanistic model [89]. 

The aforementioned optimization problem is characterized by multiple 

constraints, which would lead to multiple surrogates being required to represent each 

constraint individually. Consequently, a feasibility function in Equation 3.18, derived 

from feasibility analysis, is utilized to integrate all constraints, requiring only one GPR 

model to represent the entire feasible region [207]. Coupling with adaptive sampling 
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technique, it becomes feasible to reduce the sampling budget while maintaining a high 

level of accuracy in constructing the surrogate model [195].  

 𝜓(𝑥) = max
𝑗∈𝐽

{𝑓𝑗(𝑥)} 3.18 

where 𝑥, 𝑓𝑗(𝑥), 𝜓(𝑥) represent the operating variables, the 𝑗𝑡ℎ constraint function, and 

the feasibility function, respectively. Regions where 𝜓(𝑥) is less than or equal to 0 are 

regarded as the design space or feasible region of the defined process.  

Τhe initial GPR model is established using the initial sampling points generated 

from a space-filling design of experiment (DOE). Following this, an infill criterion 

guides the identification of the next sampling point with either high uncertainty or a low 

objective value, thereby saving the need for exhaustive sampling [208]. One of the 

frequently used infill criteria is the expected improvement (EI) function, as represented 

in Equation 3.19, which effectively balances the exploration and exploitation at the 

adaptive sampling phase. This iterative process continues until a predetermined 

stopping criterion is satisfied, enabling the utilization of the final accurate GPR model. 

This approach is also commonly recognized as Bayesian optimization [209]. 

 𝐸𝐼(𝑥) = (𝑓𝑚𝑖𝑛 − �̂�)Φ (
𝑓𝑚𝑖𝑛−�̂�

�̂�
) + �̂�𝜙 (

𝑓𝑚𝑖𝑛−�̂�

�̂�
) 3.19 

where �̂�  and �̂�  are the predicted GPR value and standard deviation at the point 𝑥 , 

respectively; Φ  and 𝜙  denote normal cumulative distribution function (CDF), and 

probability distribution function (PDF).  

In addressing the constrained optimization case study, the Bayesian optimization 

framework can be directly applied to substitute both the objective function and 

feasibility function separately. Nevertheless, this method might inadvertently result in 

an increased sampling requirement. During the construction of the GPR model to 

characterize the feasible region formed by constraints, the search may be directed 
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toward the feasible region but with high objective values (in the context of a 

minimization problem). Conversely, when building the GPR for the objective, efforts 

may be focused on the region characterized by low objective values but within the 

infeasible region.  

To mitigate this issue, the EI function for the constraints 𝐸𝐼𝑓𝑒𝑎𝑠(𝑥) in Equation 

3.20 is penalized to account for the influence of the objective function value [210]. This 

is accomplished by multiplying 𝐸𝐼𝑓𝑒𝑎𝑠(𝑥) with the probability that the next sample 

point would yield an objective value 𝑓(𝑥) better than current optimum solution 𝑓𝑚𝑖𝑛, as 

illustrated in Equation 3.21. It is worth mentioning that the EI function for the feasibility 

analysis 𝐸𝐼𝑓𝑒𝑎𝑠(𝑥) is modified and derived based on Equation (3.19), with the objective 

of achieving a balance in sampling between regions that have not been adequately 

explored and regions where the probability of the predictor being equal to zero is 

maximized [211]. Τhe EI for the objective 𝐸𝐼𝑜𝑏𝑗(𝑥) in Equation 3.22 is penalized to 

restrict the search within the feasible region, as expressed in Equation 3.23. This strategy 

is similarly applied by incorporating the probability of constraints being satisfied.  

 𝐸𝐼𝑓𝑒𝑎𝑠(𝑥) = �̂�𝑓𝑒𝑎𝑠𝜙 (−
�̂�𝑓𝑒𝑎𝑠

𝑥
) = �̂�𝑓𝑒𝑎𝑠 ⋅

1

√2𝜋
exp (−

0.5�̂�𝑓𝑒𝑎𝑠
2

�̂�𝑓𝑒𝑎𝑠
2 ) 3.20 

 𝐸𝐼𝑓𝑒𝑎𝑠
𝑝 (𝑥) = 𝐸𝐼𝑓𝑒𝑎𝑠(𝑥)𝑃[𝑓(𝑥) ≤ 𝑓𝑚𝑖𝑛] = 𝐸𝐼𝑓𝑒𝑎𝑠(𝑥)Φ (

𝑓𝑚𝑖𝑛−�̂�𝑜𝑏𝑗

�̂�𝑜𝑏𝑗
) 3.21 

where �̂�𝑓𝑒𝑎𝑠  and �̂�𝑓𝑒𝑎𝑠  represent the GPR predictor for feasibility function and the 

corresponding uncertainty at the point 𝑥, respectively.  

 𝐸𝐼𝑜𝑏𝑗(𝑥) = (𝑓𝑚𝑖𝑛 − �̂�𝑜𝑏𝑗) ∙ Φ (
𝑓𝑚𝑖𝑛−�̂�𝑜𝑏𝑗

�̂�𝑜𝑏𝑗
) + �̂�𝑜𝑏𝑗 ∙ 𝜙 (

𝑓𝑚𝑖𝑛−�̂�𝑜𝑏𝑗

�̂�𝑜𝑏𝑗
) 3.22 

 𝐸𝐼𝑜𝑏𝑗
𝑝 (𝑥) = 𝐸𝐼𝑜𝑏𝑗(𝑥)𝑃[𝜓(𝑥) ≤ 0] = 𝐸𝐼𝑜𝑏𝑗(𝑥)Φ ((0 −

�̂�𝑓𝑒𝑎𝑠(𝑥)

�̂�𝑓𝑒𝑎𝑠(𝑥)
)) 3.23 
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where �̂�𝑜𝑏𝑗 and �̂�𝑜𝑏𝑗 are the GPR predictor and uncertainty for the objective function at 

the point 𝑥; 𝜓(𝑥) ≤ 0 defines the feasible region.  

Moreover, the entire optimization process is divided into two stages: the 

feasibility stage and the optimization stage, as depicted in Figure 3.2. Generally 

speaking, the proposed framework starts with the feasibility stage, where the primary 

focus is on accurately identifying the feasible regions with small objective values. Upon 

meeting the stopping criteria for this stage, the algorithm transitions to the optimization 

stage to explore optimum points within the previously identified feasible region. 

Different stopping criteria are utilized and compared based on the computational time. 

The first criterion is determined solely by the maximum iteration number, while the 

second criterion is more advanced, taking into account not only the maximum iterations 

but also considering improvements in the 𝐸𝐼𝑓𝑒𝑎𝑠
𝑝

 and the objective function. Throughout 

these stages, the GPR models for the objective and feasibility function are continuously 

updated, and the optimal solution is returned from the final refined GPR models.   

 

Figure 3.2: Proposed machine-learning (ML) based optimization framework. 
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In order to showcase the efficiency of the framework, we employed the 

commonly used global optimization solver, genetic algorithm (ga), to solve the case 

study for a comparative analysis. The function and constraint tolerances for ga were 

configured at 1 × 10−9  and 1 × 10−6 , respectively, to enhance the precision of the 

optimal results. All other options for ga were maintained at their default settings. The 

mechanistic model was solved using CADET, an open-source software available at 

https://github.com/modsim/CADET. To solve the coupled PDE equations, the axial 

column dimension was divided into 100 cells, while the radial bead was discretized into 

20 cells. The Gaussian Process Regression model was developed using the DACE 

toolbox [194] built-in MATLAB. In the case of the feasibility function, an exponential 

correlation model was employed, with the hyperparameter being 0.1984. Regarding the 

objective function, a linear correlation model was selected with the hyperparameter 

being 0.3150. All the simulations were executed in MATLAB R2019b on Intel® Xeno® 

E-2274G CPU with 32.0 GB RAM.  

3.3 Results and Discussion 

3.3.1 Comparison of Optimization Results 

3.3.1.1 Optimization Results using ga 

To establish a baseline scenario for comparison, genetic algorithm (ga) was 

chosen to solve the constrained optimization problem, with the aim of identifying 

optimal elution strategies that maximize productivity while satisfying both the quality 

and operational constraints. Using ga, the optimized decision variables, objective value, 

column performance constraints, and simulation duration are summarized in Table 3.3. 

The optimization using pre-defined tolerances and computer settings as stated in the 

https://github.com/modsim/CADET
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previous section, required approximately 125.5 hours, yielding maximum productivity 

of 3.59 × 10−3 𝑚𝑜𝑙 𝑚−3 𝑠−1. The obtained yield and purity are 81.45% and 92.12%; 

respectively, meeting the specified constraints. The full and enlarged elution behavior 

of three proteins under this strategy is illustrated in Figures 3.3a and 3.3c, with the gray 

area representing the pooling interval. It could be clearly observed that the isocratic 

elution does not contribute to the separation and could be removed in practical 

experiments. It is worth noting that within the context of this case study, a higher 

number of elution steps does not necessarily result in a more favorable outcome. This 

observation suggests that the utilization of modeling and optimization can mitigate 

redundant experimental efforts and enhance our understanding of the underlying 

process.  

Table 3.3: Optimized operating conditions and objectives using ga and ML-based 

framework. 

Optimized operating conditions 

Approach ∆𝑡1 (s) ∆𝑡2 (s) 𝑚1 𝑚2 
𝑐𝑖𝑛𝑖𝑡0 

(𝑚𝑜𝑙 𝑚−3) 

ga 4.83× 103 2.01× 103 2.2 × 10−3 4.60× 10−1 51.5 

ML-based 

Framework 
2.90× 103 1.00× 103 5.3 × 10−3 8.83× 10−1 65.0 

Column performance metrics 

Approach Yield (%) Purity (%) 
Productivity 

(𝑚𝑜𝑙 𝑚−3 𝑠−1) 

Simulation time 

(hrs) 

ga 81.45 92.12 3.59 × 10−3 ~125.5 

ML-based 

Framework 
80.46 91.27 5.41 × 10−3 ~36.7 
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Figure 3.3: The full chromatograms at the optimized operating conditions obtained 

from ga (a) and the ML-based framework (b), with enlarged plots 

displayed in (c) and (d), respectively. 

3.3.1.2 Optimization Results using ML-based Framework 

To reduce the computational complexity and simplify the model, the ML-based 

framework was proposed and applied in the case study for the purification of ternary 

protein components. Specifically, 2000 points were sampled using Latin Hypercube 

Sampling (LHS) for the initial development of GPR models, followed by 500 iterations 

in the feasibility and optimization stages to improve the GPR models. In this work, a 

large number of sampling points were used to train the surrogate models to ensure the 

surrogate accuracy and optimization results. However, in real-case scenarios when the 



 84 

process understanding is limited or unavailable, a promising approach is the use of 

hybrid modeling. In these cases, a neural network (NN) or different machine learning 

methods could be employed to represent the missing knowledge, followed by 

combining this NN with mechanistic model built on the available process understanding 

[199]. On the other hand, when no first principles models are available, physics-

informed neural networks, by incorporating knowledge from physical laws or principles 

during the training process, could be utilized [139].  

The detailed optimization results and corresponding chromatograms are 

illustrated in Table 3.3 and Figure 3.3b. It should be pointed out that the productivity 

achieved through the proposed framework is 5.41 × 10−3 𝑚𝑜𝑙 𝑚−3 𝑠−1, demonstrating 

a 50.1% improvement compared to that obtained using ga. Furthermore, the simulation 

time for the ML-based framework was only 36.7 hours, which is 29% of the time 

required by ga. Under the optimized conditions, the corresponding yield and purity are 

80.46% and 91.27%; respectively. As the obtained yield approaches the boundary 

constraint (80%), it is important to note that the yield constraint is active under the 

current defined peak cutting criterion (75%). In contrast, the yield obtained from ga 

(81.45%) is not near the boundary, suggesting that the optimized results might be 

suboptimal. Although the simulation ends at 15,000 s, the total process time for the 

specified operating condition is defined as the duration until all the proteins are 

completely eluted from the column. It should be mentioned that although the multi-step 

(bilinear + isocratic) elution strategies are employed to maximize productivity, the final 

isocratic step does not yield any advantage in the separation process. This phenomenon 

could be attributed to the purity requirement, as will be discussed later. When analyzing 

the optimized elution behaviors using the two approaches, it is evident that the total 
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processing time to complete the separation process using the ML-enhanced framework 

(~3,600 s) is significantly shorter than that required by ga (~ 6,000 s).  

From Figure 3.3 and Table 3.3, it is obvious that the first slope ( 𝑚1 ) is 

considerably smaller in comparison to the second slope (𝑚2) at the optimal solutions. 

In order to assess the potential impact of the initial linear elution step on the optimization 

results, the chromatograms after the removal of the first linear step are simulated based 

on the optimal operating conditions for the base case study, as illustrated in Figure 3.4. 

The comparison of the column performances obtained using the multi-step and single 

linear step strategies is provided in Table 3.4. It can be observed that the obtained purity 

and yield significantly decrease after removing the initial linear gradient elution step. 

This observation strongly indicates that the first elution step plays a crucial role in 

influencing the performance of the column.  

 

Figure 3.4: The new chromatograms generated after the removal of the first linear 

elution step at the optimal operating conditions obtained from ga (a) and 

the ML-based framework (b). 
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Table 3.4: Comparison of obtained yield and purity using multi-step and single linear 

elution strategies at the optimal operating conditions. 

Optimization approach Elution strategies Yield (%) Purity (%) 

ga 
Multi-step 81.45 92.12 

Single linear 67.41 88.45 

ML-based Framework 
Multi-step 80.46 91.27 

Single linear 46.28 82.70 

 

 

To further investigate the impact of the first step on the elution profiles, various 

slope values were selected to simulate the chromatograms, as depicted in Figure 3.5. 

For additional quantitative analysis, the area under the curve for the impurity 

Ribonuclease at different elution steps is calculated and provided in Table 3.5. It is 

noticeable that with increasing values of the first slope, the eluted amount of 

Ribonuclease during this step increases, reflected by a rise in its area under the curve. 

As more impurity Ribonuclease is eluted out from the column during the initial step, an 

increase in the obtained purity and yield is observed.  

 

Figure 3.5: Different simulated chromatograms at different selected slope values for 

the first linear elution step. 
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Figure 3.6: Comparison of the obtained chromatogram at the optimal solution for the 

multi-step and single step case study. 

Table 3.5: Comparison of yield, purity, and area under the curve of Ribonuclease at 

various slope values.  

𝑚1 

(𝑚𝑜𝑙 𝑚−3 𝑠−1) 

Yield 

(%) 

Purity 

(%) 

Area under the curve of Ribonuclease 

(𝑚𝑜𝑙 𝑚−3 𝑠) 

1st linear gradient 

elution 

2nd linear gradient 

elution 

1 × 10−3 75.11 89.56 5.05 4.95 

5.3 × 10−3 80.46 91.27 7.45 2.55 

1 × 10−2 84.81 93.02 9.28 0.72 

 

 

To provide further insights into the step elution strategies, an updated case study 

using only a single linear elution step was evaluated using the ML-based framework. 

This study also introduced the constraint for total processing time and incorporated peak 

cutting as a decision variable. It is found that the optimized productivity would decrease 

significantly from 5.41 × 10−3  to 2.16 × 10−3  𝑚𝑜𝑙 𝑚−3 𝑠−1  if multi-step elution 

strategies are simplified to a single linear gradient elution, as displayed in Figure 3.6. 

