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Extracorporeal bioartificial liver (BAL) devices, involving primary hepatocytes, represent 

a promising option to provide temporary support for patients with liver failure. Current 

use of BAL is primary challenged by development of techniques for long-term culture of 

hepatocytes during plasma exposure, as occurs during clinical application. Previous in 

vitro studies and mathematical modeling analysis have shown that supplementation of 

amino acids to the plasma enhances liver-specific functions and reduces lipid 

accumulation. However, further improvement would be enhanced greatly by 

development of a rational strategy to design the profile of amino acid supplementation 

and by better understanding of the metabolic objectives of hepatocytes, and how they 

vary as a function of amino acid supplementation.  
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In order to address these issues, a rational design approach was first developed using flux 

balance analysis (FBA) to determine a profile of amino acid supplementation to achieve a 

specific cellular objective (urea production) in cultured hepatocytes exposed to plasma. 

Experiments based on the designed supplementation showed that both urea and albumin 

production were increased compared with previously reported (empirical) amino acid 

supplementation. However, the experimental values did not match our theoretical 

prediction mainly due to the insufficient constraints imposed to the modeling.  

 

In an attempt to improve the model accuracy, we incorporated pathway energy balance 

(PEB) constraints, and amino acids transport constraints. It is found that both PEB and 

transport constraints significantly reduce the feasible region of the flux space. Moreover, 

metabolic objective prediction (MOP) model reveals that hepatocytes respond to 

variations in available amino acid supplementation by changing their metabolic 

objectives and pathway utilization. In particular, the analysis shows that fatty acid 

oxidation is vital to reduce the rate of lipid accumulation and to increase liver-specific 

functions with amino acid supplementation. 

 

This study leads to a better understanding of amino acid supplementation effects on 

hepatocytes during plasma exposure based on the integration of in vitro experiments and 

mathematical modeling. The approach enables the metabolic manipulation of hepatocytes 

with rationally designed amino acid supplementation to improve the targeted liver cell 

functionality and improve the long-term technique of hepatocytes applied for BAL 

devices. 
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Chapter 1 

INTRODUCTION 

Abstract:  

A large number of people suffer from liver disease in the United States due to the loss of 

important functions of the liver. Effective treatments of such liver failures using 

transplantation are limited by shortage of organ donors. Extracorporeal bioartificial liver 

devices, involving primary hepatocytes, become a promising option to provide temporary 

supports for patients with liver failure. In vitro hepatocyte cultures and stoichiometric 

modeling of hepatic metabolism are important tools for tackling the challenges of BAL, 

specifically to improve liver-specific functions during plasma exposure. Chapter 1 

includes a brief summary of aspects of these issues and the organization of this thesis.  

------------------------------------------------------------------------------------------------------------ 

The liver is the largest and most complex internal organ in the human body, and is an 

organ present in vertebrates and some other animals. It is responsible for an astonishing 

number of functions including production of bile, regulation of carbohydrate, protein and 

fat metabolism, maintenance of nutrition levels in the blood including glucose and 

cholesterol, and storage of essential vitamins and minerals. Moreover, the liver plays a 

critical role for detoxification of internal toxins (endotoxins) and environmental toxins 

(exotoxins), such as drug, alcohol and foreign chemicals. Detoxification is achieved 

through a biotransformation process by conversion of toxic chemicals into hydrophilic 

substances that can be excreted into bile or urine and subsequently removed from the 

body (Hall et al. 1997).  
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The failure of liver regulatory and maintainable functions or the lack of liver 

detoxification leads to liver disease. Liver disease is an important cause of morbidity and 

mortality in the United States. The American Liver Foundation (www. 

liverfoundation.org) reported that 30 million people in the United States are suffering 

from liver disease with over 50,000 deaths per year. In the past 30 years, the number of 

deaths caused by liver cancer increased in the United States, among the eighth leading 

causes of cancer death with a clear tendency to increase further (Parkin et al. 2001). In 

2009, U.S. National Cancer Institute (www.cancer.gov) reported that over 22,220 new 

cases were diagnosed and 18,160 people died from liver cancer.  

 

Liver failure can be classified into three types: acute liver failure (ALF), acute-on-chronic 

liver failure (AoCLF), and chronic liver disease (CLD). ALF (also called fulminant 

hepatic failure) is characterized by rapid loss of hepatic cellular function in a patient 

without previous history of liver disease. Viral hepatic (worldwide) and drug-induced 

liver injury (in the Europe and North America) account for most of the cases of ALF (Lee 

2008). AoCLF involves an acute pathophysiologic deterioration with progressive organ 

dysfunction in a patient with pre-existing cirrhosis, commonly caused by alcohol abuse 

(Jalan and Williams 2002; Shawcross and Wendon 2009). CLD is developed by 

progressive destruction of liver over a long period of time. Nonalcoholic fatty liver 

disease (NAFLD) is the most common cause of CLD. NAFLD is defined as the abnormal 

accumulation of fat in the liver of people who drink little or no alcohol. At the early stage 

of NAFLD, there may be no symptoms and complications (Adams and Angulo 2006), 

and people have chance to heal themselves at this stage. However, for some people, the 

http://www.cancer.gov/
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continuous accumulation of fat can cause liver inflammation and induce non-alcoholic 

steatohepatitis (NASH), representing the metabolic syndromes relative to obesity with 

insulin resistance, glucose metabolism disorder, and arterial hypertension (Hulek and 

Dresslerova 2009). NASH can slowly worsen, carry risk for cirrhosis, liver cancer and 

progress to liver-related death (Farrell and Larter 2006).  

 

Liver can be regenerated with an early diagnosis and appropriate treatments for the 

patients with ALF and AoCLF. N-acetylcysteine (NAC) has been proved to be an 

effective treatment of acetaminophen overdose (Smilkstein et al. 1988) and recently it 

was also proved to be successfully used alone for treatment of patients with 

non-acetaminophen acute liver failure (Lee et al. 2009). However, ALF still carries a 

substantial mortality rate. With one-year survival rate above 80% compared with 30% in 

the 1970’s, orthotopic liver transplantation (OLT) is dramatically developed and becomes 

the only effective life-saving treatment for patients with un-regenerative acute liver 

failure and chronic end-stage liver failure (Liou and Larson 2008; Neff et al. 2003). 

However, the number of transplants performed each year (5,000 in the U.S.) is far 

exceeded by its demands (about 18,000 in the U.S.) (Scientific Registry of Transplant 

Recipients, www.ustransplant.org). Almost 2,000 people die while waiting for a 

transplant in their first year. The liver transplantation has been hampered by the shortage 

of donor organs. Moreover, patients with AoCLF are unsuitable for the transplantation 

due to multi-organ failure. An effective extracorporeal liver support system would 

improve the chance of survival by temporarily supporting the patient during acute liver 

failure until its spontaneous regeneration or by providing a bridge for the patient with 
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chronic liver failure until donor organ is available (Chan et al. 2004). Extracorporeal liver 

devices can be divided into non-biological (cell-free technique) and bio-artificial 

(cell-based technique) devices. Non-biological devices aim at removal of toxins based on 

the principles of plasma exchange, albumin dialysis, filtration and sorbent-based devices 

(charcoal). However, the non-biological devices are limited to maintaining the required 

liver-specific functions (Rozga 2006). Extracorporeal bioartificial liver (BAL) devices, 

involving a biological component comprised of a mammalian liver tissue preparation and 

a synthetic membrane, have shown encouraging results in laboratory tests and clinical 

trails (Demetriou et al. 2004; Mundt et al. 2002). However, the significant challenges of 

BAL devices still remain to be (a) maximizing liver-specific functions in plasma; (b) 

potential sources of cells and minimum cell mass; and (c) minimal mass transfer 

hindrance (Chan et al. 2004; Gerlach 1997; Riordan and Williams 1997). 

 

Liver research is hindered by the available patients, ethical reasons and animal rights 

(Lipscomb and Poet 2008). Using in vitro models in attempt to simulate in vivo liver 

architecture can avoid these limitations and help better understand the pathology and 

treatments for various liver failures and the application of liver-assist equipments. The 

other advantages of in vitro systems include a faster way to achieve data, lower research 

cost and reduction of the adverse effects for animals and humans. Although the liver is 

formed by different cell types (parenchymal cells (hepatocytes), liver endothelial cells, 

kupffer cells and stellate cells), hepatocytes occupy almost 80% the total liver volume, 

constitute 65% of the total liver cells, and perform the majority of liver functions (Weibel 

et al. 1969). In addition, results from hepatocyte studies can be further analyzed to 
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provide physiologically relative information regarding hepatic metabolism. In vitro 

hepatocyte models have attracted a lot of attention since a reproducible approach leading 

to high yield of cells was introduced in the 1970’s (Seglen 1976), and came into 

widespread use in academic research and pharmaceutical industry in the earlier 1990’s. 

Current and potential uses of isolated hepatocytes relate to study of drug discovery 

(McGinnity et al. 2004), drug-drug interactions (DDI) (Li and Jurima-Romet 1997), 

toxicological responses of drugs (Gebhardt et al. 2003; Nussler et al. 2001) and their use 

for artificial cell-based devices (Chan et al. 2003b; Flendrig et al. 1998; Wurm et al. 

2009).  

 

Hepatocytes are anchorage-dependent cells, and they rapidly lose liver-specific functions 

once they are removed from their host to culture in an artificial environment (Allen and 

Bhatia 2002). Therefore, current use of hepatocytes is primary challenged by 

development of long-term culture techniques. Collagen sandwich culture is one of 

promising techniques used to maintain their functions over a long period of time, where 

hepatocyte are fixed between two collagen layers (Dunn et al. 1989; Kern et al. 1997). 

The other encouraging culture techniques include gel immobilized hepatocytes 

(Guyomard et al. 1996), hepatocyte spheroid (Verma et al. 2007), and culturing 

hepatocytes on extracellular matrix (Page et al. 2007). Such three-dimensional (3D) 

approaches mimic the in vivo microenvironment of hepatocytes in the intact liver and 

exhibit stable liver-specific functions with higher cell viability compared to culture cells 

as a monolayer. Co-culturing hepatocytes with other types of cells such as 3T3 fibroblasts 

(Bhatia et al. 1997) or hepatic stellate cells (Krause et al. 2009) helps to maintain 
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hepatocyte differentiation in vitro. Use of hepatocytes is also limited by lack of fresh 

hepatocytes harvesting and inability to simulate hepatocyte proliferation in vitro. 

Therefore, cryopreserved hepatocytes become a variable option for in vitro analysis 

(Garcia et al. 2003; Park and Lee 2005), which can be stored indefinitely, transported to 

any site, and utilized when desired. It has been shown that cryopreserved hepatocytes 

successfully maintain over 90% of the fresh hepatocyte function for at least one year 

using a proper cryopreservation procedure (McGinnity et al. 2004). Additional factor 

identified to improve in vitro condition included an appropriate medium supply specially 

designed for BAL devices. Hepatocytes exposed to plasma in vitro, as occurs during 

clinical application, exhibit a progressive accumulation of lipid droplets and consequently 

a decrease in metabolic functions as accessed by urea synthesis and albumin production 

(Matthew et al. 1996a; Stefanovich et al. 1996). Supplementation of hormone and amino 

acids to the culture medium during plasma exposure provide the key metabolic functions 

which are either impaired or lost as result of severe liver failure including urea synthesis, 

albumin production, and cytochrome P450 activity (detoxification). Certain amino acids 

such as glycine and alanine have been used to protect cells from damage caused by 

energy insufficiency (Dickson et al., 1992; Maezono et al., 1996). Since hepatic functions 

are highly linked by intermediary metabolism and cellular energy, it is necessary to 

quantify the environmental effects on hepatic metabolism (Sharma et al. 2005).  

 

Hepatic metabolism is the total sum of all the biochemical reactions taking place in the 

cell, which constitutes a complex and dynamic process with a large number of reactions 

and interaction of diverse pathways (Gombert and Nielsen 2000). Thus it is a challenge to 
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explain hepatic cellular behavior alone by observed measurement from in vitro 

experiments. Mathematical models need to be developed to help interpret, understand and 

eventually predict the cell behavior under different stimuli (Bailey 1998; De Maria et al. 

2008). In mathematical modeling of hepatic metabolism, a comprehensive metabolic 

network, with interconnecting pathways consisting of a large number of reactions 

occurring in the cell, is established to mimic the actual hepatocyte phenomena (Chan et al. 

2003a; Lee et al. 2000a). Three specific methodologies: metabolic flux analysis, flux 

balance analysis and network-based pathway analysis have steadily grown in scope 

leading to unravel the complexities of metabolic network (Llaneras and Pico 2008). Such 

stoichiometric models share common characteristics including the use of a metabolic 

network, the fact that they are based on pseudo-steady state assumption and do not use 

kinetic information.  

 

Metabolic flux analysis (MFA) provides a comprehensive view of intracellular 

metabolism based on measurements of extracellular fluxes from in vitro experiments and 

application of mass balances around intracellular metabolites at a pseudo-steady state 

(Varma and Palsson 1994a). For hepatocyte culture, MFA has been utilized to explore the 

hepatic response to severe injury (Lee et al. 2000a) and to investigate insulin and amino 

acid effects on intracellular metabolic fluxes of primary rat hepatocyte (Chan et al. 

2003b). MFA requires sufficient measurements from in vitro experiment which brings 

difficulties for its applications. Labeled substrate measurements either by nuclear 

magnetic resonance (NMR) or by gas chromatography/mass spectrometry (GC-MS) has 

been used to provide more observations to MFA model in addition to extracellular flux 
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measurements (Riascos et al. 2005; Szyperski 1998; Wiechert 2001). However, high cost 

and limited range of available substances restrict their applications. Flux balance analysis 

(FBA), an optimization framework, based on an extension of MFA by involving a 

specific objective and a set of constraints, can better compensate the issue of insufficient 

measurements (Lee et al. 2006). The new aspects of FBA focus on declaring appropriate 

objectives that cell strives to achieve (Gianchandani et al. 2008; Khannapho et al. 2008; 

Schuetz et al. 2007) and governing reasonable constraints leading to a space of feasible 

flux distribution (Bonarius et al. 1997). Since urea is a well-established marker of 

hepatocyte function and easy to measure with high accuracy, urea maximization has been 

chosen as an objective function for analysis of hepatocyte culture of BAL devices 

(Sharma et al. 2005), and for determination of amino acid supplementation in hepatocyte 

culture using a rational design approach (Yang et al. 2009). However, the metabolism of 

mammalian cells is robust and their cellular objectives may adapt to different 

environmental conditions. Recently, a modified FBA based on a bi-level optimization 

model called ObjFind (Burgard and Maranas 2003) has been developed to infer the 

metabolic objectives which are most consistent with experimental data. This approach 

has been applied to investigate the metabolic objectives of a hypermetabolic state of liver 

(Nolan et al. 2006) and cultured hepatocytes used for BAL devices (Nagrath et al. 2007; 

Uygun et al. 2007). The general constraints used to reduce the feasible region of an FBA 

problem include environmental (nutrients, physical factors etc.), physicochemical (mass 

balance, thermodynamic of internal reactions, maximum enzyme capacities), 

self-imposed regulatory and evolutionary constraints (Covert et al. 2003). However, these 

constraints are not sufficient to indentify a unique flux distribution in order to investigate 
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the cells behavior under various environmental conditions. Recently, thermodynamic 

constraints consistent with the second law of thermodynamics have been used including 

energy balance analysis (EBA) with reaction directionality (Beard and Qian 2005), 

pathway energy balance constraints (Nolan et al. 2006), network-embedded 

thermodynamic analysis (NET analysis) (Kummel et al. 2006; Zamboni et al. 2008). 

Such thermodynamic-based constraints significantly reduce the feasible region by 

elimination of infeasible solutions from FBA space. Beard and Lee groups very recently 

incorporated thermodynamic constraints to understand cellular regulation in hepatocytes 

(Beard and Qian 2005), to study drug-drug metabolic interactions between 

acetaminophen and ethanol (Yang and Beard 2006) and to investigate objectives of liver 

hepermetabolism (Nolan et al. 2006)  

 

In contrast to flux analysis, network-based pathway analysis is used to identify metabolic 

pathway and their connections by separating the entire network into pathways 

(sub-network), which can be done without information of flux values or imposing any 

objective for cellular metabolism (Trinh et al. 2009). The most commonly used pathway 

analysis is the elementary flux modes (EFM), which identifies all pathways that consist 

of the minimum number of reactions that exist as a function unit (Schilling et al. 2000; 

Schuster et al. 1999). The majority of EFM applications for liver metabolism are related 

to the analysis of robustness of amino acid anabolism in human hepatocyte (Behre et al. 

2008) and analysis of network flexibility of hepatic metabolism by incorporating pathway 

information (Nolan et al. 2006; Yoon and Lee 2007).  
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The potential applications of flux and pathway analysis in hepatic metabolism include (a) 

improvement of hepatocyte culture medium using an optimization algorithm in order to 

maintain liver-specific functions during plasma exposure; (b) development of 

mathematical frameworks with an appropriate objective function and sufficient 

constraints for application of drug detoxification and BAL devices; (c) identification of 

alternative pathways by performing small interfering RNA (siRNA)-aid inhibition of 

pathway; (d) regulation of drug metabolism which induces hepatotoxicity in cultured 

primary hepatocytes; and (e) integration of the gene expression data into metabolic flux 

levels of hepatic metabolism.  

 

In this thesis, we focused on improvement of in vitro hepatocyte culture during plasma 

exposure using amino acid supplementation and development of optimization-based 

framework in order to: (i) improve cell functionality by manipulating the amino acid 

supplementation; and (ii) elucidate the behavior of hepatocytes under different amino 

acid supplementation.  

 

This thesis is organized as follows. Chapter 2 presents the literature review of the 

mathematical modeling approaches for metabolic network analysis and their challenges. 

Chapter 3 describes a rational design approach for determination of an amino acid flux 

profile consistent with an achievement of enhanced performance of liver-specific 

functions of cultured hepatocytes during plasma exposure. Chapter 4 investigates the 

amino acid supplementation effects on hepatocyte culture by use of a number of 

metabolite measurements, a metabolic network flexibility analysis (MNFA) framework, 
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and a metabolic objective prediction (MOP) model. Chapter 5 makes use of transport 

constraints in addition to thermodynamic constraints to determine a more realistic amino 

acid profile that enhances two liver-specific functions i.e. urea production, and free fatty 

acid (FFA) oxidation (the key intracellular flux to reduce the lipid accumulation during 

the plasma exposure). Chapter 6 summarizes the main contributions of this thesis and 

presents ideas for future work including different in vitro experiment techniques and 

mathematical modeling approaches to identify alternative pathways and to investigate the 

drug-drug interaction by incorporating the drug metabolism into the hepatic network.  
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Chapter 2 

MATHEMATICAL MODELING OF HEPATIC METABOLISM 

Abstract:  

In vitro experimental data on hepatic metabolism are collected and analyzed using 

mathematical modeling, in order to interpret the experimental results and predict the cell 

behavior under different perturbations. Mathematical modeling has been applied to 

cellular metabolism for more than three decades and can be distinctly classified into 

kinetic modeling and stoichiometric modeling. Chapter 2 briefly introduces the kinetic 

modeling approaches first and then presents stoichiometric modeling approaches 

including metabolic flux analysis, flux balance analysis, and pathway analysis in detail. 

Further their applications in hepatic metabolism and subsequent challenges have also 

been discussed. 

 

2.1 Introduction  

Mathematical models have been applied to cellular metabolism for more than three 

decades, which is a powerful tool not only for interpretation of cell phenotype and 

experimental results, but also for prediction and simulation of the cell behavior under 

different chemical and physical stimuli (Bailey 1998; De Maria et al. 2008). In 

mathematical modeling of cell metabolism, a comprehensive metabolic network, with 

interconnecting pathways consisting of a large number of reactions occurring in the cell, 

is established to mimic the actual cell phenomena. Such models can be classified into two 

groups, kinetic and stoichiometric modeling.  
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Kinetic modeling is based on time variant characteristics of metabolite concentrations 

and enzyme activities (Gombert and Nielsen 2000). A major challenge of kinetic 

modeling is availability of multiple parameters of the model. Stoichiometric modeling on 

the other hand is based on a pseudo-steady state assumption, which assumes the 

concentration of each intracellular metabolite to be constant. Recently, these 

mathematical models have been applied to cell’s metabolism in order to analyze the flux 

distributions and identify the metabolic pathways under different environmental 

conditions, which provide effective guidance on the design of both in vitro and in vivo 

experiments.  

 

2.2 Kinetic Modeling  

The kinetic modeling is a dynamic model, which has been developed to investigate the 

cell’s behavior under an unsteady state due to small perturbations from environmental 

changes or enzyme inhibitions. Two kinetic models, physiologically-based 

pharmacokinetic (PBPK) modeling and metabolic control analysis (MCA), are briefly 

summarized in this section. 

 

2.2.1 Physiologically-based Pharmacokinetic (PBPK) Modeling 

Physiologically-based pharmacokinetic (PBPK) modeling mathematically predicts the 

course of drug concentration (PK) in various organs, after intravenous infusion or oral 

drug administration, using a series of differential equations that are based on the 

anatomical and physiological structure of the body (PB). PBPK modeling was first 

developed in 1930’s (Teorell 1937); however, only simple cases were studied due to the 
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limitations of computational methods and shortage of pharmaceutical datasets. Since 

1990’s, with significant improvements in computational techniques and the availability of 

in vitro and in vivo data of hepatic metabolism (Bartlett and Davis 2006; Lave et al. 1997) 

and tissue distribution (Poulin et al. 2001), PBPK modeling has been extensively used in 

drug discovery (Jones et al. 2009) and risk dose-response assessment (Andersen 1995).  

 

PBPK modeling not only predicts the properties of a compound including absorption, 

distribution, metabolism and excretion (ADME), which reduce failure in clinical trails by 

rejection of the compounds with poor ADME, but also provides plasma and tissue 

concentration-profile which helps choose the suitable dose range for clinical trials.  

 

2.2.2 Metabolic Control Analysis (MCA) 

Metabolic control analysis (MCA) introduced in 1970’s, has been developed as one of 

common approaches of kinetic modeling, to provide a way of analyzing the sensitivity of 

a metabolic network due to the perturbations and determining the control strategies to 

manipulate the metabolic pathways through individual enzymes (Fell 1992; Heinrich and 

Rapoport 1974; Moreno-Sanchez et al. 2008). In MCA, three types of coefficients are 

defined, including flux control coefficients (FCCs) expressing the enzyme concentration 

effect on the flux, elasticity coefficients (ECs) expressing the concentration change of 

single reaction on the particular reaction rate of individual enzyme, and concentration 

control coefficients (CCCs) measuring the control level managed by a particular enzyme 

on the constant concentration of a individual metabolite (Ehlde and Zacchi 1997; Fell 

1992; Reder 1988).  
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In addition, there are two major theorems in MCA, the flux control connectivity theorem 

where the sum of FCC multiplied by relative EC is equal to 0 and the summation theorem 

where the sum of FCC in the metabolic network is equal to 1. At this point, MCA 

connects the local properties of the isolated flux, enzyme or metabolite (FCC, EC and 

CCC) with global properties of the metabolic network. Various modifications based on 

MCA coefficients and theorems have been developed, such as (log) linear kinetic 

modeling (Hatzimanikatis and Bailey 1997). In the hepatic metabolism, MCA has been 

used to simulate the substrate concentration in fed and fasted state of rat hepatocytes 

(Spurway et al. 1997), and to analyze the control temperature effect on respiratory chain 

network in isolated rat liver mitochondria (Dufour et al. 1996). 

 

2.3 Stoichiometric Modeling 

Kinetic modeling can be used to predict the dynamic behavior of the cell in response to 

external stimuli. However, the lack of complete kinetic information and high cost of 

manipulation of experiments in time series limit its applications. On the other hand, 

stoichiometric modeling has been widely used to unravel the complexities of metabolic 

based on the pseudo-steady state assumption (Llaneras and Pico 2008). A schematic of 

the different approaches of stoichiometric modeling is summarized in this section (see 

Figure 2.1), including metabolic flux analysis (MFA), flux balance analysis (FBA), and 

network-based pathway analysis (Lee et al. 2006; Raman and Chandra 2009; Sauer et al. 

2007).  
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2.3.1 Hepatic Network  

The first and most important step for stoichiometric modeling is to construct the 

metabolic network. The metabolic network is a scale-free network following a power law 

distribution, which consists of several highly connected functional modules that are 

connected by few intermodule links (Ravasz et al. 2002). This special structure makes it 

possible to simplify the complex metabolic network based on the relative functionalities. 

 

A network of hepatic metabolism can be constructed based on the known stoichiometric 

relationships of the biochemical reactions occurring in the liver. The main hepatic 

metabolic network was originally developed for liver perfusion (Arai et al. 2001; Lee et 

al. 2000a) and modified for cultured hepatocytes with many simplifications (Chan et al. 

2003a). The main simplification is that detoxification reactions are not involved into the 

basic hepatic network since their reaction rates are small enough to be ignored for carbon 

and nitrogen balance. The other simplifications are (a) reactions associated with protein 

degradation, nucleotide synthesis and energy-requiring pathways for amino acids 

biosynthesis are neglected; (b) mechanism of transport is not included; (c) distinct 

reactions/pathway in the different culture conditions, such as glycolysis/glyconeogenesis 

pathway, and fatty acid synthesis/fatty acid oxidation (Chan et al. 2003a).  

 

With these simplifications, the basic hepatic network involves energy–related reactions: 

gluconeogenesis/glycolysis, glycogen storage, pentose phosphate pathway (PPP, as a 

lumped group), oxygen uptake and electron transport system, liver-specific functions 

such as urea cycle and albumin synthesis, free fatty acid (FFA) metabolism with 
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triglyceride (TG) and cholesterol ester oxidation, FFA synthesis/oxidation, ketone body 

synthesis and glycerol management, and other important reactions of tricarboxylic acid 

cycle (TCA), amino acid uptake/secretion and catabolism. It covers a majority of central 

carbon and nitrogen metabolism and has been used extensively for the analysis of 

hepatocyte metabolism in vitro (Chan et al. 2003a; Chan et al. 2003b; Chan et al. 2003c; 

Lee et al. 2003; Nagrath et al. 2007; Sharma et al. 2005; Uygun et al. 2007; Yang et al. 

2009).  

 

2.3.2 Metabolic Flux Analysis (MFA) 

Metabolic flux analysis is a methodology used to calculate intracellular fluxes (i.e. 

conversion rates of metabolites through individual reactions) in a metabolic network 

using the stoichiometric relations of the major reactions and application of mass balance 

for intracellular metabolites. The mass balance equations are based on the pseudo-steady 

state assumption, where no accumulation or dissipation on intracellular metabolites is 

assumed (Stephanopoulos et al. 1998). This assumption is valid for the hepatic 

metabolism since the concentrations of intracellular metabolites are very small 

(~nmol/million cell) compared to their turnover (Marin et al. 2004). 

  

Mass balances around intracellular metabolites at the pseudo-steady state are written as 

follows:  

1
0

N

ij j
j

S v i M
=

= ∀ ∈∑                               (2-1)            

where ijS is the stoichiometric coefficient of intracellular metabolite i  in the reaction 
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j , and v  represents the flux of reaction j . ijS  is positive if metabolite i  is a 

produced and it is negative if the metabolite i  is consumed in reaction j , whereas, 

ijS take a value as 0 if the metabolite i  is absent in the reaction j . 

 

In MFA, the reactions are further classified into measured fluxes (extracellular fluxes, mS ) 

and unmeasured fluxes (extracellular fluxes, uS ). Using this classification Equation (2-1) 

can be separated into two parts as follows: 

                           u u m mS v S v⋅ = − ⋅                                  (2-2) 

Typically, MFA is used to calculate unmeasured fluxes for an over-determined system, 

where available measured fluxes are more than the degrees of freedom of the system. For 

this case the vector of unmeasured fluxes uv  is calculated by minimizing the sum of 

square errors between the measured fluxes and the estimated as follows:  

                           
1( )T T

u u u m m mv S S S S v−= −                             (2-3) 

In MFA model, the measured fluxes are typically nutrition uptake into the cell and 

metabolite release from the cell, which can be directly evaluated based on the difference 

between the concentration of metabolites in the cultured medium and collected 

supernatant from in vitro experiments. 

 

Each measured flux is calculated using repeated measurements from different instruments, 

and is represented by an arithmetic mean plus/minus its standard derivation (mean ± 

standard derivation). The measured results are associated with gross measurement errors, 

which ascribes to improper selections of measurement approaches or equipments and 
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need elimination before performing metabolic flux analysis using the statistic hypothesis 

test (Wang and Stephanopoulos 1983). Isotopomer analysis by tracing 13C-labeled 

substrate using nuclear magnetic resonance (NMR) or gas chromatograph/mass 

spectroscopy (GC/MS) has been used to provide additional measurements (Riascos et al. 

2005; Wiechert 2001) and to validate the flux estimation from MFA (Zupke and 

Stephanopoulos 1995). 

 

For the hepatic metabolism, MFA has been used to investigate the effects of a 

combination treatment (hormone and amino acid supplementation) on intracellular fluxes 

and liver-specific functions of cultured hepatocytes during plasma exposure (Chan et al. 

2003b). The results showed that the high level of insulin in pre-conditioning impacts the 

hepatocyte behavior during subsequent plasma exposure. Moreover hormone and amino 

acid supplementation during plasma exposure enhances the liver-specific functions by 

reducing the lipid accumulation in the cells. MFA was also used to investigate the 

metabolic state change specifically after acute liver failure (Arai et al. 2001) and burn 

injury (Lee et al. 2000a; Lee et al. 1999).  

 

Metabolic flux analysis provides a comprehensive view of intracellular metabolism based 

on measurements of extracellular fluxes and stoichiometric mass balance at the 

pseudo-steady state. By comparing the intracellular fluxes in different environmental 

conditions, MFA can be used to investigate the metabolic state change due to external 

stimuli. However, the main difficulty in applying MFA is to get the necessary 

measurements that result in an over-determined system. Another shortcoming of MFA is 



20 
 

that it does not incorporate the reaction directionality, which is very important and may 

change in different conditions.  

 

2.3.3 Flux Balance Analysis (FBA) 

Flux balance analysis (FBA) has been used to calculate the intracellular fluxes under the 

optimization of a specific objective function restricted by mass balances equations at the 

pseudo-steady state and other constraints. FBA better compensates the issue of 

under-determined system where measurements are not sufficient. However, it is possible 

that alternative flux distributions exist that produce the same optimization solution in 

which a subset of the reactions exhibits different values (Lee et al. 2000b). Therefore, 

finding appropriate objectives for the cell (Gianchandani et al. 2008; Khannapho et al. 

2008; Schuetz et al. 2007) and imposing a set of reasonable constraints (Bonarius et al. 

1997) are important aspects for the current developments of FBA.  

 

2.3.3.1 Metabolic Objectives of Flux Balance Analysis 

The traditional FBA framework optimizes a single objective over a feasible region. 

Common objective includes maximization of growth rate of Escherichia coli (Varma and 

Palsson 1994b), maximization of ATP production in the mitochondrion (Ramakrishna et 

al. 2001), maximization of a specific function of mammalian cell under exceptional 

culture conditions (Sharma et al. 2005), or maximization of the formation of the key liver 

anti-oxidation glutathione (GSH) (Yoon and Lee 2007). Recently, urea maximization has 

been chosen as an objective function for analysis of cultured hepatocytes of BAL devices 

(Sharma et al. 2005), and for determination of amino acid supplementation in hepatocyte 
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culture using a rational design approach (Yang et al. 2009).  

 

Traditional FBA employs linear programming since both objective function and 

constraints are linear. In this case, investigation of the uniqueness and identification of all 

alternative optimal solutions are very important to analyze alternative pathways via 

different flux distribution patterns with the same objective value. A recursive 

mixed-integer programming problem has been developed to find all alternative optima by 

introducing two binary variables, one to separate the basic variables from non-basic 

variables, and another to ensure that all non-basic variables are zero (Lee et al. 2000b; 

Phalakornkule et al. 2001). This approach has been applied to identify alternative 

pathways for different amino acid supplementations during plasma exposure, and eight 

different pathways with the same value of maximum urea were determined (Yang et al. 

2009). 

 

Since mammalian cells may have more than one objective function, a multi-objective 

approach modified based on FBA has been developed to identify the flux distribution 

which optimizes several objectives simultaneously. A weight sum of objective functions 

is used to convert the multi-objective problem to a single objective by summation of the 

different objectives with defined various weights and results in a Pareto-optimal set for 

the multi-objective model. The Pareto-optimal solution has been used to help understand 

hepatic cellular system with competitive cell functions, such as urea and albumin 

production/GSH/ATP synthesis (Nagrath et al. 2007; Sharma et al. 2005). Those 

Pareto-optimal solutions may contribute to operating BLA devices based on the feasible 
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solutions range obtained from the model, and can help to develop the metabolic control 

strategy of hepatocytes based on the different Pareto set with various metabolic states. 

 

Another modified FBA framework is a multi-level objective, which optimizes several 

objectives gradually according to their priorities rather than optimizing them 

simultaneously. Bi-level programming with two objectives has been used to study the 

metabolic network, where the constraints of one problem (upper level problem) are 

defined in part by a second optimization problem (lower level problem). ObjFind, a 

bi-level optimization problem, minimizes the sum of square errors of measured fluxes 

between the measured values and those from the model in the upper level and maximizes 

the sum of weighted fluxes in the lower level (Burgard and Maranas 2003). The 

advantage of this approach is that it can infer the metabolic objectives which are the most 

consistent with experimental data using the value of the coefficient of importance rather 

than starting by postulating an objective. This approach has been used to investigate the 

metabolic objectives in cultured hepatocytes for BAL devices under a wild range of 

different culture conditions during plasma exposure (Uygun et al. 2007). Bi-level 

programming can be reformed into a single-level programming by following the 

primal-dual strategy which constructs an optimization problem that includes both primal 

and dual constraints with an equality constraint for primal and dual objective (Burgard 

and Maranas 2003; Burgard et al. 2003; Pharkya et al. 2003), or replacing the inner 

optimization problem with its first-order equilibrium constraints and complementary 

constraints (Raghunathan and Biegler 2003; Raghunathan et al. 2003).  
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Recently, a number of modified FBA has been developed to predict the cell phenotype 

after knockout of single or multiple genes. Two examples are minimization of metabolic 

adjustment (MOMA) that minimizes the Euclidean distance from a wild-type flux 

distribution (Segre et al. 2002) and regulatory on/off minimization (ROOM) that 

minimize the number of significant flux changes (Shlomi et al. 2005). These approaches 

have been used to predict the flux distribution of E. coli after a particular gene knockout 

and help to understand how cell adapts to the loss of a gene by regulation. Both 

approaches are motivated by the assumptions that cells have minimal changes close to the 

wild type after gene knockout rather than minimizing the growth rate that is predicted by 

FBA. OptKnock, a bi-level programming problem, was developed to identify multiple 

gene knockout strategies in E. coli for maximization of the desired production in the 

upper level and maximization of biomass yield or MOMA in the lower level (Burgard et 

al. 2003). This approach has been used to identify the reactions whose removal leads to 

redirect the E. coli metabolism towards to maximum amino acid production at maximum 

biomass yield (Pharkya et al. 2003). However, these approaches have not applied for the 

cultured hepatocytes, which is possible due to the difficulties to perform gene inhibition 

experiments.  

 

2.3.3.2 Constraints of Flux Balance Analysis 

The hepatic network is complex and thus multiple metabolic states may exist. In the 

kinetic modeling, the state is separated using kinetic parameters varied with time. In the 

stoichiometric modeling, the state can be defined using different constraints (Edwards 

and Palsson 2000). In addition, the constraints help to reduce the feasible region of the 
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unmeasured flux space. 

 

Various constraints incorporating to the stoichiometric modeling involve environmental 

(nutrient, physical factor etc.), physicochemical (mass balance, reaction directionality, 

maximum enzyme capacities), self-imposed regulatory and evolutionary constraints 

(Covert et al. 2003). Those constraints can be written in term of linear inequality by 

giving minimum and maximum value for each individual reaction ( min max
j j jv v v≤ ≤ ) based 

on the measurement data from the different in vitro experiments, which can be further 

restricted to the minimum value as zero for the reversible reactions ( max0 j jv v≤ ≤ ) and 

defined as zero associated with the deleted gene ( 0jv = ) (Edwards and Palsson 2000).  

 

Successfully imposition of constraints on FBA helps to reduce the feasible range for each 

unmeasured flux in the network dramatically. Recently, three additional thermodynamics 

constraints using the second law of thermodynamics, including energy balance analysis 

(EBA), pathway energy balance constraints (PEB) and network-embedded 

thermodynamic analysis (NET analysis), have been incorporated into the FBA model to 

reduce the solution space by deleting thermodynamically infeasible ones (Beard and Qian 

2005; Kummel et al. 2006; Nolan et al. 2006). There are two major contributions from 

EBA constraints. One is used to eliminate the internal cycle in the network, which is 

similar to the basic concept of the voltage loop law: no net flux is possible through these 

cycles (Beard et al. 2004; Beard et al. 2002; Beard and Qian 2005). Moreover, EBA 

ensures that entropy production is positive for each reaction, which means that positive 

Gibbs free energy of a reaction should associate with a negative value of reaction flux 
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and the other way around. PEB constraints successfully extended the second law of 

thermodynamics from individual reactions (EBA) to individual pathways. The idea 

behind PEB constrains is that endergonic reactions ( 0GΔ > ) can be “powered” by 

exergonic reactions ( 0GΔ < ) if those reactions are ‘coupled’ in the same pathway. 

Therefore, an overall distribution of Gibbs free energy to the reactions involving pathway 

analysis and flux distribution is imposed as PEB constraints into FBA model (Nolan et al. 

2006). Since metabolic concentration from different metabolic state can greatly affect the 

real Gibbs free energy of reactions, NET analysis incorporating the concentrations of 

metabolites as additional constraints, has been used to determine the feasible range of 

Gibbs free energy of reactions at a certain state (Kummel et al. 2006; Zamboni et al. 

2008).  

 

In the hepatic metabolism, there are promising applications by incorporating these 

thermodynamic-based constraints, including understanding of cellular regulatory of 

hepatocyte (Beard and Qian 2005), study of drug-drug metabolic interactions between 

acetaminophen and ethanol (Yang and Beard 2006), investigation of the metabolic 

objectives of liver hepermetabolism (Nolan et al. 2006) and analysis of anti-diabetes drug 

toxicity (Yoon and Lee 2007).  

 

2.3.4 Pathway Analysis 

In contrast to flux analysis, pathway analysis can be used to identify metabolic pathways 

and their functional connections by separating the entire network into pathways 

(sub-network). This analysis can be done without requiring information of flux values or 
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imposing any objective functions for cellular metabolism (Trinh et al. 2009).  

 

The most commonly used methods for pathway analysis are elementary flux modes 

(EFM) and extreme pathways (EP) (Schilling et al. 2000; Schuster et al. 1999; Schuster et 

al. 2000; Wiback and Palsson 2002). In both two approaches, convex analysis is used to 

identify the convex set of flux vectors that satisfy the linear equations generated from 

mass balances and inequalities from the reaction directionality. EFMs are the set of all 

pathways that consist of the minimum of reactions that exist as a function unit. EPs are 

the system independent and irreducible subset of elementary modes, which do not include 

pathways non-negatively combined by other extreme pathways. The details of differences 

and similarities between EFM and EP have been recently reviewed (Klamt and Stelling 

2003; Papin et al. 2004; Wagner and Urbanczik 2005).  

 

From a mathematical perspective, the elementary modes of a biochemical network can be 

defined as the set of flux vectors that satisfy the following equation (Poolman et al. 

2004), 

     0S e⋅ =                               (2-4) 

where S is the stoichiometric matrix of the metabolic network, and e is a column vector 

whose elements indicate the participation of each reaction in that particular modes. A 

number of software programs for computing elementary modes and extreme pathways 

are available, such as C programming METATOOL (Pfeiffer et al. 1999), Expa (Bell and 

Palsson 2005), YANA (Schwarz et al. 2005) and the software package FluxAnalyzer with 

a user-friend interface based on MATLAB  (Klamt et al. 2003).  
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In addition, flux analysis and pathway analysis can be combined to identify the pathways 

associated with a certain steady-state flux distribution. The flux distribution that satisfies 

the stoichiometric matrix and the reaction directionality can be represented as a linear 

combination of vectors of EFM or EP with non-negative weights as follows,  

 E w v⋅ =                                  (2-5) 

where E is a matrix of elementary modes in which the columns represent the pathways, 

v  is a given flux distribution and w is a vector of weights corresponding to EFM or EP. 

Several approaches have been developed to reconstruct the metabolic network by 

calculating the weights which include (a) seeking the weights of each mode (Poolman et 

al. 2004) or random selected subset modes (Wang et al. 2007) using a least-square 

solution of the problem; (b) generating the minimum norm of the weighting vector, which, 

in biological terms, is to find the modes that are closest to the real flux distribution 

pattern (Schwartz and Kanehisa 2005); (c) calculating a range of possible values of 

weights (α-spectrum) (Wiback et al. 2003); and (d) identifying the least number of 

pathways, in biological terms, which is to find minimum number of regulatory routes 

needed to control the system (Wiback et al. 2003). 

 

Both concepts of EFM and EP have been successfully applied to a number of metabolic 

networks, including identification of the efficient pathways of human red blood cell 

(Wiback et al. 2003), definition of the minimal medium requirement for H. pylori 

(Schilling et al. 2002) and study of the growth behavior of E.coli central metabolism 

(Stelling et al. 2002). For hepatic network analysis, the majority of pathway analysis 
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publications are used to analyze the robustness of amino acid anabolism in human 

hepatocyte (Behre et al. 2008) and to investigate the network flexibility of hepatic 

metabolism (Nolan et al. 2006; Yoon and Lee 2007). However, tremendous number of 

elementary modes/extreme pathways for the hepatic network with medium-scale and 

complex interconnection, makes the problem computationally infeasible or brings 

difficulties to analysis of the overall hepatic network (Klamt and Stelling 2002). Thus, a 

decomposition algorithm, based on local connection of metabolites, has been presented to 

automatically decompose the network into smaller subsystems (Schuster et al. 2002b). 

The application of this approach to decompose the basic hepatic network is still 

questioned and better logical decomposition rules are expected.   

 

Flux analysis and pathway analysis have been recently reviewed in  (Edwards et al. 

2002; Kauffman et al. 2003; Lee et al. 2006; Nielsen 2003; Raman and Chandra 2009; 

Trinh et al. 2009; Varma and Palsson 1994a) and in more detail in (Stephanopoulos et al. 