These results align well with our previous analyses, indicating that the first linear elution 
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step can have a significant impact on both purity and yield, consequently affecting the 

overall productivity.  

In the optimization problem statement for the base case, where purity and yield 

requirements are set at 90% and 80%, respectively, the final isocratic elution stage does 

not contribute to the separation process, as previously mentioned. This may be attributed 

to the relatively low purity requirement. To explore the influence of purity constraints 

on the elution strategies, the purity requirement is raised to 95%, along with the decrease 

of yield requirement to 65% in order to ensure feasibility. All other process conditions 

remain unchanged, and the ML-based optimization framework is used. The obtained 

optimal chromatogram can be found in Figure 3.7. Given a higher purity specification, 

the slope value for the second gradient elution step (0.024) decreases remarkably, 

compared with the value (0.883) observed at a 90% purity requirement. In this scenario, 

the two linear gradient elution strategy targets the elution of the first impurity 

(Ribonuclease), and the final isocratic elution stage is crucial in separating the target 

protein (Cytochrome) and the additional impurity (Lysozyme). This result is consistent 

with the finding reported in [90]. From Figure 3.7b, it could be found that the separation 

is not completed when the total processing time is 15,000 s. However, it is important to 

note that this example serves primarily to investigate the impact of purity requirements 

on optimized elution strategies. If further exploration is desired with a higher purity 

criterion, additional adjustments can be made. For instance, increasing the peak cutting 

threshold and introducing constraints on eluted protein concentrations below a specified 

tolerance concentration, as detailed in the single elution case study previously. 
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Figure 3.7: Comparison of the obtained optimal chromatograms under different purity 

and yield requirements: (a) Purity requirement of 90% and yield 

requirement of 80%; (b) Purity requirement of 95% and yield requirement 

of 65%. 

To improve the efficiency of the ML-based framework, a more intelligent 

stopping criterion has been implemented and evaluated instead of solely relying on the 

maximal number of iterations. During the feasibility stage, the stopping criteria are 

defined by either reaching the maximum number of iterations (500) or achieving a low 

average of expected improvement for every 10 consecutive iterations ( 1 × 10−2 ). 

Similarly, for the optimization stage, the stopping criteria are defined by either reaching 

the maximum number of iterations (500) or observing a low improvement in the 

objective function value every 10 iterations (1 × 10−6). Under the updated stopping 

criterion, the optimized productivity reaches 5.21 × 10−3 𝑚𝑜𝑙 𝑚−3 𝑠−1, similar to the 

one (5.41 × 10−3 𝑚𝑜𝑙 𝑚−3 𝑠−1) obtained using the maximum iterations as the stopping 

criteria. It is worth noting that the stochastic nature inherent in both the initial and 

adaptive sampling processes may lead to slightly different optimal solutions. The minor 

difference observed, with only a 3.7% deviation in the optimized productivity, indicates 

the robustness of the ML-based framework. Compared with the stopping criterion of 
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using maximum iterations, the updated stopping criterion results in a significant 48% 

reduction in the computational time required for the feasibility and optimization stages. 

This results in a total computational time reduction of 28.6% compared to exclusively 

depending on the maximum iterations.  

3.3.2 Effect of the Peak Cutting Criteria 

In the optimized case study, the yield constraint is active when the peak cutting 

criterion is set at a 75% target protein threshold (i.e., cytochrome). In an attempt to 

investigate the possibility of the active constraint shifting from yield to purity, the 

percentage threshold decreased from 75% to 65%. The updated optimization problem 

was solved using the same ML-based framework while maintaining the same 

operational and quality constraints. The optimized results at both percentage thresholds 

are summarized in Table 3.5.  

As the percentage threshold for peak cutting decreases, the purity constraint 

becomes active, with the achieved purity (90.66%) reaching the boundary limit (90%). 

The relaxation of the percentage peak cutting criterion allows for the collection of more 

products, as evidenced by the higher yield (88.33%), but it is accompanied by a 

compromise in purity. In this particular case study, a reduction in the percentage 

threshold for the target protein results in a decreased productivity by 16.2%. The 

comparison of the chromatograms under different peak cutting criteria is illustrated in 

Figure 3.8. It could be clearly observed that in this specific scenario, a reduction in the 

percentage threshold leads to a delayed occurrence of the overall elution behavior at the 

optimal operating conditions. 
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Figure 3.8: Comparison of the chromatograms under the optimized conditions at 

various percentage thresholds. The blue, red and green lines denote the 

column outlet concentration of lysozyme, cytochrome, and ribonuclease. 

Table 3.5: Comparison of the optimized results at different percentage thresholds. 

Optimized operating conditions 

Threshold ∆𝑡1 (s) ∆𝑡2 (s) 𝑚1  𝑚2 𝑐𝑖𝑛𝑖𝑡0 (𝑚𝑜𝑙 𝑚−3) 

75% 
2.90×

103 

1.00×
103 

5.3
× 10−3 

8.83× 10−1 65.0 

65% 
3.88×

103 

1.07×
103 

1.0
× 10−3 

8.08× 10−1 67.4 

Column performance metrics 

Threshold Yield (%) Purity (%) 
Productivity 

(𝑚𝑜𝑙 𝑚−3 𝑠−1) 

75% 80.46 91.27 5.41 × 10−3 

65% 88.33 90.66 4.53 × 10−3 

 

 

3.3.3 Design Space Analysis  

In previous sections, the optimization framework based on machine learning was 

employed to facilitate the identification of optimal operating conditions for the 

separation of a ternary mixture of proteins using CEX. The application of this 

framework could assist in finding an improved operating point characterized by higher 
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productivity using reduced computational resources. Moreover, this ML-based 

framework could contribute to a reduction in the sampling budget by guiding the 

algorithm to concentrate on feasible regions characterized by small objective values 

during the feasibility stage. This section aims to analyze the design space of the process 

derived using the proposed approach.  

The design space, characterized by five decision variables, poses a challenge for 

direct visualization. Consequently, the GPR model for the feasibility function is utilized 

to generate 5D feasible regions, which are subsequently projected onto 2D subspaces at 

the optimal solutions. The resulting ten sets of 2D contour plots are illustrated in Figure 

3.9. The boundary of the feasible region is represented by the line where the feasibility 

function value equals 0, visually represented by the red line, and the design space 

encompasses the area within this line. Within this context, the red square signifies the 

optimal point obtained using the framework and this point is located within the bounds 

of feasible regions. Under the optimal operating conditions, it is observed that 𝑚2 

exhibits a broader feasible region, suggesting the system’s capacity to endure variations 

in the slope of the second linear elution step while maintaining robustness. The 

remaining variables have much smaller feasible ranges, mainly due to the constraint 

imposed by the salt limitation, especially at large 𝑚2 value. This analysis contributes to 

an enhanced comprehension of the underlying processes and facilitates the 

identification of input variables with a higher likelihood of causing constraint violations. 
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Figure 3.9: 2D contour plots of the design space projected from high dimensional 

space at the optimal solutions. The red line represents the feasible 

boundary identified using the GPR model, and the red square denotes the 

optimal solution obtained from the ML-based framework. 

To provide a more comprehensive analysis, two specific contour plots are 

chosen from the set of ten for a detailed explanation, as shown in Figure 3.10. The red 

line indicates the salt constraint, defining the threshold where the salt concentration 

should be maintained below 1 M. According to our framework, the accuracy of feasible 

regions in proximity to optimal solutions is expected to be high, whereas regions far 

from the optimal solution may exhibit increased uncertainty and reduced accuracy. 



 94 

Thus, points are sampled close to the feasible boundary, and the feasibility function 

values at these points are then calculated using both the trained GPR model and the 

original mechanistic model. Following this, the results are compared, and if both values 

exhibit the same sign, the point can be considered to be accurately identified. Given that 

a feasibility function value less than 0 signifies the infeasible regions and a value larger 

than 0 represents the feasible regions, the exact values are trivial and only the sign of 

the values holds significance.  

 

Figure 3.10: Selected 2D contour plots of the design space to illustrate the framework. 

The white dash line is the feasible boundary with the feasibility function 

value of 0, while the red solid line indicates the salt constraint. The red 

square and circles are optimal solution and sampled points, respectively. 

Figure 3.10a shows the 2D contour plot between ∆𝑡2  and 𝑚2  under the 

optimized operating condition. In this scenario, salt constraint establishes one of the 

feasible boundaries, which is near the location of the optimal solution. Thus, all the 

points are sampled close to the other boundary, where the feasibility function value is 

approximately 0.3, and the comparison is summarized in Table 3.6. Out of the five 
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sampled points, all are identified as infeasible using the GPR model, while two of them 

are accurate according to the results from the mechanistic model. The same phenomena 

are observed for the sampled points in Figure 3.10b. From Table 3.7, it can be found 

that points 9 and 10, which are away from the optimal solution, exhibit low accuracy, 

whereas the remaining 8 points near the optimal solution demonstrate high accuracy. 

This observation aligns with the expectation of our framework, whereas the focus of 

sampling is centered towards the area close to the optimal solution. Given the primary 

objective of optimizing productivity under constraints, the analysis has demonstrated 

that the framework can yield an accurate design space around the optimum. 

Table 3.6: Comparison of feasibility function values for the sampled points in Figure 

3.10a. 

 
Feasibility function value 

Matching? 
GPR model Mechansitic 

Point 1 

~0.3 (+) 

0.39 (+) Yes 

Point 2 0.13 (+) Yes 

Point 3 -0.04 (−) No 

Point 4 -0.03 (−) No 

Point 5 -0.03 (−) No 

 

 

Table 3.7: Comparison of the sign of feasibility function values for the sampled 

points in Figure 3.10b.   

 
Sign of feasibility function value 

Matching? 
GPR model Mechansitic 

Points 1-8 + + Yes 

Points 9-10 + − No 
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3.4 Conclusions 

In this chapter, we introduced a ML-based optimization framework to address 

the nonconvex and nonlinear constrained optimization challenges encountered in 

biopharmaceutical separation. The framework utilized GPR models to replace the 

complex mechanistic model in handling constraints and defining objective function. To 

enhance efficiency and minimize sampling demands, the framework was strategically 

divided into feasibility and optimization stages. The feasibility stage concentrated on 

exploring the feasible region with smaller objective values, while the optimization stage 

focused on identifying optimal solutions within this defined feasible space. 

To evaluate the efficacy of this framework, it was applied to a case study 

involving the separation of a ternary protein mixture comprising ribonuclease, 

cytochrome and lysozyme. The objective of this case study was to find the optimal 

elution strategies by maximizing productivity under the salt, yield and purity 

constraints. In comparison to the optimized productivity achieved through the genetic 

algorithm, this method not only demonstrated superior productivity but also 

accomplished the optimization process within a shorter simulation time. Specifically, 

the productivity optimized by the ML-based framework improved by 50.1%, 

accompanied by a 70.8% reduction in running time. The impacts of both the first slope 

values and purity requirements on the overall elution behaviors were comprehensively 

investigated, along with an examination of the stopping criteria.  

The impact of varying the percentage peak cutting thresholds was examined to 

discern the critical constraint influencing the optimized conditions, which might help 

enhance our understanding of the process and facilitate potential improvements in the 

overall process. Through this analysis, it was observed that the active constraint 

transitions from yield to purity as the percentage threshold decreases from 75% to 65%. 
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Furthermore, a comprehensive analysis of the design space identification through our 

framework was carried out. The result demonstrated the framework’s capability to 

accurately identify the design space near the optimal solution, which aligns with our 

expectations.  

The case study examined in this work serves as an illustrative example to 

showcase the applicability of the proposed framework. The methodology presented in 

this study is generalizable and can be applied to other complicated case studies, 

providing valuable guidelines for addressing problems where identifying optimal 

solutions is challenging. However, it is important to note that the mechanistic model 

should be fully calibrated and validated before being utilized to generate the in-silico 

datasets as the accuracy of this framework highly depends on the accuracy of 

mechanistic model.  
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HYBRID MODEL DEVELOPMENT FOR HYDROPHOBIC INTERACTION 

CHROMATOGRAPHY 

4.1 Introduction 

The biopharmaceutical industry has received considerable attention recently, as 

can be witnessed by the growing market demands and approvals of biological drugs by 

the EU and the US regulatory agencies [1-4, 155]. During biologics manufacturing, the 

formation of protein aggregates during production and separation processes remains a 

primary concern [212, 213]. Hydrophobic interaction chromatography (HIC) is one of 

the widely used techniques in downstream polishing steps for the separation of targeted 

monomeric forms of protein therapeutics from the dimeric and/or multimeric species 

[214]. HIC is an entropically-driven process that exploits the difference between the 

hydrophobicity and particle sizes of the monomer and aggregates to achieve separation 

[215]. Despite being commonly employed as an efficient purification strategy to remove 

aggregates, the mechanism for HIC adsorption is quite complex, relying on various 

process parameters, like pH, salt concentration, and adsorbent ligand hydrophobicity 

[216, 217]. Recently an automatic workflow for HIC method development is presented 

 

 

Chapter 4 is adapted from the following journal article written by the author of this 

dissertation:  

 

Ding, C., Gerberich, C., Ierapetritou, M., Hybrid model development for parameter 

estimation and process optimization of hydrophobic interaction chromatography. 

Journal of Chromatography A, 2023, 1703: 464113.  

Chapter 4 
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by combining screening with in-silico modeling by Barrientos et al. [218]. However, 

the current process development of HIC still largely depends on rules of thumb or 

tedious experimental screening.  

Inspired by the quality by design (QbD) initiative and the need to reduce the 

effort of performing time- and resource-intensive experiments, mechanistic modeling 

has become an important tool for process characterization, development and 

optimization [13, 41, 189]. Mechanistic models are built based on the understanding of 

the chromatographic process physics, which mainly focuses on describing the solute 

transport in the mobile phase and adsorption in the stationary phase [74, 86, 89]. With 

different assumptions and simplifications, several variants of mechanistic models are 

used to describe the fluid flow inside the mobile phase, including equilibrium dispersive 

model, lumped kinetic model, and general rate model (GRM) [81-83]. In HIC modeling, 

the fluid dynamics are well-described by physics, but the underlying adsorption 

mechanism for the salt-dependent protein-ligand interaction is still unclear, which 

makes it challenging to postulate appropriate mathematical equations to describe the 

overall process [219]. To capture the role of salt, various adsorption laws like 

solvophobic and preferential interaction theories have been used [220-222]. Although 

the simple Langmuir isotherm is popular and frequently considered, this equation 

cannot account for the effect of salt concentration on adsorption behavior [74]. To 

overcome this limitation, the Langmuir isotherm is often modified to capture the 

dependence of adsorption on salt concentrations for the representation of the HIC 

adsorption process [223]. Moreover, Wang et al. [219] updated the isotherm by 

introducing the salt-dependent hydration number of ions and applied in modeling the 

system of glucose oxidase, bovine serum albumin, and lysozyme. 
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The challenge associated with the development of a precise mechanistic model 

is to identify the exact underlying physicochemical phenomena. Due to a limited 

understanding of the HIC adsorption mechanism, there is an absence of a reliable 

mechanistic model to describe the interaction between proteins and ligands under 

varying salt ions [79, 223]. Consequently, a hybrid modeling strategy is a promising 

alternative to accurately describe HIC process and reduce the model development effort 

as this approach can exploit the available information about the process and represent 

the missing knowledge by a data-driven component [126, 135]. By combining the 

mechanistic and data-driven models, the constructed hybrid model can retain the 

advantages of the mechanistic model (i.e., physical interpretability and generalizability) 

while being able to extract information from available data that cannot be captured by 

the first-principle knowledge [24, 127]. Neural network (NN) is a commonly used data-

driven model, which is based on the neural structure of the human brain [147, 224]. NN 

is composed of many interconnected neurons in layers, with weights assigned to each 

interconnection. Narayanan et al. [136, 137] developed different hybrid models by 

combining varying degrees of process knowledge with NN and evaluated their 

performance in terms of the interpolation and extrapolation capabilities in Protein A 

chromatography process. It was found that the developed hybrid model outperformed 

the mechanistic model in terms of prediction accuracy and robustness. It should be noted 

though that the hybrid modeling strategy has not been applied to describe the complex 

salt-dependent adsorption mechanism for HIC process.   