1998; Torres and Voit 2002)  

 

2.3.5 Conclusions 

In summary, mathematical modeling is a promising tool for evaluating and predicting 

fluxes and pathways of the hepatic metabolism associated with different environmental 

perturbations. It can be extrapolated for in silico modeling applications such as design of 

the ideal culture medium for hepatocytes, understanding xenobiotic detoxification and it 

can also help develop a genome-scale hepatic network. 
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Figure 2.1: Stoichiometric modeling: flux and pathway analysis 
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Chapter 3 

A RATIONAL DESIGN APPROACH  

FOR AMINO ACID SUPPLEMENTATION IN HEPATOCYTE CULTURE 

Abstract: 

Improvement of culture media for mammalian cells is conducted via empirical 

adjustments, sometimes aided by statistical design methodologies. Chapter 3 

demonstrates a proof of principle for the use of constraints-based modeling to achieve the 

enhanced liver-specific functions of cultured hepatocytes during plasma exposure by 

adjusting amino acid supplementation and hormone levels in the medium. Flux balance 

analysis (FBA) is used to determine an amino acid flux profile consistent with a desired 

output, which is used to design an amino acid supplementation. The morphology, specific 

cell functions (urea, albumin production) and lipid metabolism of cultured hepatocytes 

during plasma exposure were measured under conditions of no supplementation, 

empirical supplementation, and designed supplementation. 

 

Urea production under the designed amino acid supplementation was found to be 

increased compared with previously reported (empirical) amino acid supplementation. 

Although not an explicit design objective, albumin production was also increased by 

designed amino acid supplementation, suggesting a functional linkage between these 

outputs. In conjunction with traditional approaches to improving culture conditions, the 

rational design approach described herein provides a novel means to tune the metabolic 

outputs of cultured hepatocytes. 
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3.1 Introduction 

The metabolic capabilities and constraints of cultured hepatocytes are of great interest for 

the development of extracorporeal bioartificial liver (BAL) devices to support and extend 

the life of critically ill patients until a liver transplantation becomes available (Allen and 

Bhatia 2002; Matthew et al. 1996b; Tilles et al. 2002). Cultured hepatocytes are core 

components of BAL devices, which have been developed rapidly in recent years (Strain 

and Neuberger 2002). However, hepatocytes are anchorage-dependent cells, and they 

rapidly lose liver-specific functions once they are removed from their host and cultured in 

an artificial environment (Allen et al. 2001). Some culture techniques have been 

introduced to help stabilize liver-specific in vitro functions, which include culturing 

hepatocytes in sandwich collagen gels (Dunn et al. 1991; Dunn et al. 1992), co-culturing 

hepatocytes with other types of cells such as 3T3 fibroblasts (Bhatia et al. 1997), 

culturing hepatocytes on extracellular matrix (Page et al. 2007), and addition of insulin to 

the culture medium (Li et al. 2004). Maintenance of liver-specific functions in 

hepatocytes during plasma exposure is very important to BAL devices. Effects of short- 

or long-term exposure of hepatocytes to plasma, as occurs during clinical application, 

have been studied recently. Hepatocytes exposed to plasma in vitro exhibit a progressive 

accumulation of lipid droplets, accompanied by a decrease in functional markers such as 

urea and albumin synthesis (Matthew et al. 1996b; Stefanovich et al. 1996). Subsequent 

studies demonstrated that supplying amino acids and hormones (insulin and 

hydrocortisone) during plasma exposure improves synthetic functions as well as 

cytochrome P450 (detoxification) activities of the rat hepatocytes (Washizu et al. 2000a; 

Washizu et al. 2001; Washizu et al. 2000b). 
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Mathematic modeling of hepatic metabolism is increasingly being utilized in tandem with 

experimental measurements to understand and control the performance of hepatocytes 

under adverse culture conditions. Metabolic flux analysis (MFA), which provides a 

comprehensive view of intracellular metabolism based on measurements of extracellular 

fluxes and stoichiometric mass balances at pseudo-steady-state, has been utilized to 

investigate the effects of insulin preconditioning and plasma amino acid supplementation 

on cultured hepatocytes. It was found that a combination of these two treatments 

promotes hepatic-specific functions (urea and albumin secretion), mediated by an 

increase in gluconeogenesis and a reduction in the intracellular triglyceride accumulation 

(Chan et al. 2003a; Chan et al. 2003b; Chan et al. 2003c). Flux balance analysis (FBA) is 

based on the utilization of linear programming and the pseudo-steady-state assumption to 

optimize a specific objective function, while satisfying mass balances for all intracellular 

metabolites and other imposed constraints (Kauffman et al. 2003; Varma and Palsson 

1994a). Depending on the system of interest, various objectives may be employed in 

FBA, including maximization of growth rate (Edwards et al. 2001; Mahadevan et al. 

2002; Varma and Palsson 1994b), maximization of specific fluxes in mammalian cells 

(Marin et al. 2004; Sharma et al. 2005), or minimization of metabolic adjustment 

(MOMA) (Segre et al. 2002) when experimental data are available for comparison 

between wild type and gene knockout. In order to extend the understanding of hepatocyte 

functions relevant to the BAL, constraint-based techniques have been used to characterize 

the capabilities of the hepatocyte metabolic network. Some recent studies have focused 

on the overall flux distribution in the central metabolism of primary rat hepatocytes using 
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FBA (Nagrath et al. 2007; Sharma et al. 2005; Uygun et al. 2007). 

 

We present an approach that uses FBA to design an amino acid supplementation to 

achieve a specific cellular objective in cultured hepatocytes exposed to plasma, in this 

case urea production. Urea secretion is easily measured to high accuracy using 

commercial kits and is a well-established baseline marker of hepatocyte culture, making 

it a suitable objective for FBA. From the amino acid fluxes corresponding to urea output, 

a novel amino acid supplementation was designed and used in the culture of 

cryopreserved hepatocytes with varying insulin levels during preconditioning and 

hormone levels during plasma exposure. Hepatocyte morphology was observed and 

specific cell functions (urea, albumin production) and lipid accumulation were measured 

in order to validate our hypothesis that urea secretion would be augmented using amino 

acids supplementation calculated theoretically from a mathematical model. 

 

3.2 Methods 

3.2.1 Flux Balance Analysis 

The basic hepatic network used in this analysis (Appendix A) is based on the network 

developed for metabolic flux analysis of cultured hepatocytes (Chan et al. 2003a; Lee et 

al. 2000a; Sharma et al. 2005). The hepatic network considered here involves 45 

intracellular metabolites and 76 reactions (33 irreversible reactions and 43 reversible 

reactions, labeled in Appendix A), including gluconeogenesis, tricarboxylic acid cycle 

(TCA), urea cycle, amino acid uptake and catabolism, oxygen uptake, electron transport 

system, pentose phosphate reactions (as a lumped group), ketone body synthesis, fatty 
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acid, triglyceride (TG) and glycerol metabolism. Although this hepatic network doesn’t 

account for protein degradation, energy balance, nucleotide and transport metabolism, it 

covers a majority of central carbon and nitrogen metabolism and has been used 

extensively for analysis of the hepatic metabolism both in vitro and in vivo (Chan et al. 

2003a; Chan et al. 2003b; Chan et al. 2003c; Lee et al. 2003; Nagrath et al. 2007; Sharma 

et al. 2005; Uygun et al. 2007). 

 

The following FBA model is developed for the maximization of urea output, constrained 

by 45 mass balances for the intracellular metabolites and flux bounds of measured and 

irreversible reactions based on the hepatic network of Appendix A, as follows: 

                                                                                    

(I) 

 

where ijS  is the stoichiometric coefficient of metabolite i  in the reaction j ; jv  

refers to the flux of reaction j , ureav is urea flux; M is the number of metabolites; K  

is the number of constrained reactions (based on measurements and/or irreversibility), 

and N is the total number of reactions involved in the hepatic network. Model (I) 

corresponds to a linear programming (LP) problem since the objective and the constraints 

are linear functions of the involved variables. 

 

The main assumptions for the development of the FBA model are as follows: 

1) Although it exists many of hepatic functions, urea production is the one often used as a 

marker of hepatocyte function that typically correlates with a healthy, differentiated 
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phenotype (Chan et al. 2002; Higuchi et al. 2006; Kane et al. 2006; Li et al. 2004; 

Washizu et al. 2000a; Washizu et al. 2000b) and the one of liver-specific functions that 

hepatocytes may seek to satisfy directly or indirectly. Therefore, urea maximization is a 

reasonable case study for the approach. 

2) One can assume a pseudo-steady state for the hepatic metabolic network, which means 

that the rate of change of intracellular compositions is small (Stephanopoulos et al. 1998). 

This assumption is valid because the concentrations of intracellular metabolites are very 

small (~nmol/million cell) compared to their turnover, relative flux (~µmol/million 

cell/day) x measurement time (one day) (Marin et al. 2004). 

3) We assume that the designed supplementation fine tunes rather than radically alters 

hepatocyte metabolism. Therefore, we can use a prior set of experimental measurements 

and calculated fluxes as representative of the physiological space state of hepatocytes. 

The prior data considered include: high/low insulin preconditioning followed by 

unsupplemented plasma cultures (HI_NAA_NH/LI_NAA_NH), and high/low insulin 

preconditioning followed by amino acid-supplemented plasma cultures 

(HI_RAA_NH/LI_RAA_NH) (see Table 3.1 for details of experimental conditions). The 

range of experimental data (Chan et al. 2003c) defines the minimum and maximum 

values (bounds) of measured fluxes in the model (Appendix B). 

4) The reversibility of each reaction is determined based on the information given in the 

metabolic map of KEGG (Kanehisa and Goto 2000). Reversible reactions are allowed to 

take either positive or negative values, whereas irreversible reactions are restricted to 

positive values (Appendix B). 
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The FBA Model (I) leads to one flux distribution that maximizes the objective function 

and is consistent with the imposed constraints; however, it is possible that alternative flux 

distributions exist that produces the same maximal output but in which a subset of the 

reactions exhibits different values or reaction directionalities (Price et al. 2004).  The 

need to search for all alternative solutions has been demonstrated previously for the 

central metabolism of E. coli (Lee et al. 2000b). The solution strategy involves a 

recursive mixed integer linear programming (MILP) to enumerate all solutions. To apply 

this approach, model (I) is first reformulated to its canonical form (Chvatal 1983) by 

introducing slack variable Ls , Us  for the lower and upper bounds of v , respectively. 
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column vector, but only the element related to urea production is equal to 1, and the 

others are zero. 

 

Next, two types of binary variables are introduced to make sure that all different bases are 

examined. Binary variable y  is used to identify a new basis set in each iteration, 

whereas another binary variable w  represents the variable that does not belong to the 

basis and takes the value of zero. Therefore, model (II) is rewritten as MILP problem as 

follows, 

 

(II) 
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where p is an iteration counter; iy  is a binary variable that takes the value of 1 if iz  is 

non-zero basic variable at the previous iteration p-1, otherwise it takes the value of 0 and 

remains in the basis; iw  is a binary variable used to ensure that all non-basic variables 

are zero; and U  is the upper bound of z , chosen arbitrarily to exceed the upper bound 

of the fluxes. In this model (III), it is chosen to take the value of 1000, which is 

sufficiently greater than the maximum overall flux. There is a new constraint added in 

each iteration p to eliminate at least one of the nonzero variables of the basis based on the 

results of the previous iterations, 1, 2,..., 1p p= − . The algorithm stops when the 

objective function in the current iteration is less than that of the previous iteration, which 

means all solutions with the same objective function value have been found. 

 

All mathematical models in this study are implemented using GAMS version 22.4 and 

solved by CPLEX 9 on a Dell PC (3 GHz, 1 GB of RAM). 

 

3.2.2 Hepatocyte Culture Media 

Dulbecco’s Modified Eagle’s Medium (DMEM) with 4.5 g/L glucose, fetal bovine serum 

(FBS), penicillin and streptomycin were purchased from Invitrogen Corporation (Carsbad, 
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CA). Heparinized human plasma was obtained from Innovative Research Inc (Novi, MI). 

Glucagon, hydrocortisone, epidermal growth factor, insulin, Modified Eagle’s Medium 

(MEM) vitamin solution, Eagle’s Basal Medium (BME) amino acid solution, RPMI 1640 

solution, and all other chemicals were purchased from Sigma Chemical (St. Louis, MO). 

 

Standard hepatocyte C+H medium consists of DMEM supplemented with 10% heat 

inactivated fetal bovine serum, 7.0 ng/mL glucagon, 7.5 g/mL hydrocortisone, 20 g/L 

epidermal growth factor, 200 U/mL penicillin, 200 g/mL streptomycin, and 500 mU/mL 

insulin (high insulin, HI) or 0.05 mU/mL insulin (low insulin, LI). Type I collagen was 

prepared by extracting acetic acid-soluble collagen from rat tail tendons as described 

previously (Dunn et al. 1991). A collagen gelling solution is prepared by mixing rat type I 

collagen with DMEM to a final concentration of 1 mg/mL. 

 

L-arginine free medium consists of L-arginine free RPMI 1640 plus 10% fetal bovine 

serum, and 500 mU/mL insulin with concentrations of glucagon, hydrocortisone, 

epidermal growth factor, penicillin, streptomycin identical to those in standard hepatocyte 

C+H medium. 

 

Plasma solution was prepared by mixing 81 mL of heparinized human plasma with 2 mL 

MEM vitamin solution, 1 mL streptomycin-penicillin solution, and 5 mL buffer solution 

with 2.56% (w/v) sodium monophosphate and 7.5% (w/v) sodium bicarbonate. Two types 

of amino acid supplemented plasma were prepared – a “reference” supplementation 

(RAA) based on previous published work, and a “designed” supplementation (DAA) 
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based on our FBA predictions. To prepare RAA plasma, 2 mL of 200 mM glutamine, 8 

mL (50x) BME amino acid solution were added to the media. To prepare DAA plasma, 

amino acids were added to the media according to the final compositions based on the 

calculation from flux balance (see Table 3.2 in Results). 

 

3.2.3 Design of Experiment: Amino Acid Supplementation 

Cryopreserved rat hepatocytes were purchased from Xenotech LLP (Lenexa, KS). The 

Xenotech protocol for thawing cryopreserved hepatocytes was followed. The viability of 

reconstituted cells was estimated by trypan blue exclusion. 

 

 

 

 

 

 

 

The experimental timeline is shown in Figure 3.1. A quantity of 0.4 mL of the mixed 

collagen solution was poured in each well of six-well plates and incubated at 37 °C and 

10% CO2 for at least 90 minutes until the gel solidified. Suspended cryopreserved 

hepatocytes were seeded in each collagen-coated well at a density of 1x106 cells/mL. 

After 24 hours incubation, culture medium was aspirated and 0.4 mL of collagen solution 

was added, which gelled to form a collagen sandwich. After 90 minutes gelation time, 0.8 

mL fresh culture medium was added. Fresh medium was exchanged with spent medium 

Cell 
seeding 

Sandwich 
culture 

Wash 
cell using plasma

Evaluation of 
morphology & function 

0     1                  6                    11  Time 
(day) 

Pre-conditioning (DMEM) 
         ± insulin 

Plasma Exposure   
      ± amino acids 
      ±  homone 

Figure 3.1: Experimental timeline
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daily for 6 days prior to plasma exposure. The 6-day-old sandwiched hepatocyte cultures 

were subsequently exposed to either unsupplemented (NAA) plasma, RAA plasma or 

DAA plasma for an additional 5 days. At the end of the experiment, culture supernatants 

were collected and stored at 4 °C prior to analysis. 

 

The three independent variables used in the design of the experiments are: (1) the insulin 

level (500 mU/mL, HI and, 0.05 mU/mL, LI) during pre-conditioning culture with 

DMEM; (2) amino acid supplementation in the plasma (unsupplemented, NAA, 

“reference” supplementation, RAA, “designed” supplementation, DAA) and (3) hormone 

supplementation in plasma including 7.5 g/mL of hydrocortisone and 0.05 mU/mL of 

insulin (WH) or without hormone supplementation (NH) during plasma exposure. 

Twelve treatment combinations are listed in Table 3.1. 
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Table 3.1: Treatment conditions 

Treatment 
Condition 

Medium 
Preconditioning 

Amino Acid 
Supplementation 

Hormone 
Supplementation 

HI_NAA_NH High insulin (+) Unsupplemented (-) Unsupplemented (-) 
LI_NAA_NH Low insulin (-) Unsupplemented (-) Unsupplemented (-) 
HI_RAA_NH High insulin (+) Reference supplemented (R) Unsupplemented (-) 
LI_RAA_NH Low insulin (-) Reference supplemented (R) Unsupplemented (-) 
HI_DAA_NH High insulin (+) Designed supplemented (D) Unsupplemented (-) 
LI_DAA_NH Low insulin (-) Designed supplemented (D) Unsupplemented (-) 
HI_NAA_WH High insulin (+) Unsupplemented (-) Supplemented (+) 
LI_NAA_WH Low insulin (-) Unsupplemented (-) Supplemented (+) 
HI_RAA_WH High insulin (+) Reference supplemented (R) Supplemented (+) 
LI_RAA_WH Low insulin (-) Reference supplemented (R) Supplemented (+) 
HI_DAA_WH High insulin (+) Designed supplemented (D) Supplemented (+) 
LI_DAA_WH Low insulin (-) Designed supplemented (D) Supplemented (+) 
 

After 5 days exposure to the various plasma conditions, the morphology of the 

hepatocytes cultured in a collagen sandwich medium was captured using an Olympus 

CKX41 microscope. Urea was measured using a standard, commercial kit (Sigma, St. 

Louis, MO). Albumin concentrations were determined by enzyme-linked immunosorbent 

assay (ELISA) using purified rat albumin (MP Biomedicals, Solon, OH) and 

peroxidase-conjugated antibody for detection (MP Biomedicals, Solon, OH). Free fatty 

acids were measured in the presence of the enzyme acetyl-COA synthetase using a 

commercial enzymatic colorimetric kit (Roche, Indianapolis, IN).  Triglyceride levels 

were measured with a commercial kit (Stanbio, Boerne, TX) based on the release of 

glycerol catalyzed by lipoprotein lipase. β-hydroxybutyrate was quantified using a 

commercial kit (Stanbio, Boerne, TX) based on the appearance of NADH in the 

conversion to acetoacetate by adding β-hydroxybutyrate dehydrogenase, and acetoacetate 
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were quantified based on the disappearance of NADH in the conversion to 

β-hydroxybutyrate by adding the same enzyme in a different pH buffer (Chan et al. 

2003a). Each flux value was calculated by subtracting the supernatant concentration from 

the unconditioned medium concentration and dividing by the cell number and the time 

interval over which the medium was exposed to cells. 

 

At the end of experiment, live cells were distinguished by green fluorescence generated 

by the fluorogenic reagent calcein AM (Molecular Probes, Eugene, OR), and dead cells 

were identified by red fluorescence resulting from nucleic acids bound with ethidium 

homodimer (Molecular Probes, Eugene, OR). Cell viability was calculated as the ratio of 

the number of live cells to the total number of cells, which was quantified after killing all 

of the cells using 75% methanol at the end of the experiment. 

 

3.2.4 Design of Experiment: Supplementation of Arginine 

Hepatocytes isolated from adult F344 male rat were suspended in standard C+H medium 

and cultured in a collagen sandwich configuration at a density of 1x106 cells/mL for two 

days. Hepatocytes were subsequently switched to media with varying L-arginine 

concentration (0.2, 0.4, 1, 2, 4 and 8 mM) for three days. Fresh medium was exchanged 

with spent medium and supernatant was collected daily. At the end of the experiment, 

urea production was measured using a standard commercial kit (Sigma, St. Louis, MO). 

 

3.3 Results 

3.3.1 Rational Design of Amino Acid Supplementation 

The FBA model predictions maximize urea secretion while maintaining exchange fluxes 
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within bounds based on prior experimental observations and satisfying the constraints of 

material balance at pseudo-steady-state. The solution of model III (Appendix C) offers 

insights into the flux distribution of exchange reactions (primarily amino acid transport) 

required for optimization of urea production and allows analysis of the flexibility of the 

hepatic network via the computation of multiple solutions. With the resulting distribution 

of exchange fluxes, a level of urea production is predicted (6.81 µmol/million cells/day) 

that is increased more than two fold compared with urea production reported in the 

literature for hepatocytes exposed to plasma (Chan et al. 2003a; Chan et al. 2003c). Eight 

fluxes distributions are found using model (III) that each satisfies all the metabolic 

constraints and results in the same maximal urea flux. Eleven out of 76 reactions in the 

overall network illustrate some flexibility, including gluconeogenesis (R1-8), palmitate 

uptake (R72), production of glyceraldehyde-3-P (R73) and cholesterol eater consumption 

(R75). These are summarized in Appendix C. Further analysis illustrates that in all cases 

the difference between the flux value of reaction 6 (oxaloacetate transformation to 

phosphoenolpyruvate) and reaction 7 (pyruvate transformation to oxaloacetate) is 

identical, so that the net flux of oxaloacetate entering the TCA cycle and urea cycle is 

constant. Each of the remaining fluxes has the same value in all eight flux distributions, 

suggesting that overall the network is not very flexible in attaining the theoretically 

optimal urea secretion. 

 

The amino acid uptake/secretion rates (v18, v22, v24, v26, v29, v35, v37, v44, v58-v68) 

associated with theoretically optimal urea production (Appendix C) constitute target 

fluxes, vtarget, which are used to calculate the necessary concentration of amino acids in 
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the media (i.e., supplementation) by assuming a linear relationship between amino acid 

supplementation and corresponding fluxes in the model (Sharma et al. 2005).  This 

extrapolation is likely to be a reasonable first-order approximation because the designed 

amino acid supplementation (DAA) is a perturbation from the reference supplementation 

(RAA), and amino acid flux data are available for both the non-supplemented (NAA) and 

RAA states as well as for culture in medium only (Chan et al., 2003b; 2003c) (Fig. 3.2). 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 3.2: Calculation of designed amino acid supplementation levels. For example, 

isoleucine concentration in the designed amino acid supplementation is calculated as an 

extrapolation point of the linear relation between isoleucine supplementation in the 

medium (axis x) and isoleucine uptake fluxes (axis y) (y = 0.1159x - 0.0032, R2=0.9656). 
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Comparing the reference supplementations of amino acids (Table 3.2), three groups of 

amino acids are identified. Compared with reference supplementation (Chan et al., 

2003b), the designed supplementation levels of eleven amino acids are greater by at least 

10%. In particular, serine and glycine supplementation levels are 260% and 140% 

increased, respectively, compared to reference levels. The designed arginine 

supplementation is a more modest one-third higher than reference level.  As arginine is 

directly transformed to urea production in the urea cycle, it is clear that increasing 

arginine supplementation should increase the urea production, and this would be a trivial 

route to increased urea production. However, the other amino acids collectively promote 

urea production via the TCA cycle, which is linked to the urea cycle by the metabolite 

fumarate, and an increased turnover of the TCA cycle can help to balance production of 

fumarate in the state of high urea cycle activity. Thus, optimization of urea production 

requires activation of multiple, independent pathways that require amino acids as 

substrates, supporting the hypothesis that amino acid supplementation can directly 

modulate urea production capabilities in hepatocytes. 

 

The designed supplementation of three amino acids, namely lysine, aspartate and cysteine, 

is similar to reference values. Moreover, supplementations for methionine, glutamine, 

phenylalanine, glutamate and asparagine are predicted to be lower than the experimental 

value. Many of these amino acids also can feed the TCA cycle; thus, their lower values 

shouldn’t be interpreted as meaning that they cannot lead to urea production but rather 

that they are either less efficiently transformed to urea or are already present in sufficient 

quantities for a balanced metabolism. For those amino acids, the DAA was formulated 
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with identical amounts to the RAA. 

 

Table 3.2: Composition of designed amino acid supplementation 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

* amino acid supplementation in the medium during plasma exposure (mM) 

 

3.3.2 Effect of Amino Acid Supplementation on Hepatocyte Exposed to Plasma 

The behavior of cryopreserved rat hepatocytes exposed to heparinized plasma was 

compared among groups receiving no amino acid supplementation (beyond what is 

normally in plasma, labeled NAA), reference supplementation (RAA) and designed 

 Reference AA* Designed AA* 
Serine 0.10 0.36 
Glycine 0.17 0.41 
Tyrosine 0.40 0.72 
Valine 0.87 1.49 
Alanine 0.29 0.46 
Threonine 0.79 1.18 
Arginine 0.42 0.56 
Histidine 0.35 0.44 
Proline 0.18 0.22 
Leucine 0.83 1.02 
Isoleucine 0.78 0.89 
Lysine 0.75 0.79 
Aspartate 0.01 0.01 
Cysteine 0.13 0.13 
Methionine 0.20 0.14 
Glutamine 6.85 6.12 
Phenylalanine 0.42 0.32 
Glutamate 0.11 0.09 
Asparagine 0.09 0.01 
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supplementation (DAA) of amino acids. Each of these amino acid supplementations was 

evaluated for cells preconditioned in either high (HI) or low (LI) levels of insulin. 

Furthermore, groups were evaluated with (WH) and without (NH) hormone 

supplementation consisting of hydrocortisone and insulin during plasma exposure (Table 

3.1). The preconditioning and hormone additions have been found previously to influence 

the metabolism of fresh, primary rat hepatocytes exposed to plasma (Chan et al. 2003a; 

Chan et al. 2003c). 

 

First, the morphology of hepatocytes was examined over the course of a 5 day exposure 

to heparinized plasma under each treatment condition for the appearance of intracellular 

lipid droplets, a manifestation of stored triglycerides (TG) (Stefanovich et al. 1996). 

Control cells, which were preconditioned in low-insulin medium and never exposed to 

plasma, did not exhibit any change in morphology, even after 11 days of culture (Fig. 

3.3g). During unsupplemented plasma exposure, the nuclei of hepatocytes became 

enlarged and were obscured by lipid droplets (Fig. 3.3a, d). However, after plasma 

exposure with RAA supplementation (Fig. 3.3b, e) or DAA supplementation (Fig. 3.3c, f), 

the boundaries between hepatocytes were more clear and bright, formed fewer large lipid 

droplets, and exhibited similar morphology as in the standard medium of low-insulin 

precondition (Fig. 3.3g). This suggests that the amino acid supplementation drives 

metabolism in a way that leads to reduced lipid accumulation. Hormone (insulin and 

hydrocortisone, designated as WH)) addition along with amino acids during plasma 

exposure augmented the ability of amino acid supplementation to maintain native 

hepatocyte morphology (compare Fig 3.3e, f to 3.3b, c). The morphological trends after 
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high insulin preconditions were very similar to those after low insulin preconditioning 

(data not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 3.3: The morphology of hepatocytes was examined on day 11, following six days 

of preconditioning and five days of plasma exposure under each treatment condition: (a) 

LI_NAA_NH (b) LI_RAA_NH (c) LI_DAA_NH (d) LI_NAA_WH (e) LI_RAA_WH (f) 

LI_DAA_WH (g) control cells, which were preconditioned in low-insulin medium and 

never exposed to plasma. Scale Bar, 100 µm 
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A major concern in the use of cryopreserved hepatocytes is loss of viability following the 

thawing process. To ensure that the various culture conditions, i.e., amino acid and 

hormone supplementation regimens, did not impact differentially on viability, we 

measured the cell viability using calcein/ethidium staining at the end of the experiment, 

Day 11, corresponding to 6 days of pre-conditioning and 5 days of plasma exposure.  

After this extended period of culture, much of it in the challenging conditions of plasma 

exposure, a significant loss of viability at the end of our experiments was observed 

compared with 75% viability immediately after thawing cryopreserved rat hepatocytes 

(Fig. 3.4). However, cell viabilities were similar in all of the exposure conditions at the 

end of our experiments, simplifying interpretation of changes in metabolic outputs.  

Nonetheless, the values of all functional markers are normalized to the number of viable 

cells in a given sample. 
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Figure 3.4: Cell Viability. After 11 days of culture, the hepatocyte viability was 

quantified using calcein/ethidium staining for all twelve culture conditions.The 

percentage of viable cells is calculated as the ratio of live cells to total cells. The viability 

after thawing of the cryopreserved hepatocytes, which was determined using trypan blue 

exclusion assay, is also indicated. 
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Urea and albumin synthesis were measured after five days exposure to plasma using each 

of the supplementation protocols (Fig. 3.5a, b).  Hepatocytes exposed to plasma without 

amino acid supplementation suffered significant impairment of urea and albumin 

production regardless of their preconditioning or hormone supplementation status. When 

either the RAA or DAA supplementation was employed, preconditioning of rat 

hepatocyte cultures in high insulin medium prior to plasma exposure increased albumin 

production, but did not significantly change urea production. Reference amino acid 

supplementation results in a marked increase in urea and albumin production compared to 

unsupplemented plasma, and this increase is augmented further by the use of the designed 

amino acid supplementation. Hormone plus amino acid supplementation during plasma 

exposure resulted in comparable urea and further increased albumin production compared 

with the corresponding conditions without any hormone. 
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Figure 3.5 a 
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Figure 3.5: Urea (a) and albumin (b) production under the twelve experimental 

conditions: insulin preconditioning level (+ supraphysiological insulin, - physiological 

insulin), plasma amino acid level (- without supplementation, R “reference” 

supplementation, D “designed” supplementation) and hormone supplementation (- 

without hormone, + with hormone) during plasma exposure. Values shown represent 

means ± standard deviation of three independent measurements. Asterisks (*) indicate 

significant difference (p<0.05) between the designed supplementation and either the 

reference supplementation or non-supplemented control for the same insulin precondition 

and the same hormone supplementation during plasma exposure. 

 

 

 

Figure 3.5 b 
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Because of the strong role for lipid metabolism in mediating the effects of various 

modifiers (i.e., hormones and amino acids) on differentiated functions of cultured 

hepatocytes exposed to plasma (Chan et al. 2002; Li et al. 2004), we measured lipid 

uptake and ketone body formation in this system. Total lipid uptake (TG and palmitate) 

was not significantly affected by either insulin preconditioning prior to plasma exposure 

or amino acids/hormone supplementation during plasma exposure. Ketone body synthesis 

(ketogenesis) is a recognizable step of lipid metabolism, and its final products include 

β-hydroxybutyrate and acetoacetate. The β-hydroxybutyrate production was reduced by 

supplementing amino acids to plasma independent of hormone supplementation (Fig 

3.6a). Both the RAA and DAA supplementations were equally effective in reducing 

β-hydroxybutyrate production. The acetoacetate production was reduced by 

supplementing hormone to plasma independent of insulin precondition or of amino acid 

supplementation during plasma exposure (Fig. 3.6b). 
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Figure 3.6 a 
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Figure 3.6: β-hydroxybutyrate (a) and acetoacetate (b) production under each of the 

experimental conditions as indicated in Figure 3.5. Values shown represent means ± 

standard deviation of three independent measurements. Asterisks (*) indicate significant 

difference (p<0.05) between the designed supplementation and either the reference 

supplementation or non-supplemented control for the same insulin precondition and the 

same hormone supplementation during plasma exposure. 

 

 

 

 

 

 

Figure 3.6 b 
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3.3.3 Effect of Arginine Supplementation on Urea Production 

In order to determiner whether the observed increase in urea production in supplemented 

media is due simply to channeling of arginine, rat hepatocytes were cultured in media 

supplemented with a wide range of arginine levels, holding all other medium components 

constant. Urea production was found to be linearly increased with increase of arginine 

supplementation (0.2 mM~4mM) in the medium (Fig. 3.7). However, the rate of increase 

in urea production becomes smaller as arginine concentration increases beyond 4 mM 

and reaches a maximum peak. 
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Figure 3.7: Urea production under arginine exclusive supplementation. Hepatocytes were 

cultured in L-arginine free medium with the addition of L-arginine at the concentrations 

specified. Arginine concentration in RAA and DAA is represented in A, and B, 

respectively.
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Using arginine as supplementation alone, urea production could only increase by 0.052 

µmol/million cells/day when arginine concentration is increased from 0.42 mM to 0.56 

mM  (Fig. 3.7, point A and B),  which is arginine concentration in RAA and DAA 

design, respectively. Instead, FBA model shows urea production could be increased more 

than two fold, and experimental data of amino acid supplementation show that urea 

production could increase more than 0.3 µmol/million cells/day for same addition of 

arginine supplementation, but with the addition of other amino acid supplementation. 

 

3.4 Discussion 

3.4.1 Rational Design Method for Amino Acid Supplementation 

The effects of supplemented amino acids and hormones to plasma on liver-specific 

functions have been investigated in previous studies using freshly isolated rat hepatocytes 

(Chan et al. 2003a); however, the exact composition of the supplementation was derived 

empirically. The RAA supplementation was derived by addition of glutamine, deemed to 

be a critical amino acid for hepatocyte metabolism, mixed with a commercial amino acid 

supplementation, Basal Medium Eagle (BME). This has proven to be an effective starting 

point; however, we hypothesized that it could be fine-tuned using a rational design 

strategy based on FBA. It is not feasible to merely supplement all amino acids at 

arbitrarily high levels, as such a concentrated medium with amino acid supplementation 

would become harmful to cells due to high osmolarity (Washizu et al. 2000a). On the 

other hand, it has been shown that addition to plasma of single amino acids, such as 

glycine or glutamine, is insufficient to maintain hepatocyte-specific functions (Washizu et 

al. 2000a). We found here that addition of arginine is not enough to significantly improve 
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urea production. These studies suggest that a balanced supplementation is necessary to 

improve liver-specific functions, but it is not clear from such studies how to design an 

effective amino acid supplementation from data on addition of a single amino acid. As 

such, a quantitative, rational design methodology for amino acid supplementation would 

be very useful for metabolic engineering. Our studies represent a first attempt to use flux 

balance analysis to quantitatively design amino acid supplementation to the plasma for 

cultured hepatocytes. 

 

This rational design method accounts for multiple flux variables and their 

interconnections considering a complex hepatic network of interdependent chemical 

reactions by using linear programming and mixed integer linear programming. In 

accordance with a number of previous studies, the network includes those reactions and 

pathways known to play a significant role in nitrogen metabolism (Chan et al. 2003a; 

Chan et al. 2003b; Chan et al. 2003c; Lee et al. 2003; Nagrath et al. 2007; Sharma et al. 

2005; Uygun et al. 2007). From this standpoint, the production and degradation of protein 

is a potentially important consideration. Albumin production, by far the most abundantly 

produced secreted protein and the only protein included in the network, exhibits a flux 

that is very small compared to other fluxes. Protein degradation was examined in a 

previous study by adding breakdown of apolipoprptein B into the system (Chan et al. 

2003a), with the result that it was found to play a negligible role in hepatic network. An 

overall nitrogen balance calculated as the difference between nitrogen uptaken and 

excreted in the forms of amino acids, ammonia, urea and albumin production closes 

within 10%, which suggests that other forms of nitrogen not included in the model 
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(mainly protein and nucleic acids) play an insignificant role in the overall nitrogen 

balance. Although energy balance was not explicitly due to the fact that many ATP 

consuming reactions were not included in the network, thermodynamic constraints were 

included by giving positive flux bounds for each irreversible reaction in the FBA model. 

To confirm that the results are thermodynamically feasible, each flux calculated from 

FBA model was multiplied by the Gibbs free energy change ( GΔ ) and the summation  

j j
j

G vΔ∑  was evaluated and found to be negative. 

 

3.4.2 Multiple-Objective Optimization: Effects of Amino Acid Supplementation on 

Urea and Albumin Production 

The single objective of urea synthesis was chosen for flux balance analysis in this study. 

In FBA, a single objective can be achieved via multiple, distinct flux distributions.  In 

this case, FBA produced eight different flux distributions that achieve the same urea 

production and satisfy the same constraints. However, these distributions differed 

primarily in their glucose utilization and not at all in their amino acid uptake. Therefore, 

only one designed amino acid supplementation was generated (Table 3.2). 

 

While urea synthesis is only one of many functions that hepatocytes must perform, a high 

level of urea production is generally regarded as indicative of healthy, metabolically 

active hepatocytes. Utilizing the idea of multi-objective optimization, previous work has 

shown that another liver specific function, albumin production, is compromised when 

reaching the highest possible urea production (Nagrath et al. 2007; Sharma et al. 2005). 

However, high levels of both functions are quite feasible. In Figure 3.8, point A presents 
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the result from FBA model which is the global maximum urea production, corresponding 

to very low albumin production. However, in moving from point A to C through point B, 

albumin production is increased dramatically with very little decrease in urea synthesis. 

On the boundary containing points D and C, albumin production is maximal, with a wide 

range of possible values for the urea production. These points illustrate the Pareto set (Fig. 

3.8), which defines the feasible solution space for the FBA model. 
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Figure 3.8: Pareto-set for bi-objective problem of urea and albumin synthesis. The black 

circles are results calculated from multi-objective model, and point A is the result for 

maximization of urea production in the FBA model. RAA and DAA are experimental 

results as defined before. The hashed area corresponds to the feasible region of the 

model. 
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Experimentally, we found that albumin secretion was either unaffected or somewhat 

increased, depending on the hormone exposure, as urea production increased in going 

from the RAA to DAA supplementation. This finding remains consistent with the 

metabolically feasible region shown in Figure 3.8. Given that the liver performs a myriad 

of metabolic functions in vivo, it is likely that the regulatory program of hepatocytes is 

geared towards maintaining many functions at sub-optimal levels rather than any 

particular function at its apparent maximum. 

 

3.4.3 Effects of Hormone Supplementation on Hepatocyte 

Hormone levels either during preconditioning of hepatocytes or during plasma exposure 

may affect their metabolic functions. Previous studies using freshly isolated rat 

hepatocytes showed that insulin preconditioning does not significantly affect urea 

synthesis in the absence of amino acids; however, when supplemented with amino acids, 

low insulin preconditioning resulted in increased urea production compared with that of 

high insulin preconditioning (Li et al. 2004). In our studies using cryopreserved rat 

hepatocytes, the level of insulin did not affect urea production significantly regardless of 

amino acid composition. On the other hand, albumin production was enhanced by 

supraphysiological insulin preconditioning (Fig. 3.5b). 

 

Previous studies found that physiological levels of hydrocortisone (50-250 ng/mL) in the 

culture medium in pre-condition are necessary to maintain differentiated functions of 

hepatocytes in sandwich culture (Dunn et al. 1991). However, we found that 

hydrocortisone supplementation without amino acid supplementation during plasma 
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exposure did not alter the morphological appearance of cryopreserved hepatocytes or 

their production of urea and albumin. Rather, supplementation of amino acids in 

combination with hormone preconditioning is required to increase urea synthesis and 

albumin production. The synergistic effects of hormone addition and amino acid 

supplementation could be due to hormonal regulation of amino acid transport systems in 

primary rat hepatocytes. For example, hydrocortisone has been observed to upgrade 

transport system N for glutamine, histidine and asparagine (Gebhardt and Kleemann 

1987). 

 

3.4.4 Cryopreservation Hepatocytes 

Cryopreservation is a necessary step for the practical application of hepatocytes as a 

resource for in vitro analysis (Garcia et al. 2003) and bioartificial liver devices (Park and 

Lee 2005; Watanabe et al. 1997), since cryopreserved hepatocytes can be stored 

indefinitely, transported to any site, and utilized when desired.  In our study, the 

metabolic state of cryopreserved rat hepatocytes was evaluated under plasma exposure 

utilizing various cell culture supplementation conditions. A negative consequence of 

utilizing cryopreserved hepatocytes is the loss of viability from the summed processes of 

freezing, storage, thawing and culturing (Lloyd et al. 2003). Indeed, we observed a 

significant loss of viability (32 to 45 %) at the end of our experiments compared with 

75% viability at the beginning (Fig. 3.4). However, we find that the surviving hepatocytes 

are robust in their ability to adopt morphologies akin to freshly isolated hepatocytes (Fig. 

3.3) and to produce levels of differentiated markers only slightly reduced from their 

freshly isolated counterparts (Chan et al. 2003a). 
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The decline in liver-specific functions of hepatocytes during plasma exposure without 

amino acid supplementation may be due partially to cell death (Washizu et al., 2001). 

However, calcein and ethidium homodimer staining of the cells indicates similar 

proportions of viable cells in all of the exposure conditions (Fig. 3.4). The loss of 

function during human plasma exposure is associated with intracellular triglyceride (TG) 

accumulation. We observed microscopically high lipid accumulation in plasma without 

amino acid supplementation for cultured cryopreserved hepatocytes and a reduced rate of 

TG accumulation with amino acid supplementation. The accumulation of TG in 

non-supplemented cultures can be attributed to the increased uptake of lipids in plasma 

(Matthew et al. 1996b) and/or to a reduction in free fatty acids oxidation by cultured 

hepatocytes (Stefanovich et al. 1996). Therefore, we evaluated the correlation between 

urea synthesis and lipid accumulation through free fatty acids pathway. Total lipid (TG 

and FFA) uptake by cryopreserved hepatocytes was invariant with any of the 

experimental variables (Fig. 3.6). It is thus more likely that the lowered lipid 

accumulation under supplemented conditions was due to an increase in fatty acids 

conversion to acetyl-CoA. One of the end products of acetyl-CoA is ketone bodies (Fig. 

3.6). The decrease in ketone body production suggests that more acetyl-CoA enters into 

the TCA cycle and produces urea, which is consistent with FBA predictions and 

experimental observations. 

 

3.4.5 Improvements of FBA in the Future Work 

It is significant that, despite the approximations made in the FBA model, the DAA 
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supplementation did indeed lead to a higher urea production. The fact that albumin 

production was increased and β-hydroxybutyrate decreased in the DAA conditions 

compared with exposure condition without amino acid supplementation suggests that the 

resulting physiological state is a metabolically healthy one for the cultured, previously 

cryopreserved, hepatocytes used in this study.  Nonetheless, the observed synthesis rate 

of urea was still lower than the value predicted by the linear programming model. It is 

likely that one factor contributing to a lower than predicted urea output is that some 

designed amino acid fluxes might not be achieved due to deviations from the linear 

extrapolation used to design the supplementation or due to competitive transport 

limitations, since some amino acids make use of a common transporter. For example, 

alanine, serine, and glutamine use the same neutral transport system A in cell culture of 

rat hepatocytes (Joseph et al. 1978). Regulation by amino acid transporters is an 

important area for future investigation, as the resulting flux-supplementation functions, 

which may be nonlinear in the presence of transport limitations, can be added to FBA as 

capacity constraints to recalculate the amino acid supplementation for maximal urea 

production. Furthermore, new pretreatments can be designed to enhance the capacity of 

needed amino acid transporters, such as adjusting sodium concentration or the hormone 

level (Gu et al. 2005; Kitiyakara et al. 2001). 