In this work, a mechanistic model is first developed to describe the HIC 

chromatographic process using an equilibrium dispersive model for hydrodynamics and 

modified isotherm derived by Wang et al. [219], followed by model validation with 
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experimental data. Due to the limited understanding of the underlying adsorption 

mechanism, a hybrid model is proposed by combining a simpler multi-component 

Langmuir isotherm (MCL) with a NN. Different methods to integrate the MCL with NN 

are investigated to find the appropriate hybrid model structure. During parameter 

estimation, a regularization strategy is incorporated to avoid overfitting and the effect 

of different NN structures and regularization rates is comprehensively investigated to 

acquire the hybrid model with the best performance. To ensure the generalizability of 

the developed hybrid model, an in-silico dataset is generated using the mechanistic 

model to test the extrapolation capability of the hybrid model. Finally, process 

optimization is conducted to find the optimal operating conditions under product quality 

constraints, and the optimal results obtained from the mechanistic and hybrid models 

are compared thoroughly.  

4.2 Material and Methods 

4.2.1 Experimental Setup 

mAb A HIC load material was acquired, with a concentration of 11.5 mg/mL 

and an average dimer content of 1.2%. To enable binding to the HIC resin, 400 mM of 

salt was added to the load material. A HIC column with a height of 20.1 cm and an inner 

diameter of 0.486 cm was connected to an ÄKTA explorer (GE Healthcare) to purify 

the load material using a linear salt gradient, with the A buffer containing 425 mM salt 

and the B buffer containing 0 mM salt. The chromatographic sequence employed for 

this separation is shown in Table 4.1, and the resin loadings and gradient lengths were 

varied across four experiments as specified in Table 4.2. It should be noted that the 50 

g/L loading runs exceeded the binding capacity of the HIC resin, so breakthrough was 

https://www.wordhippo.com/what-is/another-word-for/thoroughly.html
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observed. The linear salt gradient was fractionated, and then each fraction was analyzed 

using UV-vis spectroscopy to determine protein concentration and SEC-HPLC to 

determine monomer and dimer content. The flow rate for the four calibration runs was 

set at 300 cm/h for all steps in the sequence, and the validation run used a flow rate of 

150 cm/h. 

Table 4.1: HIC chromatographic sequence used in calibration and validation 

experiments. 

Step 
Volume 

(CV) 
Buffer 

Equilibration 3 425 mM modulating salt 

Loading Varies 
mAb A material with 400 mM modulating salt 

added 

Re-equilibration 3 425 mM modulating salt 

Gradient 

Elution 
Varies 

A Buffer:  425 mM modulating salt 

B Buffer:  0 mM modulating salt 

Strip 5 0 mM modulating salt 

Cleaning 3 1.0 M NaOH 

Storage 3 0.1 M NaOH 

 

 

Table 4.2: Experimental operating conditions used for model calibration and 

validation. 

 Experiment Loading (g/L) Gradient length (CV) Flowrate (cm/h) 

Calibration 

Exp1 50 40 

300 
Exp2 5 40 

Exp3 50 10 

Exp4 5 10 

Validation Exp_Val 35 10 150 
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4.2.2 Mechanistic Model   

Based on the hypothesis made and system characteristics, different models have 

been developed to describe the fluid dynamics and adsorption phenomena of the 

chromatographic process. Among those models, the equilibrium dispersive model 

(EDM) is the simplest one to reasonably simulate mass transfer [74]. It should be noted 

that such a model assumes the establishment of adsorption equilibrium, but a kinetic 

equation is chosen in this study to describe the complicated salt-dependent HIC 

isotherm. Thus, the kinetic-dispersive model (KDM), as a variant of EDM, is adopted 

as the mechanistic model. It is important to highlight that different papers may use 

different terms, such as transport dispersive model or lumped rate model, to describe 

the concepts that align with the assumptions of KDM [86, 188, 225]. Due to the 

complexity and limited understanding of the adsorption mechanism of HIC, finding an 

adequate isotherm to describe the system studied is a great challenge. In this work, a 

mechanistic HIC isotherm published by Wang et al. [219] was employed and further 

modified by adding a few parameters to better simulate the process.  

4.2.2.1 Kinetic-Dispersive Model (KDM)  

Similar to EDM, KDM is a lumped kinetic parameter model, with all mass 

transfer resistances and binding kinetics lumped into the isotherm parameters [196]. In 

this regard, the protein concentration in the bulk mobile phase is expected to be identical 

to the average concentration in the intra-particle mobile phase. The model also lumps 

axial dispersion and molecular diffusion into one single parameter (apparent axial 

dispersion coefficient) [226, 227].  

Assuming a radially homogeneous column, the differential mass balance in the 

bulk moving phase can be represented by Equation 4.1.  
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 𝜀𝑡
𝜕𝑐𝑖

𝜕𝑡
+ 𝑣

𝜕𝑐𝑖

𝜕𝑧
+ (1 − 𝜀𝑡)

𝜕𝑞𝑖

𝜕𝑡
= 𝐷𝑎𝑝𝑝𝜀𝑒

𝜕2𝑐𝑖

𝜕𝑧2  4.1 

where 𝑐𝑖  and 𝑞𝑖  is the solute concentration of component 𝑖  in the mobile and solid 

phases, 𝑣 is the interstitial velocity, 𝑡 and 𝑧 denote the time and axial coordinate, 𝜀𝑒 and 

𝜀𝑡 are the extra-particle and total porosity. Apparent axial dispersion coefficient 𝐷𝑎𝑝𝑝 

can be calculated by Equation 4.2, where 𝑁𝑡 and 𝐻 are the theoretical plate number and 

the height equivalent to a theoretical plate (HETP), respectively. 

 𝐷𝑎𝑝𝑝 =
𝐿𝑣

2𝑁𝑡
=

𝐻𝑣

2
 4.2 

4.2.2.2 HIC Isotherm 

To construct a complete mathematical formulation of the separation process, it 

is necessary to complement KDM with an adsorption isotherm. By considering the 

water structure, the salt-dependent HIC kinetic equation derived and developed by 

Wang et al. [219] was given in Equation 4.3, where 𝑘𝑎,𝑖  and 𝑘𝑑,𝑖  are the kinetic 

adsorption and desorption coefficients, 𝑞𝑚𝑎𝑥,𝑖 is the maximum binding capacity, 𝜈𝑖 is 

the number of hydrophobic binding sites, 𝛽0,𝑖 is the ionic hydration number at infinite 

dilution, 𝛽1,𝑖 is the ionic hydration factor for the salt of component 𝑖, and 𝑐𝑠 is the ionic 

salt concentration. It should be mentioned that the kinetic parameters 𝑘𝑎,𝑖  and 𝑘𝑑,𝑖 

indirectly include mass transport resistances, but the ratio 𝑘𝑎,𝑖 /𝑘𝑑,𝑖  determines the 

equilibrium constant that is a thermodynamic parameter.  

 
𝜕𝑞𝑖

𝜕𝑡
= 𝑘𝑎,𝑖𝑐𝑖 (1 − ∑

𝑞𝑗

𝑞𝑚𝑎𝑥,𝑗

𝑁
𝑗=1 )

𝜈𝑖

− 𝑘𝑑,𝑖𝑞𝑖

1+𝜈𝑖𝛽0,𝑖exp(𝛽1,𝑖𝑐𝑠)
 4.3 

Inverse modeling was employed to fit this isotherm to the experimental data, but 

the fit was unacceptably poor. There were concerns that the model was not accurate 

enough to get usable process optimization results, so extensions of this isotherm were 

explored. To better capture the HIC system studied in this work, three additional 
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parameters (𝜂𝑖 , 𝑞0,𝑖 , and 𝛽2,𝑖 ) are added to the above HIC isotherm, as shown in 

Equation 4.4.  

 
𝜕𝑞𝑖

𝜕𝑡
= 𝑘𝑎,𝑖𝑐𝑖

𝜂,𝑖
(1 − ∑

𝑞𝑗

𝑞𝑚𝑎𝑥,𝑗

𝑁
𝑗=1 )

𝜈𝑖

− 𝑘𝑑,𝑖𝑞0,𝑖
1+𝜈𝑖𝛽0,𝑖

(
𝑞𝑖

𝑞0,𝑖
)

1+𝜈𝛽0,𝑖exp(𝛽1,𝑖𝑐𝑠+𝛽2,𝑖𝑐𝑚)

 4.4 

where 𝜂𝑖  is the Freundlich index,  𝑞0,𝑖  is the reference concentration, 𝛽2,𝑖 is the ionic 

hydration factor for the monomer of 𝑖𝑡ℎ  component, and 𝑐𝑚  is the monomer 

concentration. The modified isotherm is an empirical model that can account for the 

dependence of the dimer adsorption on the monomer content, as can be seen from the 

last term 𝑐𝑚. By adding extra parameters, the adsorption model can help better represent 

the HIC separation process. 

4.2.3 Hybrid Model 

Since the fluid dynamics of the chromatographic process can be well described, 

KDM is used in its original formulation. The challenge in HIC mechanistic model 

development is to find an appropriate binding isotherm to describe the salt-dependent 

protein-resin interaction. Such development requires a high-level understanding of the 

process and significantly increases the effort required, as seen by the rather complex 

isotherm described in Section 4.2.2. Moreover, if the presumed mechanism differs from 

the true underlying mechanism, the formulated isotherm model may lose the capability 

to characterize the process and describe the experimental data. A potential approach to 

reduce such effort and increase the model flexibility is to employ a simpler isotherm, 

together with a universal approximator like a neural network (NN) to construct a hybrid 

model. The approximator utilizes the available data to infer the underlying mechanism 

of the process, which may reduce the effort in mechanistic model development phase 

[200, 228]. In such cases, even if the postulated simpler model differs significantly from 
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the experimental profiles, the mismatches may be reduced with the use of the NN. The 

gaps in process knowledge may therefore be abridged, saving time- and resource-

intensive development efforts.  

Based on this idea, multi-component Langmuir rate equation (MCL) [82] in 

Equation 4.5 is selected as the baseline adsorption mechanism as this equation is well-

known and widely accepted. There are different strategies to include a NN in the MCL 

equation, leading to different hybrid model structures. In this work, two hybrid model 

structures are mainly considered and tested. The first hybrid model, referred to as the 

“Hybrid-MCL,” is established by adding a multiplier term (NN) into the whole 

Langmuir isotherm. As indicated in Equation 4.6, the NN is a function of mobile-phase 

concentration (𝑐𝑖), solid-phase concentration (𝑞𝑖), and salt concentration (𝑐𝑠) at a given 

point in space and time. An alternative formulation of the hybrid model (referred to as 

the “Hybrid-Desorption”) is shown in Equation 4.7, in which only the desorption term 

is modified by multiplying a NN.  

 
𝜕𝑞𝑖

𝜕𝑡
= 𝑘𝑎𝑐𝑖 (1 − ∑

𝑞𝑗

𝑞𝑚𝑎𝑥,𝑗
 𝑁

𝑗=1 ) − 𝑘𝑑𝑞𝑖 4.5 

 
𝜕𝑞𝑖

𝜕𝑡
= 𝑁𝑁(𝑐𝑖, 𝑞𝑖, 𝑐𝑠)[𝑘𝑎𝐶𝑖 (1 − ∑

𝑞𝑗

𝑞𝑚𝑎𝑥,𝑗

𝑁
𝑗=1 ) − 𝑘𝑑𝑞𝑖] 4.6 

 
𝜕𝑞𝑖

𝜕𝑡
= 𝑘𝑎𝐶𝑖 (1 − ∑

𝑞𝑗

𝑞𝑚𝑎𝑥,𝑗

𝑁
𝑗=1 ) − 𝑘𝑑𝑞𝑖𝑁𝑁(𝑐𝑖, 𝑞𝑖, 𝑐𝑠) 4.7 

It is worth noting that since the incorporation of NN should not alter the physical 

meaning of the binding process, two different operators (e.g., exponential and absolute) 

are added to the NN. Unless otherwise stated, the absolute operator is enforced to the 

NN output. 
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4.2.4 Determination of Model Parameters  

Based on the model mentioned in previous sections, the parameters could be 

classified into mass transfer and isotherm parameters. The first type of parameters, 

including 𝜀𝑒 , 𝜀𝑡 , and 𝐻, are used in the kinetic-dispersive model. The other type of 

model parameters is used to describe the adsorption behavior of the HIC process. For 

the mechanistic model, there are in total 9 adsorption parameters (𝑘𝑎,𝑖, 𝑘𝑑,𝑖, 𝑞𝑚𝑎𝑥,𝑖, 𝜂𝑖, 

𝜈𝑖, 𝑞0,𝑖 𝛽0𝑖
, 𝛽1𝑖

, and 𝛽2𝑖
) for each component (monomer or dimer). In terms of the hybrid 

model, the number of isotherm parameters is related to the NN structures and will be 

discussed in Section 4.3.2.  

4.2.4.1 Column Characteristics 

To determine the column flow characteristics, two pulse injections were 

performed prior to running the purification experiments. A 100 μL pulse of 2.0 M NaCl 

(Sigma-Aldrich) was injected into a running solution of 0.4 M NaCl at a flow rate of 

300 cm/h. The retention volume of this peak was used to determine 𝜀𝑡, and the method 

of moments was also applied to this peak to determine 𝐻. To determine 𝜀𝑒, a 100 μL 

pulse of 100 nm gold nanoparticle suspension (Sigma-Aldrich) was injected into a 

running solution of DI water at a flow rate of 300 cm/h, and the retention volume of the 

peak was calculated. 

4.2.4.2 Parameter Estimation 

The remaining adsorption parameters can be estimated by inverse fitting the 

experimental bind-and-elute curves. The flowchart of the procedure for parameter 

estimation using the hybrid model is illustrated in Figure 4.1. A similar scheme can also 

be used for the parameter estimation of mechanistic models by simply substituting the 

hybrid model block with the model of interest. Specifically, all parameters (adsorption 
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parameters like 𝑘𝑎, 𝑘𝑑, and 𝑞𝑚𝑎𝑥 in MCL equation, NN parameters like weights and 

biases) are first randomly initialized, followed by solving the coupled PDE equations 

via built-in PDE solver pdepe in MATLAB 2019b [229]. The optimal isotherm 

parameters are obtained by iteratively solving the nonlinear optimization problem that 

minimizes the user-defined cost function. After parameter estimation, the developed 

hybrid model is validated to evaluate its predictive ability.  

To find the optimal parameters and assess model performance, a normalized sum 

of squared error (NSSE) metric is used. Under this metric, the commonly used sum of 

squared error function is normalized across multiple experiments because the output 

concentrations are of different orders of magnitude. Since the constructed model is 

nonlinear and nonconvex, a global optimization strategy is used to avoid getting trapped 

in the local minimum. The differential evolution (DE) algorithm is frequently 

considered one of the most popular approaches to address such complicated 

optimization problems in many scientific and engineering problems [230]. DE is a 

stochastic population-based metaheuristic search algorithm that drives the population 

toward better solutions by applying the operators of mutation, crossover, and selection. 

As one of the most efficient DE variants, successful history-based adaptive differential 

evolution with linear population size reduction (L-SHADE) is adopted for parameter 

estimation in this work as this algorithm exhibits excellent performance [231]. Unless 

explicitly specified, the optimization results in Section 4.3 are obtained using L-

SHADE. Other global optimization algorithms such as MultiStart fmincon [232], 

genetic algorithm (GA) [233] and particle-swarm optimization (PSO) [234] are also 

tested to estimate parameters of hybrid model. Due to the stochastic nature of those 
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global optimization algorithms, simulations for parameter estimation are run multiple 

times to ensure the robustness of the model. 

 

Figure 4.1: The overall schematic of parameter estimation using hybrid model. 

Regularization strategy is employed to prevent overfitting and obtain a 

generalizable framework where the structural complexity of the NN model is also 

minimized. The complexity of NN could be quantified using 𝐿2 regularization, which 

defines the regularization term as the sum of the squares of all weights. This term is 

added as a penalty term to the loss function to form a new cost function, as indicated in 
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Equation 4.8, where 𝜆 and 𝛽 represent the regularization rate and feature weights of 

NN, respectively. It is worth noting that choosing an appropriate regularization rate is 

important to achieve the right balance between underfitting and overfitting. 

Accordingly, the effect of different regularization rates on the fitting results is evaluated. 

 ∑ ∑ (
𝑐𝑠𝑖𝑚,𝑖

𝑗
−𝑐𝑒𝑥𝑝,𝑖

𝑗

max 𝑐𝑒𝑥𝑝
𝑗 )2

𝑖𝑗 + 𝜆 ∑ 𝛽𝑗
2𝑝

𝑗=1  4.8 

Critical components of NN model are the number of hidden layers, the number 

of nodes in each hidden layer and the form of the activation function that determines 

whether this node will be “activated” and how “active” it will be. The influence of NN 

structure is evaluated in order to obtain the optimal structure that minimizes the 

objective function value.   

Table 4.3: The operating sequence used for the extrapolation test and optimization 

case study. 

Step Volume (CV) Salt Conc. (mM) Flowrate 

Load 35 g/L 400 

𝑄 Step elution 3 𝑐𝑠,𝑠𝑡𝑎𝑟𝑡 

Gradient elution Gradient length 𝑐𝑠,𝑠𝑡𝑎𝑟𝑡 to 𝑐𝑠,𝑒𝑛𝑑 

 

 

The mechanistic model is developed based on the underlined mechanism, so the 

model can be highly generalizable and physically interpretable. Although the data-

driven component of the model based on NN can describe the process without prior 

knowledge, it mainly suffers from poor interpretability and generalizability. To test the 

extrapolation capability of the developed hybrid model, an in-silico dataset is generated 

using the mechanistic model outside the calibration datasets. The operating sequence 
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for the extrapolation test, as shown in Table 4.3, includes the step and gradient elution. 

It is worth noting that the wash step is not included in the test as it would only result in 

a time delay of the profile and will not impact the actual elution behavior from the 

modeling perspective.  

4.2.5 Process Optimization  

Model-based optimization is used to obtain the optimal operating conditions to 

reduce experimental efforts and improve process development [56, 235]. The sequence 

used for the optimization case study is chosen the same as the extrapolation test because 

the hybrid model has been validated to be suitable to describe this sequence. 

Specifically, the operating conditions, including the flow rate 𝑄, gradient length, and 

starting and ending salt concentration for elution (𝑐𝑠,𝑠𝑡𝑎𝑟𝑡  and 𝑐𝑠,𝑒𝑛𝑑), are optimized 

using the developed mechanistic and hybrid models. The primary objective considered 

in this work is to maximize the process yield under the purity requirement as it is an 

important metric to evaluate the column performance. Besides, the processing time is 

also an essential factor in measuring the separation efficiency in practical applications. 

Thus, the minimization of the processing time is considered as another objective. The 

two objectives can be combined into a single objective by adding weights (𝜔1 and 𝜔2) 

as shown in Equation 4.9.  

The overall optimization formulation is shown in Equations 4.9-4.15, where 𝑄 

is flow rate, 𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 is the processing time, 𝑉𝐸𝑙𝑢𝑎𝑡𝑒 is the eluate volume, 𝑈𝑉1 and 𝑈𝑉2 

are the optical density when the pooling starts and ends. In this study, 100 and 0.001 are 

selected for the weights of the objectives ( 𝜔1  and 𝜔2 ), respectively. In 

biopharmaceutical manufacturing, at least 99.9% purity of monomer is required [90]. 

Due to the stringent product quality, a safety factor of 1.33 is added to the purity 
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requirement. The pooling time intervals are determined based on the peak cutting 

criteria, i.e., the optical density is at least 0.5 OD.   

 min −𝜔1 × 𝑦𝑖𝑒𝑙𝑑 + 𝜔2 × 𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 4.9 

 𝑃𝑢𝑟𝑖𝑡𝑦𝑚𝑜𝑛𝑜𝑚𝑒𝑟 ≥ 99.925% 4.10 

 𝑐𝑠 ≤ 425 mM 4.11 

 100 ≤ 𝑄 ≤ 500 cm/h 4.12 

 𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 ≤ 6 ℎ 4.13 

 𝑉𝐸𝑙𝑢𝑎𝑡𝑒 ≤  8 𝐶𝑉 4.14 

 𝑈𝑉1, 𝑈𝑉2 ≥  0.5 𝑂𝐷 4.15 

The model includes six decision variables to be optimized, i.e., 𝑄, 

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑐𝑠,𝑠𝑡𝑎𝑟𝑡, 𝑐𝑠,𝑒𝑛𝑑, 𝑈𝑉1 and 𝑈𝑉2. Based on the mechanistic and hybrid 

model developed in Section 4.2 and 4.3, the optimization problem was solved using L-

SHADE, and the obtained optimal parameters and objectives were compared.  

4.3 Results and Discussion  

4.3.1 Parameter Estimation using Mechanistic Model  

In this work, a newly developed adsorption isotherm together with the KDM is 

used for the description of the HIC process. The resin and column packing parameters 

in KDM can be directly or indirectly measured based on the methodologies in Section 

4.2.4.1. The total and extra-particle porosity, and the height equivalent to a theoretical 

plate (HETP) are given in Table 4.4.  
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Table 4.4: Resin and column packing parameters of the KDM in HIC process.  

Symbol Transport Parameter Value Units 

𝜀𝑡 Total porosity 0.956 - 

𝜀𝑒 Extra-particle porosity 0.415 - 

𝐻 HETP 4.5E-2 cm 

 

 

The adsorption parameters in the salt-dependent HIC isotherm are obtained by 

inverse fitting the various experimental gradient elution curves via the L-SHADE 

optimization algorithm. The simulated and experimental chromatograms under varying 

operating conditions for model calibration are compared in Figure 4.2. It can be clearly 

observed that the proposed mechanistic model can capture the general trend of the 

elution behaviors accurately. Due to a limited process understanding of the HIC 

adsorption mechanism, there exist some deviations between the fitted and experimental 

data especially for Exp1 and Exp3.  

To test the quality of the calibrated mechanistic model, an additional experiment 

was conducted under varying operating conditions as the validation dataset, as can be 

seen from Table 4.2. It is noteworthy that although the setpoints for loading and gradient 

length were within the range of the calibrated dataset, the flow rate used for validation 

(150 cm/h) is outside the calibrated condition (300 cm/h), which can help assess both 

the interpolation and extrapolation ability of the developed model. Figure 4.3a shows 

the predicted elution curve and experimental validation data. A good agreement between 

the simulated and measured data can be observed, especially for the monomer peak. The 

comparison of measured and predicted concentration data for monomer and dimer are 

shown in Figure 4.3b and 4.3c, respectively. For the monomer, the distribution is close 

to the reference line (𝑦 = 𝑥) with a high correlation coefficient of 0.9878 and 𝑅2 value 
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of 0.9902, indicating the high accuracy of the model to characterize the monomer 

behavior. In terms of the correlation result for dimer validation data, the deviations are 

larger than that of monomer data but the error is acceptable (𝑅2 = 0.9173). It is noted 

that although significant biases can be found at the low concentration range, the absolute 

differences are still negligible as the concentration is close to 0.  

 

Figure 4.2: Comparison of the calculated bind-and-elute curves with the experimental 

dataset under different operating conditions during parameter estimation. 

All the experiments were conducted using a flow rate of 300 cm/h. Mech: 

mechanistic model; Exp: Experiment. 
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Figure 4.3: a) Comparison of the predicted bind-and-elute curves with the 

experimental dataset for model validation; Correlation between measured 

and predicted concentration for monomer (b) and dimer (c). Mech: 

mechanistic model; Exp: Experiment. 

4.3.2 Hybrid Model Development and Validation 

4.3.2.1 Parameter Estimation 

Two different hybrid models (Hybird_MCL and Hybrid_Desorption) are 

constructed to describe the HIC isotherm, followed by model calibration to test the 

applicability of the proposed hybrid model. Before parameter estimation is performed, 

the neural network structure should be determined in order to write the mathematical 

equations in closed form. The NN structure used in the hybrid model is illustrated in 

Figure 4.4, in which one hidden layer with 2 nodes is selected together with the 

hyperbolic tangent (tanh) as the activation function. For each component (monomer or 

dimer), a total of 14 parameters are required to be estimated, including the 3 parameters 

on the MCL equation and the 11 parameters at the NN model as illustrated in Figure 

4.4.  
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Figure 4.4: Illustration of neural network structure and parameters in hybrid model.  

For the first hybrid model structure, Hybrid_MCL, the comparison of the 

simulated and experimental elution curves is displayed in Figure 4.5. It can be clearly 

discerned that this hybrid model lacks the capability to describe the HIC process. No 

benefit was observed by increasing the complexity of neural networks and running time, 

and testing different optimization algorithms, as can be seen in Table 4.5. 

Table 4.5: Calibration NSSE using the Hybrid_MCL model for parameter estimation 

(1 hidden layer and tanh as the activation function). 

# nodes Operator Optimization algorithms 
Running time (days) 

7 14 21 

2 
absolute 

L-SHADE 

21.17 19.31 19.03 

3 29.60 27.42 27.38 

2 
exponential 

27.03 23.42 n/a 

3 37.45 20.84 n/a 

3 
absolute 

GA 
29.49 n/a n/a 

exponential 45.2 n/a n/a 
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Figure 4.5: Comparison of simulated elution curves and experimental results using 

Hybrid_MCL model. 

The results of the second hybrid model, Hybrid_Desorption, are shown in Figure 

4.6. In general, this hybrid model can fit the experimental data quite well except for 

Exp1 and Exp3. Subsequently, the obtained model is used to predict the elution curves 

of the validation set, as can be seen in Figure 4.7. The results indicate that this hybrid 

model structure can reliably represent and simulate the HIC process studied in this work. 

As mentioned in Section 4.2.4.2, the global optimization algorithm L-SHADE used for 

parameter estimation is stochastic, which could result in different optimal values at each 

run. Multiple runs of estimating parameters were conducted to test the robustness of the 
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developed hybrid model. Table 4.6 lists the NSSE for calibration and validation data 

after 4 different runs. Although the obtained objective function values are slightly 

different after each run, the difference is in an acceptable range, indicating the 

robustness of our developed model. Based on Table 4.7, it can be observed that the 

average error for the calibration and validation data using the mechanistic model is 

pretty close. However, in terms of the fitting results based on the hybrid model, the 

average calibration NSSE for all runs is significantly lower than the validation error, 

suggesting the occurrence of overfitting.  

 

Figure 4.6: Comparison of simulated and experimental elution curves using 

Hybrid_Desorption model. 
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Figure 4.7: Comparison of predicted and experimental elution curves using 

Hybrid_Desorption model. 

Table 4.6: Comparison of NSSE after each run. 

Model type NSSE_calibration NSSE_validation 

Hybrid model 

1st run 0.9344 0.6731 

2nd run 1.6988 0.9981 

3rd run 1.2864 0.6977 

4th run 1.5821 0.6756 

Mechanistic model - 2.92 0.6252 

 

 

Table 4.7: Comparison of average NSSE after each run. 

Model type 
Average NSSE 

Calibration Validation 

Hybrid model 

1st run 0.2336 0.6731 

2nd run 0.4247 0.9981 

3rd run 0.3216 0.6977 

4th run 0.3955 0.6756 

Mechanistic model - 0.73 0.6252 



 120 

To avoid overfitting, L2 regularization term is added to the loss function with 

the regularization rate 𝜆. The obtained error values under three different regularization 

rates ( 1𝐸 − 4  , 2.3𝐸 − 4 , 5𝐸 − 4 ) are compared in Figure 4.8. In general, the 

incorporation of regularization strategy should result in an increasing calibration error, 

but choosing the appropriate rate (2.3𝐸 − 4)  could achieve a balance between the 

calibration and validation error to improve the performance of the hybrid model. It can 

be clearly noticed that a large regularization rate ( 5𝐸 − 4)  results in the highest 

calibration error and lowest validation error probably because the NN structure is over-

penalized whereas a small regularization rate (1𝐸 − 4) leads to a large validation error 

due to the small penalty on the NN weights. The simulated elution curves at a 

regularization rate of 2.3𝐸 − 4  are shown in Figure 4.9, where no overfitting is 

observed.  

 

Figure 4.8: The NNSE for the calibration and validation dataset under different 

regularization rates. 
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Figure 4.9: Comparison of simulated and experimental elution curves after the 

incorporation of regularization strategy (𝜆 = 2.3𝐸 − 4). 

Since the NN structure can affect the hybrid model expression, the effect of 

different activation functions and number of nodes on the model performance are 

investigated. According to previous analysis, since overfitting is found using a neural 

network with two nodes in one hidden layer to construct the hybrid model, no more than 

2 nodes are adopted when examining the impact of NN structure. Additionally, as 

mentioned in Section 4.2.3, different operators can be added to NN output to maintain 

the physical meaning of the adsorption process. Table 4.8 summarizes the calibration 

and validation errors under different NN structures and operators. It should be noted 

that no regularization strategy is included in this step because the goal is to find the 
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optimal NN structure. When the simulations were carried out using different operators 

with tanh as the activation function, it was found that the exponential operator does not 

improve the fitting performance but increases the computational time. The NN with 

only 1 node is not sufficient to describe the behavior of the model as observed from the 

large calibration error (2.4086). Only the absolute operator and 2 nodes are thus 

considered when sigmoid is used as the activation function. The validation error 

obtained by using sigmoid as the activation function is the lowest among all the 

structures investigated.  

Table 4.8: Comparison of calibration and validation error under different NN 

structures without the regularization strategy incorporated. All tested NN 

has one hidden layer. 