 
3.5 Summary 

In summary, this study presents a novel approach to design rationally an amino acid 

profile for enhanced hepatocyte functions during plasma exposure. The fact that the DAA 

promoted a metabolically healthy phenotypic with higher levels of liver-specific 

functions (urea and albumin synthesis), represents a proof of principle for the approach.  
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Near-term improvements may be made in the hepatocyte cultures employed here by 

incorporating the amino acid transport mechanism and hormone effects regarding the 

metabolic capacity into the model so that a more accurate amino acid and hormone 

supplementation can be derived. As we characterize and incorporate such additional 

system constraints into the model, the approach will move closer to the ultimate goal of 

achieving a supplementation that is optimal for hepatocyte cultures the general case yet 

also can be tuned to meet variations in operating conditions. 
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Chapter 4 

ANALYSIS OF AMINO ACID SUPPLEMENTATION EFFECTS  

ON HEPATOCYTE CULTURES USING FLUX BALANCE ANALYSIS 

Abstract:  

When cultured hepatocytes are exposed to challenging environments such as plasma 

exposure, they frequently suffer a decline in liver-specific functions. Media supplements 

are sought to reduce or eliminate this effect. A rational design approach for amino acid 

supplementation in hepatocyte culture has been developed in our prior work, and 

designed amino acid supplementation (DAA) was found to increase urea and albumin 

production.  

 

To fully characterize the metabolic state of hepatocytes under different amino acid 

supplementations, a number of metabolite measurements are performed in this work and 

used in a metabolic network flexibility analysis framework including thermodynamic 

constraints to determine the range of values for the intracellular fluxes. A metabolic 

objective prediction model is used to infer the metabolic objectives of the hepatocytes 

and to quantify the intracellular flux distribution for three different amino acid 

supplementations.  

 

The results illustrate that DAA leads to greater fluxes in TCA cycle, urea cycle and fatty 

acid oxidation concomitant with lower fluxes in intracellular lipid metabolism compared 

with empirical amino acid and no amino acid supplementation for hepatocytes during 

plasma exposure. It is also found that hepatocytes exhibit flexibility in their metabolic 
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objectives depending on the composition of the amino acid supplementations. By 

incorporating both experimental data and thermodynamic constraints into the 

mathematical model, the proposed approach leads to identification of metabolic 

objectives and characterization of fluxes’ variability and pathway changes due to different 

cultured conditions.  

 

4.1 Introduction 

There are a number of studies in the literature regarding the use of primary hepatocyte 

cultures to study drug detoxification (Gebhardt et al. 2003; Nussler et al. 2001; Tuschl et 

al. 2008), and as the basic for artificial cell-based devices (Chan et al. 2003b; Flendrig et 

al. 1998; Wurm et al. 2009). In recent years, better understanding of isolation and 

cryopreservation techniques (Lloyd et al. 2003; Stefanovich et al. 1996), advances in 

hepatocyte-matrix interaction (Dunn et al. 1991; Hosagrahara et al. 2000) and improved 

liver function performance in culture medium (Chan et al. 2002; Sand and Christoffersen 

1988; Zupke et al. 1998) have improved our understanding of hepatocyte physiology. In 

particular, recent studies have shown that amino acid supplementation resulted in 

improvement of synthetic functions as well as cytochrome P450 (detoxification) activities 

during plasma exposure as occurs in clinical application of bioartificial liver devices 

(Washizu et al. 2000a; Washizu et al. 2001; Washizu et al. 2000b). However, the exact 

composition of previous supplementations were derived empirically. Recent work in our 

group represented a first attempt to use flux balance analysis to quantatitavely design 

amino acid supplementation to the plasma for cultured hepatocytes (Yang et al. 2009), 

and liver-specific functions (urea and albumin) under designed amino acid 
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supplementation were found to be increased compared with previously reported 

(empirical) amino acid supplementation (Chan et al. 2003c) and also resulted in reduced 

lipid accumulation. The present study builds on the prior work by contributing a detailed 

analysis of the metabolic phenotypes observed under amino acid supplementation, 

integrating a set of metabolite measurements with the flux balance analysis framework. 

 

Computational modeling of hepatic metabolism is increasingly being utilized in tandem 

with experimental measurements to understand and control the performance of 

hepatocytes under adverse culture conditions (Chalhoub et al. 2007; Chan et al. 2003c). 

In mathematical modeling of cell metabolism, a comprehensive network, with a large 

number of interconnecting reactions in the cell, is built to mimic the actual cell 

phenomena. Mathematic modeling for flux analysis can be classified into metabolic flux 

analysis (MFA) (Arai et al. 2001; Chan et al. 2003a; Vallino and Stephanopoulos 1994) 

and flux balance analysis (FBA) (Edwards et al. 2002; Kauffman et al. 2003; Lee et al. 

2006; Varma and Palsson 1994a). In both approaches, mass balance equations are written 

for each internal metabolite with the assumption of pseudo-steady state.  If the system is 

overdetermined, MFA is used to calculate all unknown fluxes and evaluate the gross 

measurement error using redundant information (Wang and Stephanopoulos 1983). If the 

system is underdetermined, FBA uses constrained optimization to identify the flux 

distribution of the metabolic network (Lee et al. 2006). Using appropriate metabolic 

objectives that cell strives to achieve (Gianchandani et al. 2008; Khannapho et al. 2008; 

Schuetz et al. 2007) and considering valid constraints that reduce the feasible region 

(Bonarius et al. 1997) are important issues in application of FBA. Since the cellular 
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objectives may not be known or easily hypothesized, optimization frameworks have been 

developed to infer the metabolic objectives (Burgard and Maranas 2003), applied to the 

hypermetabolic state of the liver (Nolan et al. 2006) and to cultured hepatocytes (Uygun 

et al. 2007). 

 

The consideration of various constraints, describing environmental (nutrients, physical 

factors etc.), physicochemical (mass balance, thermodynamic of internal reactions, 

maximum enzyme capacities), self-imposed regulatory and evolutionary constraints, 

allows to reduce the feasible region of an FBA problem (Covert et al. 2003), and to 

determine the state of the cell (Edwards and Palsson 2000). Recently, energy balance 

analysis (EBA) (Beard and Qian 2005) and pathway analysis have been developed to 

eliminate the thermodynamically infeasible solutions from FBA space. The idea has been 

used to identify the intracellular fluxes for the case of liver metabolism (Nolan et al. 

2006).  Network-embedded thermodynamic analysis (NET analysis) has been developed 

to determine the range of Gibbs energy of reactions and feasible range of metabolite 

concentration for the entire network utilizing the second law of thermodynamics, the 

reaction directionalities and metabolite concentrations within an optimization model 

(Kummel et al. 2006; Zamboni et al. 2008). 

 

In this work, the framework utilized includes mass balance constraints, reaction 

reversibility restrictions based on experimentally determined values, experimental 

measurements of extracellular fluxes that impose bounds on flux values, and three 

different pathways energy balance constraints in order to determine the range of flux 
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distribution that describes the metabolic state of the cell. In addition, a bi-level 

programming problem is developed to derive the metabolic objectives. The developed 

optimization tools are applied to hepatocyte metabolism in order to investigate the amino 

acid supplement effect on cell functions during plasma exposure. Specifically, the roles of 

lipid metabolism and TCA cycle in regulating urea production are elucidated.  

 
4.2 Methods  

4.2.1 Hepatocye Culture with Amino Acid Supplementation 

Hepatocytes were cultured using the well-established collagen sandwich method (Dunn et 

al. 1991; Yang et al. 2009). Prior to initiating the cultures, 0.4 mL of collagen mixture 

solution was added to each well of six-well plates and incubated at 37 °C and 10% CO2 

until the gel solidified. Cryopreserved rat hepatocytes purchased from Xenotech LLP 

(Lenexa, KS) were thawed following the Xenotech protocol and reconstituted to a density 

of 106cells/mL in C+H standard medium, which consists of DMEM supplemented with 

10% heat inactivated fetal bovine serum (FBS), 7.0 ng/mL glucagon, 7.5 g/mL 

hydrocortisone, 20 g/L epidermal growth factor, 200 U/mL penicillin, and 200 g/mL 

streptomycin. Reconstituted hepatocytes were seeded on a plate with collagen gel for 24 

h, at which time another 0.4 mL of collagen gel was added, resulting in a double 

sandwich configuration. After the second gel layer solidified, 0.8 mL fresh C+H medium 

with 0.05 mU/mL insulin was added. This maintenance medium was exchanged with 

spent medium every day for 6 days preconditioning.  

 

To begin the experiment, 6-day-old sandwiched hepatocyte cultures were exposed to 

plasma with hormone supplementation including 7.5 g/mL of hydrocortisone and 0.05 
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mU/mL of insulin. Treatment groups varied in the amino acid supplementation in the 

plasma, comparing “designed” amino acid supplementation (DAA) based on a rational 

design approach described in our previous work (Yang et al. 2009), “reference” amino 

acid supplementation (RAA) based on published data (Chan et al. 2003c), and no amino 

acid supplementation (NAA). The concentrations corresponding to each amino acid 

supplementation are given in the supporting material (Appendix D). Those media were 

exchanged with spent media every day for 5 days plasma exposure. At the end of the 

experiment, culture supernatants were collected and stored at 4 °C prior to analysis. 

 
4.2.2 Biochemical Assay  

Albumin production was quantified by an enzyme-linked immunosorbent assay (ELISA) 

using purified rat albumin (MP Biomedicals, Solon, OH) and peroxidase-conjugated 

antibody for detection (MP Biomedicals, Solon, OH). The concentrations of urea, glucose, 

lactate, glycerol, and glutamine were measured colorimetrically using commercial test 

kits (Sigma, St. Louis, MO). Enzymatic kits were utilized for the measurement of 

cholesterol (BioAssay System, Hayward, CA), acetoacetate, β-hydroxybutyrate, 

triglycerides (Stanbio, Boerne, TX), and free fatty acids (Roche, Indianapolis, IN).  

 

Amino acids and ammonia were labeled fluorescently with the AccQ reagent (Waters 

Corporation, Milford, MA) and separated by gradient elution from 100% buffer A (10% 

acetonitrile, 6% formic acid, and 84% ammonium formate in water) to 100% buffer B 

(60% acetonitrile, 40% micropore water) in 33 minutes at 1 ml/min flow rate on an 

AccQ-Tag C18 column (150 mm ×  3.9 mm I.D, Waters Corporation, Milford, MA) with 

a fluorescence detector (Waters 470, Waters Corporation, Milford, MA) using 
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excitation/emission at 250/395 nm, respectively. Serial dilutions of standards were used 

to construct a calibration curve for each analyte, with the linear portion utilized for 

measurements. The concentrations of amino acid/ammonia in the fresh or spent medium 

were determined using these standard curves, with sample dilutions performed as 

necessary to operate within the linear range.  

 

Statistics. All measurement results were expressed as mean ± standard deviation for three 

replicate culture plates. To evaluate the effect of amino acids supplementation on 

extracellular fluxes of hepatocytes, data were analyzed with Tukey’s test using SAS 

software (SAS institute Inc., Cary, NC). Significant differences were accepted as 

significant at p < 0.05.  

 
4.2.3 Hepatic Network 

The major reactions of hepatic metabolism were considered in a highly interconnected 

stoichiometric network that includes glycolysis/gluconoegenesis, tricarboxylic acid cycle 

(TCA), urea cycle, amino acid uptake/secretion and catabolism, oxygen uptake, electron 

transport system, pentose phosphate reactions (as a lumped group), ketone body synthesis, 

fatty acid, triglyceride (TG) and glycerol metabolism. This network builds upon 

previously reported hepatic networks and involves 46 intracellular metabolites (Chan et 

al. 2003c; Lee et al. 2003; Nagrath et al. 2007; Sharma et al. 2005; Uygun et al. 2007),  

and 78 reactions (30 reactions with measurement data, 48 reactions with unknown fluxes 

as labeled in Appendix E).    
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4.2.4 Pathway Energy Balance (PEB) Constraints 

Thermodynamic constraints were applied by allowing the sharing of free energy along 

elementary pathways connecting metabolic inputs and outputs. The standard Gibbs free 

energies of metabolites ( 0
fGΔ ) were estimated using a group-contribution method 

(Mavrovouniotis 1991; Nolan et al. 2006). The standard Gibbs free energy of reaction 

( 0
RXNGΔ ), defined in a standard state (pH 7, 1 atm, 25 °C, concentration 1 M, dilute 

aqueous solution), is calculated as follows: 

0 0 0
p rRXN p f r f

p r
G G Gυ υΔ = Δ − Δ∑ ∑                      (4-1)            

where pυ and rυ are the apparent stoichiometric number of products, and reactants in the 

biochemical reaction, respectively.  

 

Ignoring activity coefficient corrections, the Gibbs free energy of reaction away from 

equilibrium is given by (Mavrovouniotis 1993): 

0 ln j
RXN RXN j

j

G G RT CυΔ = Δ + ∏
                     (4-2)

  

where R  is the ideal gas constant, T  is the temperature ( K ); and jC  are the 

metabolite concentrations. 

 

Extracellular concentrations are supplied by the metabolite measurements reported in this 

work and have a range corresponding to the measured experimental uncertainty; 

intracellular concentrations are estimated from literature values and are also expressed as 

a range corresponding to the range of values reported or estimated. Because a range of 
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concentration values is used, minimum and maximum values of the Gibbs free energy of 

an intracellular reaction are calculated as follows,  

,min
products0

,min
reactants

ln

p

r

p
pMin

RXN RXN
r

r

C
G G RT

C

υ

υ
∈

∈

⎡ ⎤
⎢ ⎥

Δ = Δ + ⎢ ⎥
⎢ ⎥
⎣ ⎦

∏
∏

                   (4-3a) 

,max
products0

,max
reactants

ln

p

r

p
pMax

RXN RXN
r

r

C
G G RT

C

υ

υ
∈

∈

⎡ ⎤
⎢ ⎥

Δ = Δ + ⎢ ⎥
⎢ ⎥
⎣ ⎦

∏
∏

                    (4-3b)   

 

For metabolite uptake from or secretion into the culture medium, the standard Gibbs 

energy is considered as zero ( 0 0RXNGΔ = ) and only the second term in Equations 4-3a-b 

are used. 

 

Metabolic reactions are assumed to be able to utilize chemical potential from other 

reactions within their elementary pathways, which were consequently enumerated. The 

elementary modes are determined using elementary flux algorithm (Schuster et al. 2000; 

Schuster et al. 2002a), implemented in Matlab Fluxanalyzer (Klamt et al. 2003). The 

matrix of elementary modes E ( NP× dimension) is multiplied by the Gibbs energy of 

each reaction element-by-element, to form a matrix of pathway weighted by Gibbs 

energy of reactions, pGΔ  ( NP× dimension). 

maxmin,,0maxmin,,0
RXNp GEG Δ⋅=Δ                         (4-4) 

where the superscript 0, min, and max represent the standard, minimum, and maximum 

Gibbs free energy of the reaction, respectively.  
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Given the weighted pathway energy pGΔ and the flux vector v , the pathway energy 

balance constraints can be formed for each of the pathways of the network (Nolan et al. 

2006):  

PpvG
N

j
jp ∈≤⋅Δ∑ 0max)min,,0(

                 (4-5) 

Those three types of pathway energy balance constraints involving standard, minimum 

and maximum Gibbs free energy of the reaction are separately incorporated into the 

optimization problem to eliminate the thermodynamic infeasible flux distribution. More 

details on the construction of pathway energy balance constraints are given in the 

supporting material (Appendix F).  

 

4.2.5 Metabolic Network Flexibility Analysis (MNFA) 

The range of each unknown flux is estimated using Metabolic Network Flexibility 

Analysis (MNFA), in which system constraints are imposed but no metabolic objective is 

assumed or inferred. According to this approach the optimization problem (I) is solved 

for each unknown flux to determine the minimum and maximum feasible flux values.  

Kjvvv

MivSts

MinMax

jjj

N

j
jij

jEj

∈<<

∈=∑
=

∈

maxmin

1

0..

v/

                  (I) 

where vj is the reaction rate of reaction j; Sij is the stoichiometric coefficient of metabolite 

i in reaction j; min
jv  and max

jv  are lower and upper bound of reaction j, respectively; 

M is the set of metabolites; N is the total number of reactions involved in the hepatic 
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network; K  is the set of constrained reactions (based on measurements and/or 

irreversibility), and E  is the set of unknown reactions. The main assumptions for the 

development of MNFA model (I) are as follows: (1) The internal metabolites are assumed 

to be maintained at pseudo-steady state, which means their rate of change is small 

compared to their turnover; (2) the constraints for irreversible reactions, 0≥jv are 

imposed based on the information given in the metabolic map of KEGG (Kanehisa and 

Goto 2000); (3) the value of each measured flux was constrained by an interval 

[ minv , maxv ] based on the average and standard derivation of measurements using 

triplicates.  

 

Pathway energy balance (PEB) constraints (Equation 4-5) can be also added to reduce 

and more accurately describe the feasible range of intracellular fluxes based on the Gibbs 

free energy statement of the second law of thermodynamics. In this case the resulted 

optimization model including pathway energy balance constraints is as follows:  
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4.2.6 Metabolic Objective Prediction (MOP) Modeling  

Where a cellular objective can be identified in terms of metabolic fluxes, it can be used as 

a driving force to identify a consistent flux distribution within system constraints.  

However, for mammalian cells, the cellular objectives are manifold, dynamic, and 
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generally unknown. Thus we applied a metabolic objective prediction (MOP) approach, 

adopting a bi-level programming model similar to Objfind (Burgard and Maranas 2003) 

and incorporating minimum PEB constraints to infer the metabolic objectives of 

hepatocytes under varying amino acid supplementations as follows: 
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            (III)             

where jc is the coefficient of relative importance for each flux jv , and L is the number 

of measured fluxes. MOP is a bi-level programming problem in which the upper-level 

minimizes the sum of squared error between measured fluxes and their predicted values 

from the model (III), whereas the lower-level maximizes the sum of all possible 

objectives and weights are chosen from the upper level problem. The measurements 

restrict the metabolic objectives chosen in the follower’s problem since the feasible 

region of the lower-level problem is restricted by the upper-level decision. The bi-level 

programming can be reformulated into a single-level nonlinear program either by 

following the primal-dual strategy (Burgard and Maranas 2003), or using the 

Karush-Kuhn-Tucker (KKT) conditions of the lower-level problem (Shi et al. 2005). In 

this work we followed the KKT approach to transform the bi-level programming (III) to a 
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Complementary Constraints 

KKT condition 

single level optimization problem that involves the original constraints, the 

complementary constraints, and the KKT conditions for the upper and lower level 

constraints as follows:  

  

 

 

 

 

 

 

 

 

 

 

 

 

where 4321 ,,, uuuu  are dual variables for mass balance, pathway energy balance (PEB) 

constraints and flux bounds, respectively; and 432 ,, uuu are non-negative variables. 

 

All the optimization problems in this study were implemented using GAMS version 22.9, 

where MNFA solved by CPLEX 9 and MOP solved by SSB solver. 

 

 

(IV) 
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4.3 Results 

4.3.1 Extracellular Measurement  

After six days of preconditioning, previously cryopreserved rat hepatocytes were exposed 

to plasma containing medium with varying amino acid supplementation for five days. At 

this time, the concentrations of extracellular metabolites in the supernatant and in the 

fresh medium were measured. The production or consumption rate of each extracellular 

metabolite was calculated by the difference between its concentration in the fresh 

medium and in the supernatant divided by the number cells in each well and the time 

interval (one day) over which the medium was exposed to cells. The measured fluxes of 

metabolites in each amino acid supplementation are listed in Table 4.1. 
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Table 4.1: Measured fluxes under three amino acid supplementations 

 Metabolites Measured Flux (µmol/million cells/day) 

        NAA                 RAA                      DAA 

1mv  Glucose 0.22±0.17* 0.55±0.12 0.67±0.35

2mv  Lactate 2.44±0.37* 3.20±0.36* 3.47±0.36 

3mv  Urea 0.38±0.05* 1.18±0.05* 1.50±0.18 

4mv  Arginine 0.126±0.002* 0.55±0.01* 0.57±0.01 

5mv  Ammonia -0.29±0.12* -0.780±0.001* -1.01±0.02 

6mv  Ornithine -0.147±0.005* -0.336±0.004* -0.52±0.03 

7mv  Alanine 0.19±0.15* -0.169±0.009* -0.31±0.01 

8mv  Serine -0.327±0.005* -0.347±0.006* -0.68±0.02 

9mv  Cysteine -0.09±0.02* 0.07±0.01* 0.02±0.01 

10mv Glycine 0.063±0.005* 0.246±0.004* 0.530±0.009 

11mv Tyrosine -0.028±0.008* 0.03±0.01* -0.23±0.06 

12mv Glutamate -0.515±0.008* -1.46±0.02* -1.75±0.03 

13mv Aspartate -0.009±0.001* -0.021±0.001* -0.030±0.001 

14mv Acetoacetate 0.15±0.05 0.14±0.02 0.150±0.009 

15mv β-OH-butyrate 0.91±0.07* 0.16±0.02 0.160±0.009 

16mv Threonine -0.05±0.01* 0.21±0.02* -0.45±0.04 

17mv Lysine -0.12±0.01* -0.07±0.02* -0.45±0.03 

18mv Phenylalanine -0.053±0.002* 0.33±0.01* 0.11±0.01 

19mv Glutamine 0.19±0.13* 2.77±0.54* 1.80±0.72 

20mv Proline 0.68±0.11 0.48±0.04 0.46±0.11 

21mv Methionine -0.017±0.006 0.01±0.01 -0.05±0.06 

22mv Asparagine 0.18±0.13* 0.081±0.005* -0.134±0.006 

23mv Valine -0.175±0.004* -0.20±0.02* -0.65±0.03 

24mv Isoleucine -0.166±0.003* -0.32±0.02* -0.47±0.03 

25mv Leucine -0.075±0.002* -0.01±0.02* -0.44±0.04 

26mv Albumin 0.00003±0.0000 0.0007±0.0002* 0.00109±0.00004

27mv Glycerol 1.77±0.07* 2.13±0.13 2.075±0.007 

28mv Palmitate 0.76±0.46 1.073±0.008 0.981±0.005 

29mv Cholesterol 0.46±0.12 0.67±0.13 0.75±0.21 

30mv TG  0.93±0.02 0.82±0.13 0.92±0.01 
* p<0.05, significantly different from DAA 
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It has been shown in the literature that liver does not uptake branched chain amino acids 

(BCAA: valine, isoleucine and leucine) (Marchesini et al. 2005). However, it was found 

that hepatocytes release different levels of BCAA depending on the particular amino acid 

supplementation during plasma exposure. Designed amino acid supplementation results 

in an increased secretion of valine, isoleucine and leucine compared with the culture 

conditions with no amino acid supplementation or with reference amino acid 

supplementation. Increased secretion of the BCAA under designed amino acid 

supplementation is due to an increased rate of amino acid turnover, which is associated 

with a healthy hepatocyte phenotype (Marchesini et al. 2005).  

 

The major finding of this experiment is that urea production and albumin synthesis under 

the designed amino acid supplementation were found to be increased compared with 

previously reported (empirical) amino acid supplementation or no amino acid 

supplementation by reducing the lipid accumulation (Yang et al. 2009). However, from 

the experimental results, it was found that triglyceride (TG) uptake (vm30), free fatty acid 

(FFA) uptake (vm28), and cholesterol synthesis (vm29) are not significantly different among 

the different amino acid supplementation conditions. Therefore, intracellular fluxes need 

to be calculated to further investigate the effects of amino acid supplementation on the 

metabolic state of hepatocytes.  

 

4.3.2 Metabolic Network Flexibility Analysis (MNFA) 

The range of each unknown flux was estimated first using MNFA model (I), which 

incorporates mass balance, experimental data and reversibility constraints. The numerical 
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values are provided in Appendix G (Label as ‘without ΔG’). The ranges of the unknown 

fluxes exhibit similar trends in all three different amino acid supplementations. The 

reactions associated with electron transport (vu36, vu37), and oxygen uptake (vu46) illustrate 

large flux ranges. The flux ranges of TCA cycle (vu7~ vu12) are also large due to 

insufficient constraints in the MNFA model. The details for designed amino acid 

supplementation (DAA) are given in Figure 4.1a labeled as blue bar. The rest of the 

unknown fluxes exhibit small ranges since they are highly connected to the measured 

fluxes and are restricted further by the imposed constraints, which are given in Figure 

4.1b labeled as blue bar. The determined flux ranges are large, thus the unknown 

reactions’ fluxes cannot be completely compared for different amino acid 

supplementation during plasma exposure (Fig. 4.2a).  
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Figure 4.1: Flexibility analysis of hepatic network: ranges for unknown fluxes in 

designed amino acid supplementation (DAA) were determined using metabolic network 

flexibility analysis (MNFA): without PEB constraints (blue color), and with minimum 

PEB constraints (red color). (a) Flux range for oxygen balance (two reactions of relative 

electron transports (vu36, vu37), oxygen uptake (vu46) and TCA cycle (vu7~ vu12); (b) flux 

range for the rest of unknown fluxes.  
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The constraints based on pathway energy balances were imposed on the problem to check 

our hypothesis that those constraints can help reducing the feasible solution space. In 

order to construct the PEB constraints, the elementary modes algorithm (Schuster et al. 

2000; Schuster et al. 2002a) was first applied for the hepatic network, which is specified 

for each of three amino acid supplementation (DAA,RAA and NAA) by the reaction 

irreversibility based on measurement data from experiment (Table 4.1) and flux range of 

unknown reactions (Appendix G, “without ΔG”). Totals of 65696, 54754 and 90079 

elementary modes were identified in DAA, RAA, and NAA, respectively. Next, the 

Gibbs free energy of reaction is calculated according to Eqn. 4-1, 4-3a and 4-3b by 

incorporating metabolite concentration bounds given in Appendix H. The pathway energy 

balance constraints were constructed as described in Eqn. 4-4 and 4-5.  

 

Finally, the range of each unknown flux was estimated using MNFA model (II), which 

incorporates all the constraints of model (I) and all the feasible PEB constraints. The 

numerical values are provided in Appendix G (labeled as standard_ΔG, min_ΔG and 

max_ΔG, respectively). Those results showed that imposing additional pathway energy 

balances on optimization programming significantly reduces the feasible space of the flux 

distributions for each of the three different cultured conditions during plasma exposure. 

Figures 4.1a and 4.1b showed the large reduction achieved in the range of unknown 

fluxes by the addition of the minimum PEB constraints (red bar) compared with FBA 

alone (blue bar) in the condition of designed amino acids (DAA) supplementation. 

Moreover, some unknown fluxes become comparable for different amino acid 
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supplementation (Fig. 4.2b) with PEB minimum constraints compared with those 

comparable results without PEB constraints (Fig. 4.2a) 

 

As expected and further illustrated with the results shown in Appendix G, the minimum 

PEB constraints are the less restrictive of the flux bounds but they also guarantee the 

system’s feasibility. Therefore, we further analyzed the unknown fluxes incorporating 

minimum PEB constraint in model (II), to investigate the effects of amino acid 

supplementation on the metabolic state of the hepatocytes. The following results, 

associate with glycolysis/gluconeogenesis pathway, TCA cycle and urea cycle, are thus 

obtained.  

 

In previous studies, it was found that glucose metabolism of hepatocytes switches to 

gluconeogenesis during plasma exposure from glycolysis during medium preconditioning 

(Chan et al. 2003c). However, we found that this switch only happens in the case with no 

amino acid supplementation during plasma exposure. For the cases of reference and 

designed amino acid supplementation, cryopreserved rat hepatocytes maintained the 

glycolysis phenotype during plasma exposure as in the preconditioning. It is also found 

that designed amino acid supplementation enhances glucose consumption (vm1) and 

increases the rate of glucose-6-phosphate dehydrogenation by glucose-6-phosphate 

dehydrogenase (vu38) and the rate of its storage as glycogen (vu43) compared to that in 

reference amino acid supplementation (Fig. 4.2c). 
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Figure 4.2 a  
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Figure 4.2: MNFA analysis of glycolysis/gluconeogenesis pathway. (a) Unknown flux 

ranges of glycolysis/gluconeogenesis pathways without PEB constraints; (b) unknown 

flux ranges of glycolysis/glucogeogenesis pathway with minimum PEB constraints; (c) 

fluxes in glycolysis/gluconeogenesis pathway: unknown flux range is calculated by 

metabolic network flexibility analysis (II) with minimal PEB constraints, and 

extracellular fluxes are measured (average ± standard derivation).  
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In our previous study, urea production (vm3), a key liver-specific function, was increased 

in designed amino acid supplementation compared to reference amino acid 

supplementation and no amino acid supplementation conditions during plasma exposure. 

Arginine, which is the only amino acid that can be directly converted to urea, can be 

taken up from the culture medium (vm4), or synthesized from citrulline and aspartate 

(vu14). This step provides the critical link between urea cycle and TCA cycle. In the 

presence of ATP, aspartate combines with citrulline to form fumarate and arginine, and 

fumarate returns to the TCA cycle. The flux distribution results (Fig. 4.3) show that TCA 

fluxes (vu9~vu12) were increased in designed and reference amino acid supplementation 

compared with no amino acid supplementation. The majority of urea production from 

arginine is derived from citrulline (urea cycle, vu14) instead of form arginine uptake from 

supplementation (vm3), particularly in designed amino acid supplementation. 

 

However, even with the incorporation of PEB constraints, the flux does not constraint 

sufficiently and do not allow to reach any conclusion regarding the differeces associated 

with fatty acid, lipid and glycerol metabolism, oxygen uptake and electron transport in 

the different amino acids supplementation condition. Therefore the minimum PEB 

constraints were incorporated into the metabolic objective prediction model to calculate a 

unique flux distribution and infer the cell’s metabolic objectives. 
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Figure 4.3: Flux distribution in the urea cycle and TCA cycle. Urea production was 

significantly increased in designed amino acid supplementation by an increase of fluxes 

in urea cycle compared with those values in reference amino acid supplementation and no 

amino acid supplementation. TCA fluxes were increased in designed and reference amino 

acid supplementation compared with no amino acid supplementation. The ranges of 

unknown fluxes are labeled as “min~max”, and extracellular fluxes are labeled “average 

± standard derivation”. 
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4.3.3 Metabolic Objective Prediction (MOP) 

The Metabolic Objective Prediction model (MOP) is a bi-level program where the 

upper-level corresponds to minimization of the sum of squared error between 

measurement fluxes and their calculated value from the model (III), and the lower-level is 

to identify the metabolic objectives. By applying MOP, objective functions of cultured 

hepatocytes are obtained for the three different amino acid supplementation conditions. 

The results for most important reactions ( 0.1jc > ) are shown in Table 4.2.  

 

Table 4.2: Identification of metabolic objective from MOP model (IV) 

Flux # NAA RAA DAA 

4mv   Arginine Uptake  0.36  

10mv   Glycine Uptake  0.12  

12mv   Glutamate Secretion  0.13  

13mv   Aspartate Secretion  0.16  

28mv  Palmitate Uptake 0.46   

29mv  Cholesterol ester + H2O   Cholesterol + Palmitate 0.46   

33uv  Palmitate + ATP + 7FAD + 7NAD+ + 8CoA  
8acetyl-CoA + 7FADH2 + 7NADH + AMP + PPi 

 0.11 0.44 

6uv   Pyruvate + CoA + NAD+     
Acetyl-CoA + CO2  + NADH 

  0.24 

15mv   Acetoacetate + NADH + H+   
β-hydrobutyrate + NAD+ 

  0.23 

Note: NAA = no amino acid supplementation; RAA = reference amino acid 

supplementation; DAA = designed amino acid supplementation. 

 

The analysis implies that hepatocytes prioritize the management of their lipid metabolism 

by favoring palmitate uptake ( 28mv ), and cholesterol ester transformation to palmitate 

( 29mv ) in the case where no amino acids are supplemented. In the condition of reference 
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amino acid supplementation, the metabolic objectives shift to transport of amino acids 

and synthesis of ketone bodies via arginine and glycine uptake ( 4mv and 10mv ), glutamate 

and aspartate release ( 12mv and 13mv ), and fatty acid oxidation ( 33uv ).  Finally in the case 

of designed amino acid supplementation, hepatocytes’ metabolic objectives correspond to 

fatty acid metabolism: fatty acid oxidation ( 33uv ), transformation of pyruvate to 

acetyl-CoA ( 6uv ), and formation of the ketone body β-OH-butyrate ( 15mv ). 

 

4.3.4 Flux Distribution: Lipid Metabolism and Electron System 

The unknown fluxes are calculated using model (IV) in which the mean squared error 

from experimental measurements is minimized subject to stoichiometric and minimum 

pathway energy balance constraints (see Table 4.3). The flux values associated with lipid 

metabolism and electron transport system are further evaluated in order to investigate 

amino acid supplementation effects on the metabolic state of hepatocytes.  

 

From the experimental results, it was found that total free fatty acid uptake (triglyceride 

(TG) uptake (vm30), free fatty acid (FFA) uptake (vm28), and cholesterol synthesis (vm29)) 

are not significantly different among the different amino acid supplementation conditions. 

However, results from flux distribution indicate that there is lower lipid accumulation in 

the condition of designed amino acid supplementation due to an increase in TG 

conversion into fatty acid (vu42) , an increase in fatty acid conversion to acetyl-CoA (vu33), 

and a decrease of TG storage (vu45) compared with other conditions during plasma 

exposure. These intracellular flux distributions are consistent with the morphological 

appearance of the cells, in which lipid droplets are apparent in the absence of amino acid 
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supplementation but are reduced markedly when amino acid supplementation is 

employed (Yang et al. 2009) . 

 

From the obtained flux distribution (Table 4.3), it also found that the fluxes of oxygen 

uptake (vu33) and the reactions associated with electron transport (vu36, vu37) were 

increased under designed amino acid supplementation compared with the other two 

conditions. From the hepatic energy metabolism aspects, metabolism of amino acids in 

designed amino acid supplementation increase the amount of NADH and FADH2 through 

increase of the fluxes in TCA cycle. The NADH and FADH2 are next utilized with O2 

taken from medium to make more ATP via the reactions associated with electron 

transport. 

Table 4.3: Intracellular flux distribution from MOP model (IV) 

Flux # NAA RAA DAA 
Glycolytic or Gluconeogenic Pathway, PPP, Glycogen storage 

321 ,, uuu vvv  0.89 0.54 0.00 

54 , uu vv  0.08 3.19 2.39 

6uv  2.51 6.49 4.89 

38uv  0.09 0.001 0.05 

43uv  0.40 0.004 0.62 

TCA cycle 

87 , uu vv  19.07 22.45 30.48 

9uv  16.89 22.17 31.60 

10uv  16.54 22.01 30.60 

1211 , uu vv  16.76 22.98 31.70 

Urea Cycle 

1413 , uu vv  0.30 0.62 1.11 

Amino Acid Catabolism 

15uv  0.10 -0.07 -0.13 

16uv  -0.27 0.13 -0.61 

17uv  -0.05 0.05 0.03 
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18uv  -0.04 0.22 -0.46 

19uv  0.03 0.48 0.08 

20uv  5.85 1.07 3.08 

21uv  -0.36 -0.16 -1.00 

22uv  -0.12 -0.04 -0.42 

23uv  -0.05 0.33 0.15 

24uv  -0.04 0.18 0.00 

25uv  -1.09 -0.14 0.56 

26uv  0.13 2.78 1.77 

27uv  -0.03 0.22 0.02 

28uv  0.29 0.25 0.27 

29uv  -2.34 -2.35 0.46 

30uv  -0.02 0.01 0.01 

31uv  -0.06 -0.27 -0.61 

32uv  0.18 0.09 -0.12 

39uv  -0.09 -0.09 -0.30 

40uv  -0.08 0.004 -0.21 

41uv  -0.04 -0.15 -0.19 

47uv  -2.34 -2.36 0.44 

48uv  5.85 1.07 3.08 
Fatty Acid, Lipid and Glycerol Metabolism 

33uv  1.22 1.74 2.78 

34uv  -4.81 -1.03 -2.29 

35uv  0.92 0.00 0.38 

42uv  0.00 0.00 0.32 

44uv  1.70 2.11 2.39 

45uv  0.93 0.82 0.60 

Oxygen Uptake and Electron Transport System 

36uv  39.77 48.77 64.66 

37uv  15.18 17.39 25.68 

46uv  72.57 70.66 100.00 

Flux rate (µmol/million cells/day). The flux range is in Appendix G.  

NAA = no amino acid supplementation; RAA = reference amino acid supplementation; 

DAA = designed amino acid supplementation. 
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4.4 Discussion 

It has been recognized that amino acids play an important role in regulatory control of 

hepatic metabolism during plasma exposure such as synthesis/degradation of protein and 

lipid (Chan et al. 2003c). In our previous work, experimental data showed that designed 

amino acids supplementation, derived from a rational approach based on linear 

optimization towards an objective of high urea flux, led to an increase in urea and 

albumin production compared with reference amino acid supplementation and no 

supplementation. In this work, metabolite measurements and flux/pathway analysis were 

used to characterize the hepatocytes’ state of metabolism under varying amino acid 

supplementations.   

 

4.4.1 Unknown Flux Ranges with or without PEB Constraints 

In this system, the number of unknown fluxes (48 reactions) is greater than the number of 

mass balance equations (46 internal metabolites). Therefore, intracellular fluxes cannot 

be uniquely determined using flux balance analysis (FBA) (Stephanopoulos et al. 1998). 

Additional constraints are required to reduce the feasible region of an FBA problem. 

Recently, energy balance analysis (EBA) was proposed to eliminate the 

thermodynamically infeasible fluxes associated with FBA (Beard et al. 2004; Beard et al. 

2002). Nolan et al. (Nolan et al. 2006) incorporated the 0
PATHGΔ  inequality constraints 

and successfully reduced the feasible region of FBA for hypermetabolic liver. The 

0
PATHGΔ inequality constraints express an overall distribution of Gibbs free energy to the 

reactions involved in an elementary mode, in which endergonic reactions ( 0GΔ > ) can be 

“powered” by exergonic reactions ( 0GΔ < ) if those reactions are “coupled” in the same 
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elementary modes and the overall free energy change weighted by their fluxes is negative. 

The approach here differs from that of Nolan et al. (Nolan et al. 2006) in that the latter 

did not consider the effects of the metabolite concentration from different cultured 

conditions, which can greatly alter the values of Gibbs free energy of the reaction (Beard 

and Qian 2005). However, hepatocytes contain a large number of different metabolites 

which make the analysis and quantification of concentration of every metabolite difficult 

and tedious. In order to resolve this issue, only the concentrations of the extracellular 

metabolites are measured and represent the values in the culture medium and in the 

collected supernatant at the end of experiment (Appendix H). The concentrations for 

intracellular metabolites are assumed to lie within the range that exist in the literature 

relative to hepatic metabolism, or within their physiological ranges of the order of µM to 

mM if no data are available in the literature (Fraenkel 1992) (Appendix H). Although 

exact measurements of concentrations for intracellular metabolites are not available, the 

proposed methods take into consideration the effects of metabolite concentration on 

evaluating the Gibbs free energy rather than relying solely rely on standard conditions.  

 

Depending on the Gibbs free energy evaluation for each reaction (standard, minimum and 

maximum as shown in equations 4-1, 4-3a, and 4-3b), three types of pathway energy 

balance (PEB) constraints are investigated in this work. Since PEB constraints are 

calculated as the summation of the products of the Gibbs free energy times the flux of the 

corresponding reaction, increase of Gibbs free energy of reaction would result in smaller 

feasible region in terms of flux values. Maximum and standard PEB constraints generated 

very tight feasible region for underdetermined hepatic network, whereas minimum PEB 
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guarantee the flux feasibility resulting in the largest feasible region but with reliable 

range of concentrations of the metabolites. Therefore, we used minimum PEB constraints 

to explain the effects of amino acid supplementation and incorporate those constraints 

into MOP model to infer the metabolic objectives.  

 

4.4.2 Advantages of MOP Modeling 

In FBA, a particular flux distribution is determined based on a pre-selected objective, 

such as maximization of growth rate for a microorganism (Ibarra et al. 2002), or 

maximization of urea production for primary hepatocytes (Sharma et al. 2005). Schuetz et 

al., (Schuetz et al. 2007) evaluated different objective/constraints combinations and found 

that the objectives of E. coli change with different environmental conditions or biological 

occurrences. A Bayesian-based objective function discrimination method has thus been 

developed to find the most probable objective with a highest posterior probability from a 

group of spare objectives (Knorr et al. 2007). Recently, an optimization-based framework 

has been developed to systematically identify and test metabolic objectives (Burgard and 

Maranas 2003). In this approach, the objective is the most consistent with experimental 

data and represented by the value of the coefficient of importance ( jc ). In this work, we 

developed a bi-level programming MOP to determine the hepatocyte objectives taking 

into consideration flux data of external metabolites, mass balances of all internal 

metabolites and minimum PEB constraints. One of the advantages of this method is that 

it does not require a pre-selection of a set of objective functions (Burgard and Maranas 

2003). Uygun et al., (Uygun et al. 2007) applied a similar approach for objective 

identification in cultured hepatocytes assuming that the cells exhibit the same objective 
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under different conditions. Instead, we found that the cellular priorities changed based on 

the amino acid supplementation (Table 4.2).  

 

4.4.3 Metabolic Objectives under Different Amino Acid Supplementation 

The results of MOP analysis reveal some interesting characteristics of hepatocyte cells’ 

behavior under different amino acid supplementations. Previous reports suggested that 

urea synthesis is reduced during plasma exposure most possibly due to lack of amino 

acids in the medium (Matthew et al. 1996a), which is represented in our studies by the 

case of no amino acid supplementation. The results of MOP reveal that in this case the 

cells uptake free fatty acid (FFA) and transform cholesterol ester to FFA ( 28mv , 29mv ), 

which is supported by the results reported in the literature of increased TG accumulation 

(Matthew et al. 1996a). When amino acid supplementation was provided in the plasma, 

TG accumulation was reduced for both reference and designed amino acid 

supplementation (Chan et al. 2003a; Yang et al. 2009). Given that changes are occurring 

in pathways beyond the urea cycle, it is not surprising that the metabolic objectives of 

hepatocytes are changing with varying amino acid supplementations. The solution of the 

MOP model implies that the metabolic objectives for the case of reference amino acid 

supplementation are to exchange amino acids (arginine, glycine, glutamate, and aspartate) 

with cultured medium and to synthesize acetoacetate. For the case of designed amino acid 

supplementation, arginine and glycine uptake was not selected as cell objectives because 

the cells have already reached their maximum uptake capacity of arginine and glycine. 