Activation 

function 
Operator 

# 

nodes 
NSSE_calibration NSSE_validation 

tanh 

exponential 2 1.2856 0.6762 

absolute 1 2.4086 0.6849 

absolute 2 0.9344 0.6731 

sigmoid absolute 2 1.7462 0.4572 

 

 

Based on these results, we hypothesized that the sigmoid activation function 

could contribute to better testing and validation performance after the application of the 

regularization strategy. The hybrid model performance under different regularization 

rates using sigmoid as an activation function and 1 hidden layer with 2 nodes is 

summarized in Table 4.9. It is observed that a regularization rate of 2.3𝐸 − 4 yields a 

good performance on both the calibration and validation dataset. Under such 

circumstances, the calibrated and validated NSSE of the developed hybrid model are 
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1.1191 and 0.4286, while the errors of the mechanistic-based model are 2.92 and 0.6252, 

respectively. This hybrid model structure with 2.3𝐸 − 4 as the regularization rate has 

the best overall performance in terms of the calibration and validation dataset, so the 

following analysis is obtained based on this model. The NSSE values for each 

experiment using the two models are provided in Table 4.10 and visually compared in 

Figure 4.10. It can be seen that the fitting performance for each experiment is enhanced 

with the use of hybrid model, ranging from 8.3% to 83.6%. Compared with the 

mechanistic model, the overall calibration performance is significantly improved by 

62% and the validation accuracy is increased by 31.4%.  

Table 4.9: Calibrated and validation error under different regularization rates using 

the hybrid model structure (sigmoid as activation function, 1 hidden layer 

with 2 nodes). 

Model 𝜆 NSSE_calibration NSSE_validation 

Hybrid_Desorption 

0 1.7462 0.4572 

1e-4 0.827 0.8088 

2.3e-4 1.1191 0.4286 

5e-4 1.1717 0.8666 

 

 

Table 4.10: Comparison of SSE between mechanistic and best hybrid model. 

Dataset Experiment Mechanistic model Hybrid model Improved accuracy 

Calibration 

Exp1 1.10 0.25 77.3% 

Exp2 0.73 0.12 83.6% 

Exp3 0.72 0.66 8.3% 

Exp4 0.37 0.08 78.4% 

  2.92 1.11 62.0% 

Validation Exp_Val 0.63 0.43 31.7% 
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Figure 4.10: Comparison of NSSE for each experiment using mechanistic and hybrid 

models. 

Table 4.11: Comparison of calibrated NSSE using different optimization algorithms. 

Algorithm NSSE_calibration 

L-SHADE 1.119 

GA 27.22 

PSO + fmincon 2.237 

MultiStart fmincon 75.04 

 

 

Different optimization algorithms have been used for parameter estimation using 

this hybrid model. The calibrated error using various algorithms is given in Table 4.11 

showing that L-SHADE performs best in this study. Based on the optimal identified 

parameters of the Hybrid_Desorption model, the comparison of simulated and 

experimental curves for model calibration is shown in Figure 4.11, and an excellent 

agreement is recognized between the model simulation and calibrated experimental 

data. Figure 4.12 illustrates the predicted concentration values for monomer and dimer 
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that lie close to the diagonal with a high 𝑅2 value, an indication of the high quality and 

predictive accuracy of the developed hybrid model to describe the gradient elution in 

HIC process. It is worth noting that with such a small neural network size (1 hidden 

layer with 2 nodes), the hybrid model outperforms the mechanistic model, and can 

precisely describe the complicated salt-dependent interaction between the protein and 

ligand.  

 

Figure 4.11: Comparison of the simulated bind-and-elute curves with the experimental 

dataset under different operating conditions during parameter estimation. 

All the experiments were conducted using a flow rate of 300 cm/h. Hybrid: 

Hybrid_Desorption model; Exp: Experiment.  
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Figure 4.12: a) Comparison of the predicted bind-and-elute curves with the 

experimental dataset for model validation; Correlation between measured 

and predicted concentration for monomer (b) and dimer (c). Hybrid: 

Hybrid_Desorption model; Exp: Experiment. 

4.3.2.2 Extrapolation Capability 

Although the developed hybrid model has been validated using experimental 

datasets to test the extrapolation ability of the model, it is essential to see how the model 

performs in process conditions outside the range of conditions used for model building. 

Utilizing the mechanistic model, in-silico datasets can be generated to test the 

extrapolation capability of the hybrid model. 

Table 4.12: Summarized operating conditions for extrapolation test under same 

loading conditions (35 g/L loading capacity and 0.2% aggregate content). 

Exp: experimental conditions for model calibration and validation.  

 Flow rate (cm/h) Gradient length (CV) 𝑐𝑠,𝑠𝑡𝑎𝑟𝑡 (mM) 𝑐𝑠,𝑒𝑛𝑑 (mM) 

Exp 300/150 10/40 425 0 

Test 1 100 5 300 30 

Test 2 200 30 400 50 

Test 3 250 15 200 10 

Test 4 500 20 350 40 
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The extrapolation test is based on a new operation sequence in Table 4.12, along 

with four varying operating parameters (including flow rate, gradient length, and the 

starting and ending salt concentration). Four different test operating conditions for 

generating in-silico datasets are chosen and enumerated in Table 4.12. The predicted 

elution curves obtained from mechanistic and hybrid model are compared in Figure 

4.13. Although the operating sequence (with step elution introduced) and conditions are 

different, no significant difference in the simulated results using the two different types 

of models is observed, indicating the good extrapolation capability and robustness of 

the established hybrid model. These simulations could help us investigate how the 

combination of step and gradient elution strategies and salt concentration would impact 

the overall shape of the elution curves, which indicates the importance of modeling 

approaches to help investigate such phenomena and increase process understanding 

with minimum experimental effort. In Figure 4.13a, the prediction for the dimer 

behavior under the first test condition seems greatly different, but it should be noted that 

this prediction is magnified by 20 times. The comparison of unmodified dimer 

concentration is displayed in Figure 4.14, and the difference is found to be negligible. 

Furthermore, monomers are the target and it is thus much more significant to achieve 

accurate predictions of the behavior of monomers than that of dimers. 
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Figure 4.13: The comparison of predicted elution curves using hybrid and mechanistic 

models under four extrapolation tests.  

 

Figure 4.14: The comparison of extrapolation test 1 with unmodified dimer 

concentration. 
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4.3.3 Process Optimization 

In this work, under product quality and operating constraints, yield is maximized 

while the processing time is minimized by varying the decision variables specified in 

Section 4.2.5. Since mechanistic and hybrid models have been developed to describe 

the HIC process, the two different models are applied in the optimization case study to 

identify the best operating conditions. The results after process optimization are listed 

in Table 4.13. The maximum yield acquired by the hybrid model is 99.45%, slightly 

higher than that (98.05%) from the mechanistic model, but the processing time of the 

hybrid model is a little bit longer. Because both models can reasonably describe the HIC 

process, there is no significant difference in the objective function values for the 

optimization case study. The optimal flow rates and peak cutting criteria are similar, but 

the obtained parameters during the elution steps are different. During the step elution 

phase with fixed elution length, with lower salt concentration, the shape of the band 

curve becomes sharper, resulting in more products eluted out, as shown in Figure 4.15. 

The following elution profile significantly changes when the gradient elution is 

introduced after the step elution. Moreover, it can be obviously found that the operating 

conditions for the gradient elution play an important role in affecting the elution 

behaviors. In this work, since the accuracy of the hybrid model is much higher than the 

mechanistic model, the optimization results from hybrid model are more reliable.  

Table 4.13: Optimized operating conditions and objectives using mechanistic and 

hybrid model. 

Optimized operating conditions 

 
𝑄 

(cm/hr) 

Gradient 

length (CV) 

𝑐𝑠,𝑠𝑡𝑎𝑟𝑡 

(mM) 

𝑐𝑠,𝑒𝑛𝑑 

(mM) 
𝑈𝑉1 (OD) 

𝑈𝑉2 

(OD) 

Mechanistic 110.9 3.8 228.5 86.3 0.54 0.5 

Hybrid 111.2 5.9 185.7 64.5 0.51 0.5 
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Table 4.13 continued.  

Column performance metrics 

 Yield (%) Purity (%) 𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠(ℎ𝑟) 

Mechanistic 98.05 99.925 3.41 

Hybrid 99.45 99.925 3.76 

 

Figure 4.15: The predicted elution curves under optimized operating conditions 

obtained from mechanistic (a) and hybrid models (b). 

4.4 Conclusions 

This chapter focused on investigating the separation of monomers and dimers in 

hydrophobic interaction chromatography with an integrated experimental and modeling 

approach. At first, a modified isotherm derived from Wang et al. is built to reliably 

describe the HIC adsorption process, with an equilibrium dispersive model used to 

characterize the mass transport. However, since adsorption in HIC is highly related to 

the salt concentration and the mechanism is still unclear, the development of the 

isotherm requires a high-level process understanding and knowledge, which 

significantly increases the effort of model development.  
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Thus, a hybrid model approach is employed to reduce such effort and extract the 

missing relationships that cannot be captured by the mechanistic model. We proposed 

that the hybrid model can be constructed by combining a neural network with a simple 

but well-known isotherm (multi-component Langmuir). There are various ways to 

include a NN in the MCL equation, and it is found that how the two elements are 

integrated is an important component of the hybrid model performance. Once the 

appropriate hybrid model structure is identified (Hybrid_Desorption), the effects of 

different NN structures (number of hidden layers, number of nodes in each hidden layer, 

and activation function) and regularization rates are thoroughly examined to determine 

the hybrid model with the best performance. With a very small neural network structure 

(1 hidden layer with 2 nodes and sigmoid as the activation function), the accuracy of 

the obtained hybrid model is much higher than that of the mechanistic model, with an 

overall improvement of 62% and 31.4% in the calibration and validation datasets, 

respectively. Moreover, the developed hybrid model exhibits excellent extrapolation 

capability by comparing the in-silico simulations generated from the hybrid and 

mechanistic models. The methodology proposed in this work to construct hybrid model 

from a simplified known isotherm can help reduce the effort to identify the underlying 

mechanism and provide significant guidance to investigate the sophisticated process 

with limited insights.  

Process optimization is performed based on the provided case study to maximize 

the yield and minimize the processing time, subject to quality and operating constraints. 

The optimal yield obtained by the hybrid model (99.45%) is higher than that (98.05%) 

from the mechanistic model, although the processing time of the hybrid model is longer. 

Although the developed models have been calibrated and validated by the experimental 



 132 

data, a limitation of the optimization results is the lack of equipment validation. For 

future work, experiments could be performed to validate the optimization results. 

Additionally, the proposed methodology to develop hybrid models from a simplified 

isotherm can be applied to other types of chromatography. 
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FLOWSHEET MODELING FOR INTEGRATED CONTINUOUS 

BIOPHARMACEUTICAL PROCESS 

5.1 Introduction 

The commercial-scale production of biopharmaceuticals is currently performed 

in batches in which each unit operation is operated in sequence [164, 171]. However, 

due to the fast expansion of market demand, continuous production has become a 

promising alternative to producing mAbs, which has various advantages including 

higher and constant product quality, increased productivity and yield, smaller footprint, 

and rapid capacity adjustment [57]. Many other fields, such as food, petrochemical, 

chemical, mechanical, and small molecular pharmaceutical drug production, have 

achieved the transition from batch to continuous operation, but the fully integrated 

continuous biomanufacturing for the production of biotherapeutic products has not been 

implemented commercially [6, 13].  

Nonetheless, some significant progress has been accomplished in the 

construction of continuous bioprocess in recent years [1, 9, 75]. Perfusion bioreactors 

with different cell retention devices (such as tangential flow filtration, TFF, and 
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alternating tangential filtration, ATF) are introduced as enabling technology for the 

continuous upstream process to maintain higher cell density and increased product titers 

[7, 236-238]. The economic comparison between fed-batch and perfusion bioreactors 

has also been comprehensively investigated based on dynamic simulation [8, 239] and 

mass balance [240]. A representative platform for the downstream purification process 

includes Protein A chromatography for primary capture, virus inactivation with a low-

pH hold, one or more polishing chromatography steps, virus removal by nanofiltration, 

and final ultrafiltration/diafiltration [30]. Multi-column periodic counter-current 

chromatography (PCC) has been developed for the primary capture and polishing steps 

to effectively improve productivity, increase resin capacity utilization, and lower buffer 

consumption [82, 174, 177, 186]. Different reactors like coiled flow inversion reactor, 

tubular reactor, packed-bed reactor [241], and plug flow reactor [242] have been 

proposed to achieve continuous in-line virus inactivation. For the final formulation step 

for buffer exchange and/or product concentration, single-pass tangential flow filtration 

(SPTFF) has been designed to provide continuous ultrafiltration and diafiltration [243, 

244]. There have been several successful examples of integrating perfusion cell culture 

with continuous downstream unit operations to achieve integrated continuous 

biopharmaceuticals reported from academia and industry [245-249]. In addition, single-

use technology has also been developed, and it has been demonstrated that incorporating 

such technology into continuous biomanufacturing has significant economic benefits 

[250, 251]. 

The development of emerging technology such as the ones highlighted before is 

critical to building a truly continuous biomanufacturing line, but the demonstration of 

its economic viability is also significant to drive its commercialization [252]. Cost 
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evaluations of establishing continuous platforms to produce various monoclonal 

antibodies (mAbs) have been conducted by many research groups over the past decade 

[253-256]. Ou et al. [150] and Gupta et al. [156] compared the economic assessments 

between batch and continuous mAb production bioprocess, and cost savings of 35% to 

68% have been determined to characterize the transition from batch to continuous 

operation, demonstrating the tremendous economic benefits and efficiencies of the 

continuous process. Different continuous platforms with varying unit procedures (such 

as perfusion technologies, capture scenarios, and polishing steps with membrane 

chromatography) have also been thoroughly evaluated [55, 59, 158, 257]. In addition to 

cost evaluations, Pollock et al. [258] compared the environmental impacts and 

operational feasibility of different manufacturing strategies, and it is found that 

continuous processing can offer ecological and operational robustness benefits. 

However, there are still many aspects that need to be considered. To our knowledge, 

few papers take the media and buffer preparation into consideration when building the 

continuous platforms although it has been shown that buffer preparation is significant 

in affecting the overall operational and scheduling activities [143, 259, 260]. The 

investigation of the shift of the bottlenecks is also limited when production increases. 

Moreover, most papers perform scenario analysis to examine the impact of process 

variables on production economics [150, 156, 261, 262], but few of them investigate the 

impacts on the environmental footprints [55, 263].  

Thus, technical approaches are proposed in this work to solve the 

aforementioned challenges. Since our previous work has demonstrated the benefits of 

continuous bioprocess over batch operation [150], this work will focus on the 

implementation of the continuous process. For readers who are unfamiliar with the 
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background of the comparison between batch and continuous processes, we would like 

to recommend our previous work and those papers [55, 57, 59, 156, 158, 254, 258, 261, 

262]. In this paper, mAb is chosen as representative molecules to build a detailed 

integrated continuous process with the addition of media and buffer preparation. Novel 

technologies including N-1 perfusion seed bioreactors, SPTFF, and single-use systems 

are incorporated into the process design. Scheduling is performed to achieve the 

implementation of real-time media and buffer addition, followed by performing a 

comprehensive economic analysis and evaluating ecology impacts by calculating 

environmental indicators (E-factors). Subsequently, scenario analysis is used to evaluate 

the influence of titer and bioreactor scale on process economics and environments. The 

shift of process debottlenecks when the upstream production capacity increases is also 

thoroughly investigated. Membrane chromatography is an emerging technology that can 

eliminate pore diffusion, improve bioseparation efficiency, and reduce buffer usage 

[264, 265], so the effect of membrane chromatography on the overall process 

performance is examined in terms of the economic and ecology impacts. 