Excess uptake of any amino acid from the cell can cause build-up of ammonia that should 

be excreted to avoid toxic effects. Supplying hepatocytes with large amount of glutamine 
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(6.85 mM in reference and designed amino acid supplementation compared with 0.65 

mM in the medium of no amino acid supplementation) results in a large increase of 

intracellular glutamate via the reaction 26uv and aspartate due to reaction 31uv . Thus 

secretion of both glutamate and aspartate were among the objectives identified by MOP 

for the case of reference amino acid supplementation.  

 

Both reference and designed amino acid supplementation identified fatty acid oxidation 

as an objective, which is an important step to reduce the rate of TG accumulation during 

plasma exposure (Stefanovich et al. 1996). The coefficients of importance ( jc ) associated 

with fatty acid oxidation are greater in designed amino acid supplementation ( 0.44jc = ) 

than in reference amino acid supplementation ( 0.11jc = ), which implies that the 

reduction of TG accumulation is more important in the designed amino acid 

supplementation. The other two metabolic objectives identified for the case of designed 

amino acid supplementation are β-hydroxybutyrate production and transformation of 

pyruvate to acetyl-CoA, which indicates that the decrease in ketone body production 

results in more acetyl-CoA entering the TCA cycle to produce urea (Yang et al. 2009) . 

These results indicate that hepatocytes employ different strategies to maintain their 

survival in environment perturbations.  

 

4.5 Summary  

Overall, the presented work leads to better understanding of hepatocyte’s behavior under 

varying amino acid supplementation during plasma exposure. Our data showed that 

amino acid supplementation plays a central role to increase the flux of free fatty acid 
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oxidation in hepatic metabolism during plasma exposure, which enables the metabolic 

manipulation of hepatocytes to improve liver cell function in culture by rational design of 

amino acid supplementation.  
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Chapter 5 

EFFECTS OF AMINO ACID TRANSPORT LIMITATION  

ON CULTURED HEPATOCYTES 

Abstract: 

Amino acid supplementation has been shown to enhance the liver-specific functions of 

cultured hepatocytes during plasma exposure. However, their transport through the cell 

membrane may restrict their effects on hepatic metabolism. Such constraints should be 

included in the design of amino acid supplementation. 

   

In chapter 5, we first investigate the transport constraints related to uptake of the neutral 

amino acids to understand the transport effects on the liver-specific functions. Using 

different combinations of alanine, serine and glutamine on supplementation, their 

transport rate and liver-specific functions (urea and albumin) are measured. The results 

show that the transport competition exists among these three amino acids and as a result 

affect the urea and albumin production. Next, regression equations are developed to 

quantify these effects and then incorporated together with other constraints (mass balance, 

measured data and reaction directionality) within a multi-objective framework to 

investigate the effects of transport constraints and predict the amino acid supplementation 

that can lead to improved hepatocyte functionality.  
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5.1 Introduction  

Cultured hepatocytes are core components of extracorporeal bioartificial liver (BAL) 

devices, which are being developed with the intent to support patients with liver failure 

until a liver transplantation becomes available. However, cultured hepatocytes are 

frequently characterized by a decline in liver-specific functions when they are exposed to 

unfavorable environments such as plasma, as occurs clinically for BAL devices. Media 

supplementations are sought to reduce these effects. However, previous studies showed 

that single amino acid supplementation, such as glycine or glutamine, is insufficient to 

maintain liver-specific functions during plasma exposure (Washizu et al. 2000a). A 

balanced supplementation of amino acids, either mixed additional glutamine with a 

commercial amino acid supplementation, Basal Medium Eagle (BME) (Chan et al. 2003c) 

or designed amino acid supplementation using a rational optimization approach (Yang et 

al. 2009), have positive effects on hepatic metabolism. These formulations lead to 

improvement of liver-specific functions as well as reduction of lipid accumulation of 

hepatocyes during plasma exposure. 

 

Cellular metabolism of amino acids depends on its capacity to transport them through the 

cell membrane, which is mediated by the transporters that recognize, bind and transport 

the amino acids from extracellular environment (cultured medium) to cytoplasm, or vice 

versa. The transporters with the same recognition properties form a transport system.  

The characteristics of transport for different amino acids can be distinguished based on 

their ionic charge: neutral, cationic and anionic, which are mediated by independent 

transport systems with overlapping specificities (Hyde et al. 2003; Malandro and Kilberg 
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1996; Palacin et al. 1998). In brief, the main transport systems for neutral amino acids are 

known as system A, ACS, N and L. System A mediates small aliphatic neutral amino 

acids (alanine, serine and glutamine) with Na+ ion and pH sensitive, such as alanine, 

serine and glutamine. Perfect amino acids for ACS transport system, which is Na+ 

dependent and not pH sensitive, are alanine, serine and cysteine. System N transports 

glutamine, asparagine and histidine. Because transport system A and N share comment 

sequential and functional properties, they are recently reclassified as a single 

family-system A/N transport (SNAT) family (Gu et al. 2000; Gu et al. 2005). System L 

transports branched-chain and other aromatic amino acids. System Gly is specific for 

glycine. Cationic amino acid transporters (CATs) mediate arginine, lysine, and ornithine. 

Anionic amino acids transporters (EAATs) mediate glutamate and aspartate.  

 

An excess of one amino acid for a particular transport system may inhibit the uptake of 

any other amino acids which are mediated by the same transport system (Joseph et al. 

1978). It has been shown that the transport rate is a control step for alanine metabolism 

(Fafournoux et al. 1983), and a similar conclusion was drawn for glutamine (Haussinger 

et al. 1985). It was also shown that alanine and glutamine are mediated by the same 

transport system A with serine (Christensen et al. 1965).   

 

In our study, first the transport rate of alanine, serine and glutamine are measured under 

different concentrations to investigate the transport limitations. Next, the experimental 

results are used to model mathematically the amino acid transport constraints using a 

least-square regression equation, which explain the variance and dependence in amino 
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acids transport fluxes (alanine, serine and glutamine). Finally, these amino acid transport 

constraints are incorporated together with other constraints including mass balances, 

measured data and reaction directionality within a multi-objective metabolic flux balance 

model to investigate the effect of transport constraints and predict the amino acid 

supplementation of alanine, serine and glutamine for maximum urea production and fatty 

acid oxidation.  

 

5.2 Methods 

5.2.1 Design of Experiment: Amino Acids Transport  

Hepatocytes were isolated from adult male Fisher F344 rat (150-200g) based on the 

two-step collagenase-perfusion method via the portal vein described previously (Dunn et 

al. 1991). Cells were cultured on sandwich collagen at a density of 1x106 cells/mL at the 

six-well plates. Initially, hepatocytes were cultured in the standard hepatocyte C+H 

medium, which consists of DMEM supplemented with 10% heat inactivated fetal bovine 

serum (FBS), 7.0 ng/mL glucagon, 7.5 g/mL hydrocortisone, 20 g/L epidermal growth 

factor, 200 U/mL penicillin, 200 g/mL streptomycin, and 500 mU/L insulin. This C+H 

medium was treated to hepatocytes at the beginning of three days with changing the 

medium every day.   

 

The RMPI_1600, plus 10% FBS with same concentration of Glucagon, EGF, insulin, and 

glucose as C+H medium, was used to wash hepatocytes three times with 1 hour interval. 

Then cells were cultured in conditional medium (Table 5.1) with different combinations 

of alanine, serine and glutamine supplementation (total 33 combinations), in additional 
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three days with changing medium every day. At the end of experiment, the supernatant 

was collected and stored in 4℃ for assay 

 

Table 5.1: Conditional medium of transport experiment 

 Alanine* Serine* Glutamine*

0.2,0.4,0.8 0.1 2 

0.2,0.4,0.8 0.1 4 

0.2,0.4,0.8 0.1 6 

Alanine & Glutamine 

0.2,0.4,0.8 0.1 8 

0.1 0.2,0.4,0.6 2 

0.1 0.2,0.4,0.6 4 

0.1 0.2,0.4,0.6 6 

Serine & Glutamine 

0.1 0.2,0.4,0.6 8 

0.2 0.2,0.4,0.6 1.5 

0.4 0.2,0.4,0.6 1.5 

Alanine & Serine 

0.8 0.2,0.4,0.6 1.5 
* supplied concentration in the cultured medium (mM) 

 

5.2.2 Design of Experiments: Amino Acids Supplementation 

Hepatocytes were cultured using the well-established collagen sandwich method (Dunn et 

al. 1991) as described Chapters 3 and 4. After the second gel layer solidified, 0.8 mL 

fresh C+H medium (described in section 5.2.1) with 0.05 mU/mL insulin (LI) or 500 

mU/mL (HI) was added. Medium was exchanged every day for 6 days preconditioning.  

 

After 6 days of preconditioning, hepatocyte cultures were exposed to plasma with 

hormone supplementation including 7.5 g/mL of hydrocortisone and 0.05 mU/mL of 

insulin (WH) or without hormone supplementation (NH). Treatment groups varied in the 
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amino acid supplementation in the plasma, comparing “designed” amino acid 

supplementation (DAA) based on a rational design approach described in our previous 

work (Yang et al. 2009), and “reference” amino acid supplementation (RAA) based on 

published data (Chan et al. 2003c). The concentrations corresponding to each amino acid 

supplementation are given in Appendix D. Those media were exchanged with spent 

media every day for 5 days plasma exposure. At the end of the experiment, culture 

supernatants were collected and stored at 4 °C prior to analysis. 

 

5.2.3 Biochemical Assays 

At the end of both experiments (amino acid transport and amino acid supplementation 

during plasma exposure), urea was measured using a commercial kit (Sigma, St. Louis, 

MO) which is based on the reaction of diacetyl monoxime with urea. Albumin production 

was quantified by an enzyme-linked immunosorbent assay (ELISA) using purified rat 

albumin (MP Biomedicals, Solon, OH) and peroxidase-conjugated antibody for detection 

(MP Biomedicals, Solon, OH).  

 

Amino acids were labeled fluorescently with the AccQ reagent (Waters Corporation, 

Milford, MA) using a Beckman Coulter HPLC system with a fluorescence detector 

(Waters 470, Waters Corporation, Milford, MA) scanning fluorescence detector at 

250/395 nm excitation/emission (detail described in Chapter 4). Serial dilutions of 

standards were used to construct a calibration curve for each analyte, with the linear 

portion utilized for measurements. The concentrations of amino acid/ammonia in the 

fresh or spent medium were determined using these standard curves, with sample 
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dilutions performed as necessary to operate within the linear range.  

 

In addition, for the experiment of the amino acid supplemention during plasma exposure, 

the concentrations of glucose, lactate, glycerol, and glutamine were measured 

colorimetrically using commercial kits (Sigma, St. Louis, MO). Enzymatic kits were 

utilized for the measurement of cholesterol (BioAssay System, Hayward, CA), 

acetoacetate, β-hydroxybutyrate, triglycerides (Stanbio, Boerne, TX), and free fatty acids 

(Roche, Indianapolis, IN).  

 

5.2.4 Transport Constraints: Nonlinear Equations  

A quadratic model is developed to simulate the transport limitations that exist between 

amino acid uptake/secretion and their concentrations in the cultured medium, as follows:  

    

,

2 2 2
0 1 2 3 11 22 33

12 13 23

( , )Ala Ser Gln

Ala Ser Gln Ala Ser Gln

Ala Ser Ala Gln Ser Gln

v f C C C

C C C C C C
C C C C C C e

β β β β β β β
β β β

=

= + + + + + +
+ + +

                (5-1) 

where β ’s are parameters which are estimated from a set of known values of 

concentrations of alanine ( AlaC ), serine ( SerC ), and glutamine ( GlnC ) supplied in the 

medium and their corresponding uptake/secretion fluxes ( v ) using the methods of least 

squares, which minimizes the sum of the squares of the error e. SAS software (SAS 

Institute, Inc., Cary, NC) is used to identify which terms ones contribute significantly to 

the flux values. Terms with p<0.05 are considered to be significant, while the others are 

excluded from the model.  
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5.2.5 Multi-objective Modeling 

The basic hepatic network used in the analysis builds upon previously reported hepatic 

networks (Chan et al. 2003c; Lee et al. 2003; Nagrath et al. 2007; Sharma et al. 2005; 

Uygun et al. 2007) and involves 46 intracellular metabolites, and 78 reactions (30 

reactions with measurement data, 48 reactions with unknown fluxes as labeled in 

Appendix E). Gluconeogenesis pathway instead of glycolysis is used in this work, which 

is the case for amino acid supplementation. The other reactions included are tricarboxylic 

acid cycle (TCA), urea cycle, amino acid uptake/secretion and catabolism, oxygen uptake, 

electron transport system, pentose phosphate reactions (as a lumped group), ketone body 

synthesis, fatty acid, triglyceride (TG) and glycerol metabolism. 

 

The constraints derived to express the transport limitations of amino acids are then 

incorporated in the optimization framework to investigate the effects of amino acid 

supplementation on urea production and fatty acid oxidation. The optimization model is 

as follows: 

                1

min max

'
ln

{ , }

. . 0,

( , , )

urea Fatty Acid Oxidation

N

ij j
j

j j j

k Ala Ser G

Max v v

s t S v i M

v v v j K

v f C C C k K

=

= ∈

< < ∈

= ∈

∑
                (I) 

where Sij is the stoichiometric coefficient of metabolite i in reaction j; min
jv  and max

jv  

are lower and upper bound of reaction j, respectively; M is the set of metabolites; N is 

the total number of reactions involved in the hepatic network; K  is the set of 

constrained reactions (based on measurements from amino acid supplementation 
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experiment and/or irreversibility); and 'K is the set of additional transport constraints 

generating by nonlinear least-square regression equation 5-1. The main assumptions for 

the development of model (I) are as follows: 

(1) Urea maximization is a reasonable objective since it is often used as a marker of 

hepatocyte function that typically correlated with a health phenotype of hepatocytes 

(Yang et al. 2009). Fatty acid oxidation was identified as an additional metabolic 

objective to represent the reduction of lipid accumulation with amino acid 

supplementation in Chapter 4. Therefore, both of them are considered in the objective 

functions in this study.  

(2) Based on our previous results using amino acid supplementation, in this work we 

derived the bounds in model (I) using the measurements of the conditions with amino 

acid supplementation (DAA and RAA) but varying with insulin precondition (HI and LI) 

and hormone supplementation during plasma exposure (NH and WH). The range of these 

experimental measurements defines the flux bounds which cover all eight experiment 

settings.  

(3) The reversibility of each reaction is determined based on the information given in the 

metabolic map of KEGG (Kanehisa and Goto 2000). Reversible reactions are allowed to 

take either positive or negative values, whereas irreversible reactions are restricted to 

positive values if the reaction directions are same with KEGG, or to negative values if the 

reaction directions are different from KEGG. 

(4) Albumin synthesis which is one of the most important liver-specific functions 

(Nagrath et al. 2007; Sharma et al. 2005; Yang et al. 2009) is considered constant in 

model (I) and equal to the value at the designed amino acid supplementation.  
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Model (I) corresponds to a nonlinear programming (NLP) problem since the transport 

constraints are nonlinear functions and is solved by ε -constraint method (Haimes et al. 

1971) which maximizes a primary objective while it converts another objective into a 

constraint as follows: 

1

min max

'

. . 0,

( , , )

urea

N

ij j
j

j j j

k Ala Ser Gln

Fatty Acid Oxidation

Max v

s t S v i M

v v v j K

v f C C C k K
v ε

=

= ∈

< < ∈

= ∈
≥

∑
                     (II) 

Choosing a different value of parameter ε  results in the determination of a set of 

Pareto-optimal solutions where urea production and the flux of fatty acid oxidation are 

best compromised.  

 

5.3 Results 

5.3.1 Amino Acid Transport Constraints  

In the amino acid transport experiment, at the initial three days, hepatocytes were 

cultured by C+H medium which is changed every day. Then the different combinations of 

alanine, serine and glutamine supplementation with RMPI_1600 medium are supplied to 

cultured hepatocytes for additional three days with changing medium every day. At the 

end of the experiment, alanine, serine and glutamine fluxes are calculated from their 

measured concentrations in the collected supernatants (Appendix I).  

 

Hepatocytes uptake alanine from the supplied medium when concentration of glutamine 
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is low, however, it switches to secretion into the medium when the concentration of 

glutamine increases (Fig. 5.1a). Similar phenomena are observed for serine transport rate 

(Fig. 5.1b), which suggests the effect of transport competition among these amino acids. 

It is further shown that hepatocytes have limited uptake capacity for glutamine and that 

the rate of glutamine uptake is roughly constant when glutamine supplementation in the 

medium is increased up to 4 mM (Fig. 5.2a and 5.2b). This effect is independent of 

alanine and serine supplementation in the medium. Moreover the results illustrate that 

under low level of supplementation of alanine and serine (<1 mM) no competition exists 

(Appendix I).  

 

It is found that glutamine inhibits the uptake of alanine and serine when high level of 

glutamine is supplied to the culture medium. Therefore, the effect of this inhibition on the 

liver-specific functions, such as urea and albumin, was investigated further. Under 

different combinations of alanine and glutamine supplementations, it was found that urea 

production is increased with the increase of glutamine supplementation, but gets its 

maximum value when the glutamine concentration is close to 4 mM (Fig. 5.3a). Higher 

levels of glutamine supplementation lead to a decline in the urea production. However, 

urea production is not affected significantly by varying levels of serine and glutamine 

supplementation (Fig. 5.3b). Albumin synthesis decreases with increasing glutamine 

supplementation and it is independent of alanine and serine supplementation in the 

cultured medium (Fig. 5.4 a, b).   
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Figure 5.1 b 

 

 

 

 

 

 

 

 

 

Figure 5.1：Net fluxes of alanine and serine affected by glutamine supplementation. (a) 

Alanine net fluxes under different combinations of alanine and glutamine in the medium; 

(b) serine net fluxes under different combinations of serine and glutamine in the medium. 
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Figure 5.2 b 

 

 

 

 

 

 

 

 

 

Figure 5.2: Results on Glutamine uptake. (a) Glutamine uptake under different 

combinations of alanine and glutamine in the medium; (b) glutamine uptake under 

different combinations of serine and glutamine in the medium. 
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Figure 5.3 b 

 

 

 

 

 

 

 

 

 

Figure 5.3: Urea production (a) under different combinations of alanine and glutamine 

supplementation; (b) under different combinations of serine and glutamine 

supplementation. Asterisks (*) indicate significant different (p<0.05) between the 

different supplied glutamine lever and supplied glutamine level of 6 mM for the same 

alanine and serine supplementation. 
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Figure 5.4 b 

 

 

 

 

 

 

 

 

 

Figure 5.4: Albumin synthesis (a) under different combinations of alanine and glutamine 

supplementation; (b) under different combinations of serine and glutamine 

supplementation. Asterisks (*) indicate significant different (p<0.05) between the 

different supplied glutamine lever and supplied glutamine level of 6 mM. 
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In order to investigate the effects of these restrictions on the hepatic network during 

plasma exposure, a non-linear regression model is used to fit these three amino acid 

fluxes with their supplied concentrations in the medium and further those equations are 

incorporated to flux analysis model as constraints. All the experimental data in Appendix 

I are used to calculate the parameters in the regression model (Eqn.5-1), and only those 

significant parameters (with p value less than 0.05) are shown for nonlinear transport 

constrains as follows,   

2 20.218 2.910 1.859 0.019

1.538 0.062
Ala uptake Ala Ala Gln

Ala Ser Ser Gln

v C C C

C C C C
− = − + − −

− +
                        (5-2)             

2

2 2
ln ln

0.323 2.189 2.185 4.000

4.832 0.210 0.017
Ser uptake Ala Ala Ser

Ser G G

v C C C

C C C
− = − + − +

− − +
                       (5-3)             

20.620 1.118 0.081

0.005 0.042
Gln uptake Gln Gln

Ala Gln Ser Gln

v C C

C C C C
− = − + −

+ −
                                 (5-4)             

The high value of coefficient of determination ( 2R ) for these nonlinear regression models 

( 2 0.88R ≥ ) imply that most of the variability in amino acid transport rate (v ) can be 

explained by quadratic functions of the concentrations of alanine, serine and glutamine 

supplied in the medium. 

 

5.3.2 Reduction of Feasible Space using Additional Transport Constraints 

In the experiment of amino acid supplementation, after six days of preconditioning with 

high or low insulin provided, cultured hepatocytes were exposed to plasma containing 

medium with varying amino acid and hormone supplementation for five days. At this 

time, the concentrations of extracellular metabolites in the supernatant and in the fresh 
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medium were measured. The production or consumption rate of each extracellular 

metabolite was calculated by the difference between its concentration in the fresh 

medium and in the supernatant divided by the number of cells in each well and the time 

interval (one day) over which the medium was exposed to cells. The measured fluxes of 

metabolites in each culture condition are listed in Appendix J. The range of these 

experimental measurements defines the flux bounds （ min maxv v v≤ ≤ ）which cover all 

eight experiment settings (in Table 5.2).  

 

In order to investigate the role of transport constraints on flux space, the bi-objective 

Pareto-optimal solutions (Model I) were first determined by finding different 

combinations of urea production and fatty acid oxidation in cultured hepatocytes without 

transport constraints. The outline of the feasible range without transport constraints is 

represented by the line A’B’C’D’ (Fig. 5.5), which shows the changes of flux values and 

directions from one objective to the other. By incorporating the transport constraints (Eqn. 