5.2 Methods 

5.2.1 Process Description  

The traditional batch platform to produce mAb therapeutics consists of cell 

culture, primary capture, virus inactivation, polishing, virus removal, and final 

formulation. The structural similarities between different mAbs make this platform 

widely accepted and regarded as an industry benchmark. Thus, this platform is adopted 

in this study to construct the continuous process, and the corresponding process flow 

diagram (PFD) is shown in Figure 5.1. It should be noted that there are multiple surge 
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tanks in the end-to-end integrated continuous process diagram, which are located before 

and after the multi-column continuous chromatography operations to eliminate the 

cyclic discontinuity. The introduction of surge vessels adds safety, flexibility, and 

robustness to a fully continuous biomanufacturing line by providing a temporal buffer 

[266, 267].  

Instead of the conventional perfusion expansion stage, N-1 perfusion seed 

culture is considered in this work because this approach can provide higher target cell 

density (i.e., greater than 50 × 106 cells/mL) and shorten the culture process time (i.e., 

days not weeks) [268]. The cell density of N-1 seeding bioreactor is assumed to be 

80 × 106 cells/mL, with two days for setting up and five days for perfusion. The volume 

of the seed bioreactor is estimated to be half that of the production bioreactor. 

Subsequently, the cells from the N-1 seed bioreactor are transferred to the production 

bioreactor, which has a setup duration of 1 day to ensure that the perfusion reaches a 

steady state. The culture is operated continuously for 28 days at a steady state with a 

titer of 1.6 g/L. Tangential flow filtration (TFF) is used as the cell retention device to 

separate cells from the liquid phase and recycle them for fermentation. The details of 

the upstream perfusion process are enumerated in Table 5.1.  

In order to adjust the loading flowrates to the chromatography and distribute the 

product to different columns, a surge tank is placed to connect the upstream and 

downstream processes, as shown in the PFD. Three-column continuous Protein A 

affinity chromatography is chosen as the primary capture to remove culture media 

components, host cell proteins, and DNA. A surge vessel is installed after the Protein A 

chromatography to periodically collect the eluate and continuously transfer material out 

to the virus inactivation. A plug flow reactor (PFR) is chosen for continuous in-line low-

https://www.wordhippo.com/what-is/another-word-for/enumerate.html
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pH hold. The Protein A eluate pool is diluted in-line with hypochlorous acid to reach a 

low pH value before transferring into a plug flow reactor (PFR) with a residence time 

of 30 min. Following the reactor hold, the virally inactivated mixture will be neutralized 

to desired pH values by the continuous addition of Tris base before entering the 

polishing step. Two polishing chromatography steps are employed to further purify the 

protein by removing the product-related and residual process-related impurities in this 

work. The first polishing step is performed using twin-column flow-through anion-

exchange chromatography (AEX), followed by the second step accomplished by three-

column cation-exchange chromatography (CEX) operated in the bind and elute mode. 

There is a surge tank between AEX and CEX to adjust the flowrate and mix it with the 

titration buffer before the product goes into the CEX. The eluate from the polishing step 

is transported to the surge tanks and then to dead-end nanofiltration to remove the virus 

and further keep the material sterile before moving into the final formulation. Single-

pass tangential flow filtration (SPTFF) module is utilized to offer continuous 

ultrafiltration and diafiltration with countercurrent flow considered. The basic idea of 

downstream process design is summarized above, and the corresponding detailed 

information is listed in Table 5.1.  

In many papers, the annual throughput is initially defined with respect to the 

target product, followed by process design to satisfy these demands [150, 156]. 

However in this study, the process is designed based on the available commercial 

equipment and the yearly productivity is calculated from the designed process. This 

strategy is chosen for process design because there is currently no fully automated 

continuous biopharmaceutical plant, so the focus of this work is on the implementation 
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of continuous manufacturing process. Following this analysis, a scale-up/down 

approach can be used to change the annual production rate based on the market demand.  

 

Figure 5.1: Process flow diagram (PFD) for continuous mAb production process. 

Table 5.1: Details of the continuous platform for mAb production. 

Unit operation Parameter Continuous 

N-1 seed bioreactor 

Total volume (L) 250 

Working volume (L) 200 

Perfusion rate (vvd) 1 

Cell density (Mcells/mL) 25 

Operating time (days) 5 
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Table 5.1 continued.  

Perfusion bioreactor 

Total volume (L) 500 

Working volume (L) 400 

Perfusion rate (vvd) 1.5 

Cell density (Mcells/mL) 120 

Operating time (days) 28 

mAb titer (g/L) 1.6 

Bleed flowrate (kg/h) 2.51 

Protein A 

chromatography 

No. of columns 3 

Yield (%) 90 

Resin binding capacity 

(g/L) 
60 

Resin lifetime (cycles) 180 

Bed height (cm) 12 

Bed diameter (cm) 12.6 

Aspect ratio 0.952 

Residence time (min) 3.8 

Virus inactivation  

Residence time (min) 30 

Yield (%) 98 

PFR volume (L) 1.9 

AEX 

Operating mode Flow through 

No. of columns 2 

Yield (%) 90 

Resin binding capacity 

(g/L) 
150 

Resin lifetime (cycles) 175 

Bed height (cm) 20 

Bed diameter (cm) 8 

Residence time (min) 16.4 

CEX 

Operating mode Bind and elute 

No. of columns 3 

Yield (%) 90 

Resin binding capacity 

(g/L) 
40 

Resin lifetime (cycles) 300 

Bed height (cm) 12 

Bed diameter (cm) 10 

Aspect ratio 1.2 

Residence time (min) 22.3 
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Table 5.1 continued 

Virus removal 

No. of filters 4 

Operating time of each filter 

(days) 
7 

Yield (%) 95 

Filter size (m2) 0.5 

SPTFF 

Flux (L/m2/H) 54.7 

Yield (%) 95% 

Output flowrate (mL/min) 2.6 

Buffer/media 

preparation 
Surge tank volume (L) 50/100 

 

 

5.2.2 Process Scheduling 

Process scheduling is performed to determine the sequence and timing of each 

process in different units to ensure that the integrated production process runs properly. 

The main equipment occupancy chart for the designed process is shown in Figure 5.2, 

and it can be seen that this process is operated continuously for 28 days. The different 

color bars in the equipment occupancy chart represent different batches. The cycle time 

of the process can be determined by the length of one color bar. Only one column is 

displayed in each multi-column step because the occupancy chart of other columns is 

approximately the same on the one-year horizon. Scheduling for the media and buffer 

preparation steps is carried out to realize real-time addition. It is impractical to 

enumerate all the scheduling details in the implementation of media and buffer addition, 

so we chose the buffer addition in the primary capture step as an illustrating example to 

explain the idea behind it. 
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Figure 5.2: Main equipment occupancy chart for the continuous mAb production 

process. Legend: DSBS-101, seed bioreactor; Disposable Bior, production 

bioreactor; C-101, one protein A column in primary capture; Virus 

inactivation, plug flow reactor; C-104, one AEX column; C-106, one CEX 

column; DE-102–UF104: SPTFF.  

The primary capture operation of Protein A chromatography includes the 

following procedures [150]: two pre-washing steps, loading, wash, elution, 

regeneration, and equilibrium. Each process buffer is filtered through a bioburden 

reduction filter to ensure sterility as shown in Figure 5.3. In primary capture, three buffer 

preparation lines are built for chromatographic operations. To simplify the occupancy 

chart, only three buffer hold tanks corresponding to three different lines, and three 

chromatography columns are shown in Figure 5.4. The three columns (C-102, C-101, 

and C-103) work sequentially according to the defined steps, with buffers drawn from 

the holding tanks. SDLB-114 provides buffer for two washing and equilibrate steps, 

SDLB-109 for elution and SDLB-111 for regeneration. It can be found that the addition 

of buffer follows the operation of the master equipment (i.e., chromatography) and the 
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tank is on hold if no operation is performed on the buffer. The cycle time of each holding 

tank is long enough to make sure each column finishes all the steps. 

 

Figure 5.3: The schematic representation of buffer preparation step in primary capture. 

Red lines: loading step from the surge tank SDLB-101 between upstream 

and Protein A chromatography; orange lines: washing steps from washing 

buffer hold tank SDLB-114; turquoise lines: elution steps from elution 

buffer hold tank SDLB-109; green lines: regeneration steps from 

regeneration buffer hold tank SDLB-111; blue lines: equilibration steps 

from the washing buffer hold tank SDLB-114 (because the equilibration 

buffer and washing buffer are the same). DE-110, DE-107, DE-106: sterile 

filtration; SDLB-113: washing/equilibration buffer preparation tank; 

SDLB-110: elution buffer preparation tank; SDLB-112: regeneration 

buffer preparation tank; SDLB-133: surge tank after Protein A 

chromatography to cyclically collect the eluate.  
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Figure 5.4: Scheduling of buffer preparation in primary capture. W: first and second 

washing steps; L: loading; Elu: elute; R: regeneration; E: equilibrate; H: 

hold; T: buffer transfer into the buffer hold tank. Red: operation in the first 

column (C-102); purple: operation in the second column (C-101); orange: 

operation in the third column (C-103). C: chromatography columns; 

SDLB-114: washing/equilibration buffer hold tanks; SDLB-109: elution 

buffer hold tanks; SDLB-111: regeneration buffer hold tanks. 

5.2.3 Process Economics 

In the cost evaluation, the production expenditure is comprised of capital 

expenditure (CapEX) and operating expenditure (OpEX) as can be seen in Figure 5.5. 

CapEX includes direct fixed capital (DFC), working capital, and start-up and validation 

cost. The DFC, referring to the fixed assets of an investment, can be calculated by 

summing up direct cost (DC), indirect cost (IC), and other cost (OC). The DC contains 

cost elements directly related to an investment, such as the equipment purchase cost, 

installation cost of equipment, process piping cost, instrumentation cost (like the 

transmitters, controllers, panels, control computers, etc.), insulation cost (insulation and 

painting), electrical cost, building cost (including process towers, control room, 

stairways, etc.), yard improvement cost (such as roads, fences, parking spaces, etc.), and 

auxiliary facilities cost (e.g., steam plant). Each cost component is proportional to the 

equipment purchase cost, and the proportional coefficients are listed in Table 5.2. 

Equipment costs are estimated using exponential method correlations as shown in 

Equation 5.1 [261]. The reference cost and size for all the equipment are obtained from 
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the literature or vendor resources and employed after consulting with our industrial 

partners in Table 5.3. It should be noted that the reference size of filters is based on the 

filter area instead of the membrane volumetric flux rate due to the limitation of SuperPro 

Designer.  

 𝑐𝑜𝑠𝑡 = 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑐𝑜𝑠𝑡 × (
𝑠𝑖𝑧𝑒

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑖𝑧𝑒
)

𝑛

 5.1 

 

Figure 5.5: Production expenditure breakdown with capital expenditure (CapEX) and 

operating expenditure (OpEX). 

The IC represents the costs indirectly associated with the investment, like the 

engineering and construction costs, which can be calculated by multiplying DC with 

specific factors. The last component of DFC is the miscellaneous or other costs, such as 

contractor’s fees and contingencies, which are in proportion to the sum of DC and IC. 



 146 

The second component of CapEX, working capital, which characterizes the assets 

required to operate the facility and is difficult to quantify directly, can be approximated 

by assuming one month of labor, raw material, utilities, and waste treatment cost. The 

last component includes the start-up and validation cost, which is estimated to be 5-10% 

of DFC.  

The economic efficiency of different operation processes is compared by the 

cost of goods per gram (COG/g), which is defined in Equation 5.2 [150].  

 COG/g =

𝐶𝑎𝑝𝐸𝑋

𝑦𝑒𝑎𝑟𝑠 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛
($/𝑦𝑟)+𝑎𝑛𝑛𝑢𝑎𝑙 𝑂𝑝𝐸𝑋($/𝑦𝑟)

𝑎𝑛𝑛𝑢𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (𝑔/𝑦𝑟)
 5.2 

Table 5.2: Capital cost estimation in the economic analysis. 

Cost items 
Reference 

Cost 

Multiplier to Reference 

Cost 

Direct Cost 

(DC) 

Equipment Purchase 

Cost (PC) 

PC 

1 

Installation cost of 

equipment 

Varies in different 

equipment 

Process piping cost 0.35 

Instrumentation cost 0.35 

Insulation cost 0.03 

Electrical cost 0.15 

Building cost 0.45 

Yard improvement cost 0.15 

Auxiliary facilities cost 0.50 

Indirect Cost 

(IC) 

Engineering 
DC 

0.25 

Construction 0.35 

Other Cost 

(OC) 

Contractor’s fee 
DC+IC 

0.05 

Contingency costs 0.10 
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Table 5.3: Equipment purchase cost estimation. The correlations were built with data 

from discussions with our industry partners, SuperPro Designer software, 

and various publications [150, 261, 269].  

Equipment Reference size Reference Cost ($) Index (n) 

Single-use bioreactor 2000 L $800,000 0.25 

Filtration skid 1 m2 $257,420 0.22 

PCC Chromatography 

skid 
28.3 L $495,000 0 

UFDF skid 1 m2 $103,250 0 

Twin-column AEX 

skid 
0.39 L $284,000 

- 
Surge tank 

200 L $42,000 

100 L $40,000 

50 L $32,000 

PFR 1.9 L $71,000 

TFF 
10.5 m2 $41,000 

2.1 m2 $26,000 

 

 

The second part of production expenditure is OpEX, which covers the cost for 

raw materials, labor, Lab/QC/QA (laboratory/quality control/quality assurance), 

consumables, facility-dependent, utilities, and waste treatment and disposal. The costs 

for materials and consumables are referenced from the published data or the vendor 

sources, as shown in Table 5.4. Lab/QC/QA is assumed to account for 20-25% of labor 

cost. Facility-dependent cost refers to the cost associated with the use of facility, such 

as equipment maintenance, depreciation of the fixed capital cost and miscellaneous cost. 

 

 



 148 

Table 5.4: Consumable cost estimation. The price is based on discussion with our 

industrial partners and SuperPro Designer software. 

Consumables Reference Cost ($) 

Protein A resin $18,600/L 

CEX resin $2,400/L 

AEX resin $1,750/L 

Membrane absorber $15,000/m2 

TFF membrane $3,300/m2 

UF membrane $4,400/m2 

Dft Membrane $560 /m2 

Virus removal filter $10,920//m2 

SU bags (500 L) $8,000/item 

SU bags (200 L) $6,000/item 

SU bags for mixing (200 L) $820/item 

SU bags for mixing (100 L) $690/item 

SU bags for mixing (50 L) $600/item 

SU bags for storage (100 L) $340/item 

SU bags for storage (50 L) $310/item 

 

 

5.2.4 Simulation Software 

There are three commonly used simulation software packages for economic 

analysis and the detailed comparison of the three software can be found in our previous 

paper [150]. In this work, SuperPro Designer (Intelligen, Inc., Scotch Plains, NJ) is 

chosen for flowsheet modeling and process analysis of the continuous process. This 

software has many capabilities such as process design, process modeling and 

scheduling, economic analysis, throughput analysis, and process bottlenecking which 

we will utilize in the next sections.  
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5.2.5 Ecology Impacts 

Besides cost analysis, the evaluation of ecological impact of a process is also 

critical to help raise awareness and promote ecological sustainability and facilitate the 

implementation of new technology using the stricter environmental regulations. The 

water and consumable consumption of different biopharmaceutical processes are 

compared by E-factors to assess their environmental burden because E-factor is the most 

commonly used metric in small-molecule drugs manufacturing [59]. E-factor is defined 

as the total amount of reagents, water, and consumables per unit product produced. 

Since single-use technology is incorporated into the process design, the cleaning-in-

place (CIP) and steaming-in-place (SIP) requirements can be eliminated [250, 270]. 

Thus, E-factor values are only calculated for the consumption of process water 

(including cell culture media and process buffers) and consumables (such as single-use 

bags, resins, and membranes in Table 5.5) in this work. It is worth noting that process 

mass intensity (PMI) serves as a metric in other research papers [55, 271, 272] for 

assessing environmental impact. PMI is characterized as the total amount of water, raw 

materials, and consumables utilized per unit of active pharmaceutical ingredient 

produced in a process. Given these definitions, the calculation of E-factors and PMI 

remains consistent in this scenario. 

Table 5.5: Consumable unit masses. The data is from Pollock’s thesis [269] and 

adjusted based on our assumptions. 

Consumables Mass per Unit (kg) Unit 

Chromatographic resin 1.5 Liter of resin 

Membrane 4 m2 of filter 

SU bags for bioreactor 
2.5–7 (varies at different 

scales) 
item 

SU bags for surge tanks 
1.5–3.4 (varies at different 

scales) 
item 
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5.2.6 Scenario Analysis 

Scenario analysis is performed to evaluate the impacts of changing process 

parameters on the process economics and ecological impact. Parameters such as the 

varied bioreactor scales and upstream titer values are taken into consideration to assess 

the overall process impacts. The values of the different scenarios considered in the 

scenario analysis are provided in Table 5.6. Specifically, the bioreactor volumes range 

from 60 to 2000 L for throughput analysis. For upstream titer analysis, the facility size 

remains constant while the titer values are set to be ±10%, ±20%, and ±30% of the 

nominal value of 1.6 g/L.  

Table 5.6: Summary of bioreactor scales and upstream titers considered for the base 

case and scenario analysis. 

Varying Parameters Base scenario Scenario analysis 

Bioreactor scale (L) 500 60, 1000, 2000 

Upstream titer (g/L) 1.6 ±10%, ±20%, ±30% 

 

 

5.2.7 Process Debottlenecking 

Process debottlenecking is performed by increasing the production capacity of 

existing facilities and identifying the bottleneck steps. Investigation of process 

bottlenecks can help improve the plant capacity with minimal effort and investment, 

which is of great significance. Annual throughput equals the number of batches 

multiplied by the batch size throughput. Based on this definition, there are two types of 

bottlenecks. One is the scheduling or time bottleneck, which is the equipment or 

resources that limit the number of batches per year. Cycle time reduction can help 
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address this bottleneck. Since this process is operated continuously, scheduling 

bottleneck cannot be studied as the cycle time cannot be reduced. Another type of 

bottleneck is defined by the capacity of the production steps and is referred to as the 

capacity bottleneck.  In the designed continuous process, the upstream is the production 

stage while the downstream is only for purification, so the perfusion bioreactor in this 

case is the capacity bottleneck which limits the plant productivity. 

5.2.8 Overall Methodology 

 

Figure 5.6: The overall framework for cost and ecology evaluation of continuous mAb 

production. The green box represents the repetitive procedures for an 

alternative design. 



 152 

The overall methodology for economic and ecological evaluation of continuous 

bioprocesses is illustrated in Figure 5.6. Initially the process is designed based on 

commercial equipment sizes, followed by process scheduling to achieve real-time 

addition of media and buffer, and integration of the entire process operations. In the next 

step economic and ecology analyses are carried out to evaluate the cost and 

environmental impacts of the specific design. Scenario analysis is performed to assess 

the effects of the bioreactor scale and upstream titer on the economics and 

environmental impact indicators. Following that, process debottlenecking is conducted 

to investigate the shift of bottlenecks when the upstream production increases. 

Membrane chromatography is an emerging technology with significant economic 

benefits, so the incorporation of membrane chromatography in the process design is also 

considered, with the economic and ecology examination. Different design alternatives 

can be considered at this stage of the overall methodology.  

5.3 Results and Discussion  

5.3.1 Economic Analysis 

This section provides the total cost evaluation results based on the base case 

scenario with the production bioreactor volume of 500 L and titer of 1.6 g/L. Under the 

current assumptions, the annual production rate is 143.71 kg/yr with the overall capital 

investment and the yearly operating cost being $36.6 and $12.2 million, respectively. 

The total cost of goods is calculated to be $102.2/g, of which the operating COGs are 

$85.2/g. To help visualize the contribution of each unit operation to the overall 

economics, the upstream process comprises media preparation and cell culture sections, 
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while the downstream is divided into primary capture, virus inactivation, polishing, 

virus removal, final formulation, and buffer preparation sections.  

The cost breakdowns of capital investment and operating expenditure in each 

section are displayed in Figure 5.7. From Figure 5.7a, it can be observed that the cell 

culture section contributes most to the total capital expenditure, accounting for almost 

one-third (30%) of the overall investment. The second contributor is the buffer 

preparation section with a portion of 25%, as there are multiple tanks used to supply 

buffer, which also indicates the importance of investigating buffer preparation. The next 

contributor is the sections containing the continuous chromatography skids (i.e., 17% 

for polishing step and 10% for primary capture). In Figure 5.7b, the upstream process 

represents 40% of the entire operating cost, with 24% devoted to cell culture and 16% 

to media preparation. In other words, media preparation contributes as much as 40% of 

the upstream process, which also prompts us to look more closely at the media addition. 

The downstream process has the most significant contribution to the operating 

expenditure at 60%. Among them, buffer preparation (19%) contributes most to the 

downstream operating cost, followed by primary capture, polishing, virus removal, final 

formulation, and virus inactivation (14.5%, 12.8%, 7.7%, 3%, and 2.7%; respectively). 

Figure 5.7b only offers us the economic contributions at a high level, so the 

detailed operating COG values at different unit operations are provided in Figure 5.8a, 

which is consistent with the analysis of Figure 5.7b. Figure 5.8b shows the operating 

COGs breakdown at different cost categories. It can be found that the unit operating 

cost of goods for facility-dependent cost (including equipment maintenance, 

depreciation of the fixed capital cost and miscellaneous cost) is $45/g, which accounts 

for the largest portion (approximately 53%). Materials, labor-dependent, and 
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consumables costs are also significant to the operating expense, which has a percentage 

of 14.8%, 11.8% and 20.2%; respectively. Since facility-dependent, labor, consumables, 

and materials costs are significant to the operating cost, the breakdown of each expense 

for different sections is displayed in Figure 5.9. 

 

Figure 5.7: Capital cost (a) and operating expenditure (b) breakdown in different 

sections. 

 

Figure 5.8: Operating cost of goods (COGs) breakdown in different sections (a) and 

cost categories (b). VI: virus inactivation; VR: virus removal; FF: final 

formulation. 
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Figure 5.9: Cost breakdown with different sections. 

The facility-dependent cost breakdown analysis result follows the same trend of 

capital investment breakdown because the facility-dependent cost is highly dependent 

on equipment cost. The total labor costs are estimated to be around $1.4 million for the 

continuous process, similar to the value in Klutz’s work [261]. The labor-cost 

breakdown analysis can give a general idea of the labor cost distribution in each section. 

It can be seen that cell culture, primary capture, buffer preparation, and polishing steps 

are significant contributors. From the consumable cost breakdown, primary capture is 

found to account for the highest portion because Protein A resin is very expensive, 

which is in line with our previous analysis [150]. Cell culture, virus removal, buffer 
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preparation, and polishing steps also play an essential role in the overall consumable 

cost as single-use technologies are incorporated into the process design. In terms of the 

materials cost breakdown, it can be seen that the media preparation contributes as much 

as 89% of the overall materials cost, conforming with what is observed in practice.  

5.3.2 Ecological Analysis 

Ecological analysis is performed to evaluate the environmental footprint of the 

designed continuous process on the basis of E-factor analysis, as shown in Table 5.7. E-

factor values are expected to be negatively related to the environmental burden – a lower 

value represents fewer resources required to produce 1 kg of product. It can be found 

that water usage has the most significant contribution to the process E-factors, 

accounting for nearly 99.7%, which is in agreement with the findings that this is a water-

intensive process operation [55, 263, 273]. In our simulation, 4865.6 kg water is 

required to make 1 kg mAbs, which is consistent with the findings in the literature that 

a standard mAb manufacturing process consumes 3,000 to over 7,000 kg water per 

kilogram product [258]. In addition, the upstream process consumes approximately 

29.6% of the process water, similar to 20% to 25% consumption [258]. The E-factor for 

consumable consumption is estimated to be 11.1 kg/kg, which is in the range of 4.6 to 

37.4 kg/kg reported in the literature [59]. Due to the dominance of water consumption 

by the media and buffer preparation sections, the breakdown of E-factors in each section 

is not provided. Instead, the comparison of process water usage between upstream and 

downstream processes is given.  
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Table 5.7: E-factors for process water and consumable usage in the upstream, 

downstream, and whole process. 

 
E-factors (kg/kg product) 

Upstream Downstream Whole Process 

Process water 1441.6 3424.0 4865.6 

Consumables  4.2 6.9 11.1 

Total E-factor 1445.8 3430.9 4876.7 

 

 

5.3.3 Scenario Analysis 

Parameter fluctuations and variations are inevitable in practice during 

pharmaceutical manufacturing. In order to evaluate the inherent risks and estimate the 

impacts of variable bias on the process, scenario analysis is performed in this chapter. 

Two variables – bioreactor scale and upstream protein titer – are assessed to investigate 

their effects on the economic and ecological results. The deviations of process variables 

in the scenario study are summarized in Table 5.6.  

5.3.3.1 Throughput Analysis 

Throughput analysis is conducted to evaluate the effect of bioreactor scales on 

production economics. Four different scales from 60 to 2000 L are chosen to perform 

the throughput study, as shown in Figure 5.10. It should be noted that the four volumes 

selected are commercialized equipment sizes. As can be seen from Figure 5.10a, the 

unit operating cost of goods ($/g) decreases as the bioreactor scale increases, as would 

be expected from “economy of scale” [274]. Figure 5.10b provides the media 

consumption at different scales, which increases from 2,235 to 72,281 L/batch with the 

increase of the bioreactor volume from 60 to 2000 L. This analysis of media utilization 

would help decide the manufacturability of the process. Figure 5.10c shows the unit 
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operating cost breakdowns with different categories and sections. It can be found that 

facility-dependent cost significantly decreases as this cost is highly dependent on the 

capital cost. The total labor cost should remain unchanged in different cases, but there 

is a reduction in the unit labor cost as the production rate increases. The consumables 

and Lab/QC/QA costs per unit also slightly decrease, but there is negligible change in 

the unit material cost, probably because this cost is dominated by the media 

consumption independent of the bioreactor scale. In Figure 5.10d, it can be found that 

the unit operating cost of each section decreases, especially for the unit operations of 

buffer preparation, polishing, primary capture, and cell culture. Among them, buffer 

preparation has the largest cost reduction because the capital cost of buffer tanks per 

unit product remarkably decreases as the plant capacity increases, evidenced by the 

significant decrease in unit facility-dependent cost from $82.1/g to $3.2/g in buffer 

preparation.  

 

Figure 5.10: Change of total operating COGs (a), media consumption per batch (b), 

COGs breakdown at varying cost categories (c) and sections (d) with 

respect to different bioreactor scales. 
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In addition to the impacts of the bioreactor scale on the process economics, the 

effects on the ecological impacts are also investigated, as shown in Figure 5.11. Instead 

of comparing the absolute values of the E-factor, all the E-factors are normalized to the 

base case scenario, and the change of ratio to nominal value is compared. From Figure 

5.11a, it can be seen that the consumable usage decreases when the bioreactor scale 

increases, especially at the small scale. The trend of process water consumption and 

total E-factor is the same, due to the significant contribution of water usage to the whole 

process. It is interesting to observe that the water utilization first increases and then 

slightly decreases with the increase of bioreactor scales. When the process is scaled up 

or down, each equipment size is adjusted to make sure that it is commercially available 

instead of just scaling based on the bioreactor volume. In the process design with a 60 

L bioreactor, the working volume is set to 50 L because this volume is more likely to be 

used in practical applications. The ratio of working volume is 80% for the other 

bioreactor sizes. It is highly possible that the higher working volume ratio (83.3%) on a 

small scale results in lower water consumption as more products are produced. When 

the bioreactor scale increases from 500 to 2000 L, the water usage almost remains 

constant and only has a 2% reduction (decreasing from 4876.7 to 4775.6 kg/kg mAbs). 

This result makes sense as the materials used should be proportional to the plant capacity. 

Thus, there are few impacts of bioreactor scale on the process water consumption, but 

great effects on the consumable utilization on a small scale. Figure 5.11b shows the 

comparison of the percentage of water consumption between upstream and downstream 

operations, and it can be found that there are only minimal changes in the percentage 

when the bioreactor volume is changed. 
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Figure 5.11: Change of the ratio to the normal value of different ecology indicators (a) 

and comparison of the percentage of process water between upstream and 

downstream (b) with respect to bioreactor scales. 

5.3.3.2 Upstream Titer Analysis 

Titer, representing the concentration of protein harvested from the perfusion 

bioreactor, has notable influences on productivity, further affecting the downstream 

operations like operating time and cycles of chromatography. Therefore, multiple 

scenarios with varying titers around the nominal value are designed to evaluate the 

effect of titer on process economics, as listed in Table 5.6. The facility and 

manufacturing line remain the same when performing upstream titer analysis.  

First, it can be clearly seen that the overall unit operating cost ($/g) decreases by 

59% with the increase of titer from 1.12 to 2.08 g/L in Figure 5.12a, resulting from the 

increased annual production rate. The unit operating cost breakdown into different 

categories is shown in Figure 5.12b. The overall labor, facility-dependent, and 

Lab/QC/QA cost stay constant as the plant is fixed, but the corresponding unit operating 

cost reduction is observed as more product is produced. However, the total material and 

consumable costs increase, caused by the increased buffer consumption and usage of 

consumables like chromatography resins and filtration membranes. However, each 

corresponding unit cost decreases. The operating cost per unit in each section is also 
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inversely proportional to the titer due to the expansion of productivity to produce more 

mAbs.  

 

Figure 5.12: Change of total operating COGs (a), COGs breakdown at varying cost 

categories (b) and sections (c) versus the titer; Change of operating COGs 

in upstream, downstream, and the cost ratio (d). 

Moreover, the full operating costs in primary capture, polishing, final filtration, 

and buffer preparation are observed to increase, consistent with the above analysis, as 

illustrated in Figure 5.12c. It is interesting to observe as shown in Figure 5.12d, that the 

operating cost ratio between upstream and downstream processes is almost constant 

with increasing titer values. In our previous work [150], the ratio decreases in the 

continuous operation because the process bottleneck emerges in the downstream 

operation when the titer increases from 1.5 to 5.5 g/L and the operating cycles and time 

of primary capture are adjusted to debottleneck, but in our case, there is no bottleneck 
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emerging with the increase of titer up to 2.08 g/L. Thus, the process scheduling does not 

change, resulting in a constant ratio.  

 

Figure 5.13: Change of the ratio to the normal value of different ecology indicators (a) 

and comparison of the percentage of process water between upstream and 

downstream (b) with respect to different titers.   

The impact of upstream titers on the ecological footprint is also investigated. It 

can be seen from Figure 5.13a that the trend of different ecology indicators (water, 

consumables, and process consumption) with regard to the titer is almost the same. The 

ratio of the total E-factor to the base case nominal value decreases from 1.68 to 0.72 

when the titer increases from 1.12 to 2.08 g/L. In other words, the total consumption of 

water and consumables was reduced by 57.1%, indicating the significant improvement 

that the upstream titer on the environmental burden. Under the same platform, more 

product is purified, leading to more efficient use of consumables. Moreover, it is 

interesting to find that the changing trend slows as the titer continues to increase, 

suggesting that the ecological impacts of the existing plant are at the minimum when 

the titer achieves the critical value (2.36 g/L, introduced in Section 5.3.4). Figure 5.13b 

shows the comparison of water consumption between upstream and downstream 
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operations when titer varies. It can be found that the percentage of upstream water usage 

slightly decreases from 29.9% to 28.1% when titer increases from 1.12 to 2.08 g/L. The 

total water consumption for cell culture should remain the same when the titer changes 

under the current platform, but the upstream E-factor decreases as the production rate 

increases. As more product is produced upstream and needed to purify in the 

downstream operations, the water consumption for downstream increases from 70.1% 

to 71.9%. It should be noted that the change in the percentage in the upstream and 

downstream is small, because there is no bottleneck emerging in the current titer range.  

5.3.4 Process Debottlenecking 

Under the current platform, the bottleneck is identified as the production 

bioreactor since this unit operation influences the production capacity, but the 

bottleneck will shift from the upstream to downstream unit operations as the upstream 

production increases. The annual throughput depends on the bioreactor scale, titer, 

and/or perfusion rate. Since the current platform (i.e., the equipment size and process 

flow) remains unchanged, only two variables (i.e., titer and perfusion rate) are 

considered to increase the production and evaluate the bottleneck shift.   

The downstream operations including virus inactivation, virus removal, and 

final formulation are operated continuously for 28 days, so they will not become 

bottlenecks as the upstream production rate increases. The unit operations with cyclic 

behaviors like primary capture and polishing steps will potentially become bottlenecks. 

Our hypothesis is that by comparing the capacity utilization of the chromatography 

columns, we can determine which operation becomes bottleneck first. From Table 5.8, 

it can be found that protein A chromatography (ProA) has the highest capacity 

utilization (CU) while AEX has the lowest CU. Based on the previous assumption, 
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primary capture should become the bottleneck first when the production increases, 

followed by CEX and AEX. This hypothesis is tested by increasing the titer and 

perfusion rate to observe the occurrence and shifts of bottlenecks. The results are 

displayed in Table 5.9 and it is consistent with our presumption. Moreover, even if we 

push the titer or perfusion rate to the limit, no other unit operations will become 

bottlenecks, except those with cyclic processes.  

Table 5.8: Summary of the capacity utilization in each chromatography. 

Chromatography 
Capacity utilization 

(CU) 

Protein A (ProA) 

chromatography  
66.4% 

AEX chromatography  44.8% 

CEX chromatography  52.7% 

 

 

Table 5.9: Emerging of process bottlenecks with the increase of titer and perfusion 

rate. 

Titer (g/L) Process bottleneck Perfusion rate (vvm) Process bottleneck 

1.6 -- 1.5 -- 

2.4 ProA 2.5 ProA 

3.0 ProA + CEX 3.0 ProA + CEX 

3.6 ProA + CEX + AEX 3.5 ProA + CEX + AEX 

4.0 ProA + CEX + AEX 4.0 ProA + CEX + AEX 

5.0 ProA + CEX + AEX 5.0 ProA + CEX + AEX 
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The critical titer and perfusion rate are also investigated under the current 

platform, i.e., the primary capture would become a bottleneck if the titer or perfusion 

rate is further increased from the critical value. The operating cost per unit product is 

also compared in Table 5.10 and it can be concluded that the process is more 

economically efficient at critical titer compared with critical perfusion rate. The main 

reason is that increasing the perfusion rate will increase the media consumption per day, 

contributing to the increase of material and media preparation cost as shown in Figure 

5.14.  

 

Figure 5.14: Comparison of unit operating COGs under different cost categories (a) and 

sections (b) at critical titer and perfusion rate. VI: virus inactivation; VR: 

virus removal; FF: final formulation. 

Table 5.10: Unit operating COGs at critical titer and perfusion rate. 

Variable Critical value Unit operating COGs ($/g) 

Titer 2.36 g/L 50.9 

Perfusion rate 2.27 vvm 54.8 
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5.3.5 Alternative Design – Membrane Chromatography 

Packed-bed column chromatography using resins has been widely applied in 

biopharmaceutical manufacturing, but it mainly suffers from the slow pore diffusion 

rate, severely limiting its separation efficiency [265]. An alternative technology is 

adsorptive membrane chromatography, which integrates membrane and liquid 

chromatography into a single-stage operation. The economic benefit of membrane 

chromatography has been demonstrated compared with resin based chromatography. 

Tressel et al. [275] and Muthukumar et al. [257] investigated the economic viability 

without incorporating the membrane chromatography into the whole process, and 

Varadaraju et al. [276] performed the economic evaluation based on a batch process by 

replacing the overall purification train with a membrane-only process. Nevertheless, its 

application into the continuous end-to-end bioprocess has not been examined yet.  

Membrane chromatography, although not a new technology, offers many 

benefits, such as eliminating pore diffusion, lowering buffer consumption, reducing 

footprint, and saving the need of packing/unpacking the column [277, 278]. Moreover, 

the smaller bed volumes provided by membrane chromatography may result in reduced 

process time.  All these benefits are of interest to the industry, so the incorporation of 

membranes into the continuous process is demonstrated. Moreover, membrane 

chromatography is still a relatively new and immature technology, restricting its 

commercialization due to the low binding capacity and uneven flow characteristics 

encountered during scale-up processes [264], so it is considered in  the alternative design 

instead of the base case scenario. In this work, twin-column AEX and CEX membrane 

chromatography in flow-through mode are employed to replace the original polishing 

steps, referred to as “hybrid case.”  
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The economic and ecological comparisons of the base scenario and hybrid case 

are illustrated in Figure 5.15. The total operating COG/g decreases from $85.2/g to 

$75.4/g after the incorporation of the membrane chromatography in the continuous 

platform. As shown in Figure 5.15a, the cost reduction is mainly due to the polishing 

step and buffer preparation, demonstrating the economic benefits and low buffer usage 

of membrane chromatography, in line with the analysis provided in [257, 276]. Besides, 

the hybrid case shows the environmental benefits in comparison to the base case in 

Figure 5.15b. Although there is only a slight reduction from 11.1 to 10.5 in the 

consumable E-factor, the process water consumption significantly decreases from 

4865.7 to 3508.7.  Thus, investigation and incorporation of membrane chromatography 

into continuous bioprocess platforms can not only save operating costs but also alleviate 

the environmental burden by reducing water usage. 

 

Figure 5.15: Economical and ecological comparisons of the base case and hybrid case 

scenarios. VI: virus inactivation; VR: virus removal; FF: final formulation. 

5.4 Conclusions 

There is a rising interest in the transition from batch to continuous process in 

biopharmaceutical manufacturing to increase production flexibility and reduce cost. To 
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investigate the feasibility of developing continuous bioprocesses, a fully integrated end-

to-end continuous platform to produce mAbs is established in SuperPro Designer in this 

work. Some novel technologies are considered to be incorporated into process design, 

such as the N-1 seed bioreactor to obtain higher target cell density and reduce the 

expansion time and single-pass tangential flow filtration for the final formulation. Most 

importantly, media and buffer preparation steps are added, and the real-time supply of 

media and buffer to the master equipment is achieved within process scheduling. The 

process with a bioreactor volume of 500 L is regarded as the base-case scenario with an 

annual production rate of 143.71 kg/yr.  

After building the benchmark platform, economic and environmental analyses 

are thoroughly performed. Economic assessment is on the basis of the cost of goods, 

and for the base case, the total COGs are calculated to be $102.2/g, of which the 

operating COGs are $85.2/g. A detailed analysis of the economics breakdown for 

different sections and cost categories is also provided. It is found that the most 

significant contributor to the capital expenditure is cell culture, followed by the buffer 

preparation accounting for 25%, suggesting that it is not reasonable to ignore the buffer 

preparation step for cost analysis. In addition, media preparation contributes as much as 

40% to the upstream operating cost, and buffer preparation dominates the downstream 

operating expenditure. To evaluate the environmental impacts, E-factor is used as a 

quantitative metric. The simulation result shows that 4865.6 kg of process water and 

11.1 kg of consumables are required to manufacture 1 kg of product, demonstrating the 

water-intensive nature of biopharmaceutical manufacturing.  

Since process demand and productivity are variable, scenario analysis is 

conducted to examine the impacts of bioreactor scale and upstream titers on the process 
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economics and the environmental footprint. The unit operating COGs is found to 

decrease as either the bioreactor scale or upstream titer increases. The COGs breakdown 

at different cost categories and sections are also thoroughly analyzed. It is found that 

unit operating COGs of buffer preparation leads to significant cost reduction, especially 

when the bioreactor scale increases from 60 to 500 L. With the increase of titers from 

1.12 to 2.08 g/L, the overall operating cost per gram decreases by 59%. In terms of the 

environmental impacts, the escalation of bioreactor volumes decreases the consumable 

usage, especially at the small scale, but has little effect on the process water 

consumption. However, it can be observed that the consumption of water and 

consumables reduces by 57.1% with the increase of upstream titer, suggesting that 

increasing titer will improve the environmental burden. 

Moreover, the shift of bottlenecks is examined when the upstream production 

improves by increasing titer or perfusion rate. It was found that the bottleneck shifts 

from upstream to downstream cyclic chromatographic operations with the expansion of 

upstream production. Moreover, which operation becomes bottleneck first can be 

determined based on the capacity utilization of chromatography units. The critical titer 

and perfusion rate are also found, and the increase of titer is more economically efficient 

than that of perfusion rate.  

Membrane chromatography has demonstrated many advantages, so it is 

incorporated into the continuous bioprocess platform to replace the original polishing 

steps. It is found that the integration of membrane chromatography is more economical 

and more environmentally friendly based on reduction of water consumption.    

For future work, the developed model will be compared with the experimental 

results from the test bed team to further improve the prediction ability of the model. In 
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addition, the process failure rate can be considered in process design and economic 

evaluation as process failure occasionally happens due to filter clogging and fouling. To 

thoroughly investigate environmental sustainability, life cycle assessment (LCA) of the 

continuous bioprocess can be performed. With the incorporation of the above 

considerations, a more realistic and flexible continuous platform can be built.  
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CONCLUSIONS AND PERSPECTIVES OF FUTURE WORK 

6.1 Conclusions 

The development of in silico strategies for development and implementation of 

new technologies in biopharmaceutical manufacturing processes can help reduce 

computational resources, save experimental efforts, and facilitate process development. 

In this dissertation, process systems engineering tools have been applied to downstream 

chromatography operations and the end-to-end integrated biopharmaceutical process. 

The first part of the thesis focuses on individual unit operations, namely the 

different chromatography units, as illustrated in Chapters 2-4. 

In Chapter 2, surrogate-based feasibility analysis is proposed to identify the 

design space of CaptureSMB in an effort to balance the computational complexity and 

model prediction accuracy. Based on the proposed framework, the computational time 

is reduced significantly by approximately 97%, compared to directly using mechanistic 

model. Through active set strategy, it is observed that productivity and yield constraints 

become active with the increase of process variables, while productivity and capacity 

utilization constraints are binding with the decrease of process variables. Additionally, 

the impacts of constraints, recovery-regeneration time, and column length are 

comprehensively investigated to acquire a profound understanding of the continuous 

capture process. The proposed framework is generalizable and can be adapted to any 

other specific processes for the identification of design space.  

Chapter 6 
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For Chapter 3, we introduced a ML-based optimization framework to address 

the nonconvex and nonlinear constrained optimization challenges encountered in 

biopharmaceutical separation. This framework is applied to a case study involving the 

separation of a ternary protein mixture. Compared to the results obtained through 

genetic algorithm, this approach enhanced productivity by 50.1% and reduced 

computation time by 70.8% simultaneously. The impacts of elution strategies and purity 

requirements on the overall chromatographic behaviors were comprehensively 

investigated. The impact of varying the peak cutting thresholds was also examined to 

discern the critical constraint influencing the optimized conditions, which might help 

enhance our process understanding and facilitate potential process improvements. The 

methodology presented in this study can provide valuable guidelines for addressing 

problems where identifying optimal solutions is challenging. 

In Chapter 4, a hybrid model approach is employed for the HIC process, aiming 

to reduce investment effort required for the mechanistic model while extracting the 

missing relationships that cannot be captured by the mechanistic model. We proposed 

that the hybrid model can be constructed by combining a neural network with a simple 

but well-known isotherm (multi-component Langmuir). It is noted that the structure of 

the hybrid model is of critical importance to the accuracy of the developed model. 

Furthermore, a simple neural network with one hidden layer with two nodes and sigmoid 

as the activation function, significantly outperforms the mechanistic model, with a 62% 

improvement in accuracy in calibration and 31.4% in validation. The developed hybrid 

model demonstrates excellent extrapolation capability and identifies optimal operating 

conditions resulting in higher yield value compared to the mechanistic model.  
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The second part of the applications focuses on conducting POC study to evaluate 

the feasibility of transitioning from batch to continuous bioprocess. Therefore, in 

Chapter 5, we developed a fully integrated in silico end-to-end continuous platform to 

represent continuous mAb production in SuperPro Designer. The base-case scenario 

involves a bioreactor volume of 500 L, resulting in a total COGs at $102.2/g. The 

environmental analysis reveals the water-intensive nature of biopharmaceutical 

manufacturing. Scenario analysis indicates that increasing bioreactor scale and mAb 

titer reduces operating COGs, with higher mAb titers showing greater ecological 

benefits. Debottlenecking study identifies multi-column chromatography as the process 

bottleneck, with the specific bottleneck dependent on capacity utilization for that step. 

The assessment of membrane chromatography demonstrates its cost-effectiveness and 

environmental friendliness, primarily attributed to its reduced water consumption. 

6.2 Future Work  

Opportunities for future research are outlined in this section.  

Surrogate-based feasibility analysis is proposed in Chapter 2 to identify the 

design space with low computational demands. However, this framework does not 

account for uncertainties within the system, such as uncertainties from mechanistic 

model parameters or operating conditions [279-282]. Therefore, considering a 

probabilistic design space could be seen as a potential future direction. 

The proposed two-stage optimization framework in Chapter 3 solely focuses on 

solving single-objective optimization problems, and the criteria to switch from 

feasibility to optimization stage could be further investigated. Consequently, there is an 

opportunity for extending this framework to address multi-objective challenges, such as 

the simultaneous minimization of cost and yield, along with a more intelligent algorithm 
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in stage-switching. This extension would better reflect the complexities inherent in the 

actual biopharmaceutical process.  

The proposed methodology for constructing a hybrid model in Chapter 4 has 

been validated for the HIC process, with the challenge lying in finding an appropriate 

hybrid model structure. However, its suitability for other complex chromatographic 

operations, such as mixed-mode chromatography, remains uncertain. Therefore, future 

research could focus on implementing the hybrid model approach in other 

chromatographic processes to evaluate its effectiveness in real-world applications.  

In terms of the integrated flowsheet model development in Chapter 5, the 

developed model is primarily based on mass balance, which is sufficient for the POC 

study during the early stage of process design. However, in order to gain a deeper 

understanding of the process, such as capturing critical process parameters and critical 

quality attributes, a more detailed flowsheet model that connects mechanistic models of 

various unit operations is desired. During the development of the detailed flowsheet 

model, machine learning algorithms and hybrid modeling strategies could be 

incorporated to reduce the computational complexity and improve the model accuracy.   
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