2, 3 and 4) to the bi-objective model (I), the feasible range of flux space is significantly 

reduced, which is represented by the line ABCD (Fig. 5.5).  
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Table 5.2: Minimum and maximum values for measured fluxes  

 Metabolites Flux Bounds* 

1mv  Glucose 1.02 2.635 

2mv  Lactate 2.108 3.827 

3mv  Urea 0.562 10 

4mv  Arginine 0.105 0.647 

5mv  Ammonia -1.311 0.025 

6mv  Ornithine -0.556 -0.127 

7mv  Alanine -10 10 

8mv  Serine -10 10 

9mv  Cysteine -0.00813 0.219 

10mv  Glycine 0.115 0.585 

11mv  Tyrosine -0.76 0.207 

12mv  Glutamate -1.783 -0.45 

13mv  Aspartate -0.049 0.01 

14mv  Acetoacetate 0.116 0.235 

15mv  β-hydroxybutyrate 0.119 0.437 

16mv  Threonine -0.887 0.664 

17mv  Lysine -0.684 0.624 

18mv  Phenylalanine -0.404 0.506 

19mv  Glutamine 0.23 100 

20mv  Proline -1.843 0.574 

21mv  Methionine -0.202 0.187 

22mv  Asparagine -0.361 0.158 

23mv  Valine -1.092 0.223 

24mv  Isoleucine -0.937 -0.092 

25mv  Leucine -0.8481 -0.003 

26mv  Albumin 0.000103 0.001452 

27mv  Glycerol 1.958 2.234 

28mv  Palmitate 0.796 1.093 

29mv  Cholesterol 0.543 2.216 

30mv  TG 0.694 0.946 
              *µmol/million cells/day 
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Figure 5.5: Pareto-optimal solution for bi-objective problem in cultured hepatocytes: 

urea production vs. fatty acid oxidation. No amino acid transport constraints (in black), 

and with amino acid transport constraints (in red).  

 

5.3.3 Amino Acid Supplementation and Flux Distribution 

The additional transport constraints significantly reduce the feasible region of 

Pareto-optimal solution. By examining the whole feasible region in Figure 5, from point 

A to B and from point C to D, an increase in urea production has a small effect on the 

reduction of fatty acid oxidation flux However, the effects are more pronounced between 

point B and C where an increase in urea production requires a large decrease in fatty acid 

oxidation. Point E in the feasible region corresponds to the results of the experiment 

which hepatocytes were cultured with the designed amino acid supplementation. Urea 
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production and flux of fatty acid oxidation can be further improved towards the boundary 

of the feasible region (Fig. 5.5, red line).  

 

In this study, parameter ε  was chosen as the different value to drive the hepatocyte 

culture towards higher urea production in the feasible solutions: point B (maximum urea 

production with highest value of fatty acid oxidation fluxes) and point F (maximum urea 

production by maintaining the flux of fatty acid oxidation as that of estimation from 

metabolic objective prediction model in our previous work with designed amino acid 

supplementation). Urea production, flux fatty acid oxidation and the concentration of 

alanine, serine and glutamine are calculated from the multi-objective model (II) and listed 

in Table 5.3, where it is compared with the experimental results with reference and 

designed amino acid supplementation (the flux distribution for Point F is listed in 

Appendix K).  

 

Table 5.3: Amino acid supplementation of alanine, serine and glutamine 

 Model (II) 

Point B  Point F 

Experiments 

DAA    RAA 
Urea Production* 4.746 3.513 <1.7 <1.2 

Fatty Acid Oxidation* 2.167 2.780 2.78 1.74 

Alanine    (mM) 0.57 0.50 0.46 0.29 

Serine     (mM) 0.33 0.41 0.36 0.10 

Glutamine  (mM) 2.67 3.38 6.85 6.85 

* flux rate (µmol/million cells/day) 
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5.4 Discussion  

It has been proved that a mixture of amino acid supplementation plays an important role 

on the improvement of liver-specific functions during plasma exposure (Chan et al. 2003c) 

(Yang et al. 2009). However, the observed flux of urea production in the in vitro 

experiment was still lower than the predicted urea output from the mathematical 

modeling, which may be due to transport limitation among the amino acids supplied to 

plasma.  

 

5.4.1 Transport Competition among Alanine, Serine and Glutamine 

Compared with other amino acid supplementation (< 1.5 mM), glutamine is supplied at a 

very high level to the plasma (6.85 mM) in both reference and designed amino acid 

supplementation. In the cultured hepatocytes, glutamine is a key amino acid used to 

produce urea by deamidation of glutamine to glutamate via glutaminase, while glutamine 

requirements need to be increased for the patients with liver disease (Darmaun 2000). 

However, in this study, it is found that a high level of glutamine supplementation (>6 mM 

in the reference and designed amino acid supplementation) is not required due to its 

transport capacity. It is also found that higher concentration of glutamine inhibits the 

uptake of alanine and serine (Fig. 5.1) since these three amino acids share transport 

system A, which catalyzed the Na+-dependent net uptake of neutral amino acids 

(Christensen et al. 1965; Joseph et al. 1978). Reduction in flux uptake of alanine and 

serine is likely to reduce the liver-specific functions of culture hepatocytes (Fig. 5.3 and 

5.4). Although hepatic glutamine transport is also mediated by system N which also 

mediates the uptake of histidine and asparagine, their effects are not considered in this 
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study since asparagine is supplied in a low level in both reference and designed amino 

acid supplementation (0.09 mM) and both histidine and glutamine can conversed to 

glutamate in the hepatic network.  

 

5.4.2 Advantages of Transport Constraints for Flux Balance Analysis  

In order to systematically understand the transport limitation among alanine, serine and 

glutamine, three nonlinear equations are developed to characterize the dependence 

between their transport fluxes and concentrations supplied in the cultured medium, which 

are imposed in the flux balance analysis as transport constraints. To our knowledge, this 

is the first attempt to construct amino acid transport constraints in the field of flux 

analysis. The traditional constraints used on the flux analysis include mass balances, 

reaction directionality and inequalities applied from the second law of thermodynamics 

on the individual reactions (energy balance analysis, EBA) (Beard and Qian 2005) and on 

the pathways (pathway energy balance constraints, PEB) without concentration 

information (Nolan et al. 2006) or with incorporation of metabolites’ concentrations in 

our previous work (Chapter 4). Employment of transport constraints provides an 

additional way to reduce the feasible range of the flux space and to correctly predict the 

amount of amino acid supplementation in the medium by using nonlinear relationship 

among the relevant reaction fluxes and metabolites. 

 

Transport constraints are considered within a multi-objective model and it is found that 

higher level of alanine, lower level of glutamine with similar value of serine (Point B, 

and point F, compared to the designed amino acid supplementation in our previous work 
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(Yang et al. 2009) can be used to produce the maximum urea production while 

maintaining the flux of fatty acid oxidation at a certain value. According to the results, for 

example, point F, from multi-objective model (II), glutamine supplementation should be 

reduced to 3.38 mM from 6.85 mM in reference and design amino acid supplementation. 

Alanine supplementation should be increased to 0.50 mM from 0.29 mM and 0.46 mM, 

and serine supplementation should be increased to 0.40 mM from 0.10 mM and 0.36 mM 

in the reference and design amino acid supplementation, respectively. This amino acid 

supplementation increases urea production to 3.51 µmol/million cells/day compared with 

the experiment results (Table 5.3) with the same flux of fatty acid oxidation 

(2.78µmol/million cells/day), and does not inhibit the uptake of alanine and serine 

(Appendix K).  

 

5.5 Summary 

In summary, this work demonstrated that high levels of glutamine inhibit the uptake of 

alanine and serine and that the resulting transport limitations affect the liver-specific 

functions. A nonlinear regression model can accurately describe the transport limitations 

as constraints, which are incorporated into the multi-objective metabolic flux balance 

model. It was found that the transport constraints connecting the concentration of amino 

acids, which share the same transport system with their fluxes, can be used as an 

additional way to reduce the feasible space. Moreover, the transport constraints can be 

used to re-evaluate the profile of amino acid supplementation during plasma exposure 

and understand the interaction between different amino acids. The main contribution of 

this work is the systematic analysis of the effects of amino acid transport on liver 
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metabolism since liver plays an important role in regulation of amino acids (Burghardt et 

al. 1996) 
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Chapter 6 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions  

The central theme of this thesis is the development of in vitro experiment and 

mathematical modeling to design and analyze amino acid supplementation effects on 

cultured hepatocytes during plasma exposure, and thus enables the metabolic 

manipulation of hepatocytes to improve the targeted functionalities of hepatocytes. The 

key conclusions we draw from this study are (1) a novel rational design approach 

provides an amino acid supplementation which promotes a metabolically healthy 

phenotype with higher level of liver-specific functions including urea production and 

albumin synthesis; (2) the metabolic objectives of hepatocytes are more than one and 

change with varying amino acid supplementation. In the designed amino acid 

supplementation, fatty acid oxidation plays an important role to reduce lipid 

accumulation during plasma exposure; (3) the designed amino acid supplementation 

enhances the liver-specific function by reducing the lipid accumulation, increasing the 

albumin synthesis, increasing the fluxes in TCA cycle (that results in further increase of 

urea production), and increasing the electron transport providing more ATP to the hepatic 

metabolism; (4) transport limitations exist for the amino acids which use the same 

transport system when one of them supplied in a higher level in the cultured medium 

during plasma exposure. Those transport limitations result in reduced utilization of amino 

acids and should be avoided when providing a novel amino acid supplementation; (5) two 

types of constraints for the flux analysis, pathway energy balance (PEB) constraints and 

amino acid transport constraints, have been developed and are proved to significantly 
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reduce the feasible solution space compared with flux balance analysis (FBA) .  

 

6.2 Future Work 

6.2.1 Modulation of metabolic pathways by siRNA Technology 

Small interference RNAs (siRNAs) are composed of small double-stranded RNA 

oligonucleotides with overhanging extremities and a length of 21/22 bases. siRNA enters 

the RNAi induced silencing complex (RISC) followed by its recognition of the targeted 

mRNA, which is subsequently degraded. Thus, mRNA translation is halted (Bartlett and 

Davis 2006; Dykxhoorn et al. 2003). siRNAs are wildly used for silencing of gene 

expression in living cells due to the high efficiency (Hutvagner and Zamore 2002). 

siRNA silencing Fas protected mice from liver failure and fibrosis in two models of 

autoimmune hepatitis (Song et al. 2003) 

 

siRNA technology may have substantial impact on hepatic metabolism due to its ability 

to target a specific entity in the network while leaving other unaffected. siRNA can be 

used to diminish or eliminate the activity of the desired enzyme relative to a particular 

reaction which is competitive with liver-specific functions. Another basic application of 

siRNA is to identify the alternative flux distribution from mixed-integer linear 

programming (MILP). This can be achieved by using siRNA to break down a pathway by 

inhibiting one enzyme involved in the pathway to determine whether alternative pathway 

can be utilized in the hepatic metabolism, or whether the computed multiple flux 

distributions are an artifact of the modeling approach used due to the flux bounds 

considered.  



125 
 

 

6.2.2 Drug-drug Metabolic Interaction 

Acetaminophen (APAP) is a common over-the-counter (OTC) medication which is used 

to relief the pain and fever. It is safe when it is provided at therapeutic doses. However, 

APAP overdose can cause acute liver failure (ALF). Patients with hepatic impairment 

using extracorporeal bioartificial liver (BAL) devices and patients which are chronic 

alcoholics may increase this risk. In the future, the mathematic model generated in this 

study can be used to analyze the interactions of acetaminophen and ethanol metabolism 

with the central hepatic metabolism. The mathematical modeling tandem with in vitro 

experiments is used to identify the non-toxic APAP pathway and hepatotoxicity pathway 

induced by ethanol (Yang and Beard 2006) or possibly by plasma exposure, a clinical 

application for BAL devices. The results can be used to further administer the therapeutic 

APAP doses and amino acid supplementation for this special group of patients with 

chronic alcohol use. 
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APPENDIX A: Hepatic metabolic network used for Chapter 3 

No. and Enzyme Stoichiometry 

1 Glucose-6-Pase Glucose-6-P + H2O   Glucose + Pi 

2 Phosphoglucose isomerase Fructose-6-P           Glucose-6-P 

3 Fructose-1,6-P2ase-1 Fructose-1,6-P2 + H2O  Fructose-6-P + Pi 

4 Two Steps  2-glyceraldehyde-3-P  Fructose-1,6-P2 

5 Four Steps  Phosphoenolpyruvate + NADH + H+ + ATP + H2O  

Glyceraldehyde-3-P + Pi + NAD+ + ADP 

6 PEPCK Oxaloacetate + GTP   Phosphoenolpyruvate + GDP + CO2 

7 Pyruvate carboxylase Pyruvate + CO2 + ATP + H2O  Oxaloacetate + ADP + Pi +2 H+ 

8 Lactate dehydrogenase Lactate + NAD+         Pyruvate + NADH + H+ 

9 Citrate synthase Oxaloacetate + Acetyl-CoA + H2O   Citrate + CoA + H+ 

10 Isocitrate dehydrogenase Citrate + NAD+      α-ketoglutarate + CO2 + NADH 

11 α-ketoglutarate 

dehydrogenase 

NAD+ + α-ketoglutarate + CoA  Succinyl-CoA + CO2  + NADH + H+ 

12 Succinyl-CoA synthetase, 

     succinate dehydrogenase 

Succinyl-CoA + Pi  + GDH + FAD  Fumarate + GTP + FADH2 + CoA 

13 Fumarase Fumarate + H2O   Malate 

14 Malate dehydrogenase Malate + NAD+    Oxaloacetate + NADH + H+ 

15 Arginase Arginine + H2O     Urea + Ornithine 

16 Carbamoyl-P-synthetase I,  

     ornithine transcabamylase 

Ornithine + CO2 + NH4
+ + 2ATP + H2O  Citrulline + 2ADP + 2Pi + 

3H+ 

17 Argininosuccinase, 

Argininosuccinate synthetase     

Citrulline + Aspartate + ATP  Arginine + Fumarate +  AMP + PPi 

18 Arginine Uptake 

19 NH4
+  Uptake 

20 Ornithine Secretion    

21 Alanine aminotransferase Alanine + 0.5 NAD+ + 0.05 NADP+ + H2O  Pyruvate + NH4
+ +  

0.5 NADH + 0.5 NADH + H+ 

22  Alanine Uptake 

23 Serine  NH4
+ + Pyruvate 

24 Serine Uptake 

25  3-mercaptopyruvate 

sulfurtransferase, transminase     

Cysteine + 0.5 NAD+ + 0.5 NADP+ + H2O + SO3
2-  Pyruvate + 

Thiosulfate + NH4
+ + 0.5 NADH + 0.5 NADPH + H+ 

26  Cysteine Uptake 
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No. and Enzyme Stoichiometry 

27  Serine hydroxymethyl 

transferase 

Threonine + NAD+    Glycine + Acetyl-CoA + NADH 

28 Glycine DH, 

      Aminomethytransferase,  

      dihydrolipoyl DH 

Glycine + NAD+ + H4folate    Serine + N5,N10-CH2-H4folate + 

NADH + NH4
+ 

29  Glycine Uptake 

30 Nine Steps  Tryptophan + 3H2O + 3O2 + CoA + 3NAD+ + FAD   3CO2 + FADH2 

+ 3NADH + 4H+ + NH4
+ + Acetoacetyl-CoA 

31 Three Steps  Propionyl-CoA + ATP + CO2     Succinyl-CoA + AMP + PPi 

32 Eight Steps  Lysine + 3H2O + 5NAD+ + FAD + CoA    2NH4
+ +5H+ + 5NADH + 

2CO2 + FADH2 + Acetoacetyl-CoA 

33 Phenylalanine hydroxylase Phenylalanine + H4biopterin + O2   H2biopterin + Tyrosine + H2O 

34 Five steps Tyrosine + 0.5NAD+ +0.5NADP + H2O + 2O2  NH4
+ + 0.5NADH+ + 

0.5NADPH + H+ + CO2 + Fumarate + Acetoacetate 

35  Tyrosine Uptake 

36  

Glutamate dehydrogenase I 

Glutamate + 0.5NAD+ + 0.5NADP+ + H2O   NH4
+ + 

α-ketoglutarate + 0.5NADP + 0.5NADPH + H+ 

37  Glutamate Uptake 

38  Glutaminase Glutamine + H2O  Glutamate + NH4
+ 

39  Two steps Ornithine + NAD+ + NADP+ + H2O  Glutamate + NH4
+ + NADH + 

NADPH + H+ 

40  Three steps  Proline + 0.5O2 + 0.5NAD+ +0.5NADP+   Glutamate + 0.5NADH + 

0.5NADPH + H+ 

41 Four steps  Histidine + H4folate + 2H2O   NH4
+ + N5-formiminoH4folate + 

Glutamate 

42 Five steps  Methionine + ATP + Serine + NAD+ + CoA   PPi + Pi + Adenosine + 

Cysteine + NADH + CO2 + NH4
+ + Propionyl-CoA 

43  

Aspartate aminotransferase 

Aspartate + 0.5NAD+ + 0.5NADP+ + H2O  Oxaloacetate + NH4
+ + 

0.5NADH + 0.5NADPH + H+ 

44  Aspartate Uptake 

45 Asparaginase Asparagine + H2O    Aspartate + NH4
+ 

46  Fatty acid oxidation  Palmitate + ATP + 7FAD + 7NAD+  8acetyl-CoA + 7FADH2 + 

7NADH + AMP + PPi 
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No. and Enzyme Stoichiometry 

47  Thiolase 2Acetyl-CoA   Acetoacetyl-CoA + CoA 

48  Two steps Acetoacetyl-CoA + H2O   Acetoacetate + CoA 

49  Acetoacetate Production 

50  β-Hydroxyburate 

dehydrogenase 

Acetoacetate + NADH + H+  β-OH-butyrate + NAD+ 

51 ECT NADH + H+ + 0.5O2 + 3ADP  NAD+ H2O + 3ATP 

52 ECT FADH2 + 0.5O2 + 2ADP  FAD + H2O + 2ATP 

53 O2 Uptake 

54  

Glucose-6-P dehydrogenase  

Glucose-6-P + 12NADP+ + 7H2O  6CO2 + 12NADPH + 12H+ + Pi 

55 Seven steps  Valine + 0.5NADP+ + CoA + 2H2O + 3.5NAD+ + FAD   NH4
+ + 

0.5NADPH + 3H+ +3.5NADH + FADH2 + 2CO2 + Propionyl-CoA 

56 Six steps  Isoleucine + 0.5NADP+ + 2H2O + 2.5NAD+ + FAD + 2CoA   NH4
+ 

+ 0.5NADPH + 3H+ + 2.5NADH +FADH2 + CO2 + Propionyl-CoA + 

Acetyl-CoA 

57 Six steps Leucine + 0.5NADP+ + H2O + 1.5NAD+ + FAD + ATP + CoA  

NH4
+ + 1.5NADH + 0.5NADPH + 2H+ + FADH2 + ADP + Pi + 

Acetoacetate + Acetyl-CoA 

58  Threonine Uptake 

59 Lysine Uptake 

60 Phenylalanine Uptake 

61 Glutamine Uptake 

62 Proline Uptake 

63 Histidine Uptake 

64 Methionine Uptake 

65 Asparagine Uptake 

66 Valine Uptake 

67 Isoleucine Uptake 

68 Leucine Uptake 

69 24ARG + 32ASP + 61ALA + 24SER + 35CYS + 57GLU + 17GLY + 

21TRY + 33THR + 53LYS + 26PHE + 25GLN + 30PRO + 15HIS + 

6MET + 20ASN + TRP + 35VAL + 13ISO + 56LEU + 2332ATP  

Albumin + 2332ADP + 2332 Pi 
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No. and Enzyme Stoichiometry 

70 lipoprotein and hepatic lipase TG + 3H2O  Glycerol + 3Palmitate + 3H+ 

71  Glycerol Uptake 

72 Palmitate Uptake 

73 Three steps  Glucose-6-P + UTP + H2O   Glycogen + 2Pi + UDP 

74 Glycerol-3-P-dehydrogenase Glycerol  + NAD+  Glyceraldehyde-3-P + NADH + H+ 

75 Cholesterol esterase Cholesterol ester + H2O   Cholesterol + Palmitate 

76  Tryptophan Uptake 
 

Note: For reversible reactions, the symbol  is used between the reactants and 

products. For the irreversible reactions, single headed arrow   is used.  
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APPENDIX B: Flux bounds (minimum and maximum values of fluxes for measured 

fluxes which cover all four experiment setting and unknown fluxed based on reaction 

reversibility) 

# Bounds 
  vmin           vmax 

1 0.00 1.08
2 -100 100 
3 0 100 
4 -100 100 
5 -100 100 
6 0 100 
7 0 100 
8 -0.19 2.17 
9 0 100 

10 -100 100 
11 0 100 
12 -100 100 
13 -100 100 
14 -100 100 
15 0 100 
16 -100 100 
17 0 100 
18 0.01 0.33 
19 -0.03 0.42 
20 0.03 0.23 
21 0 100 
22 -0.03 0.26 
23 0 100 
24 -0.29 -0.07 
25 -100 100 
26 -0.03 0.03 
27 0 100 
28 -100 100 
29 0.06 0.45 
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# Bounds 
  vmin           vmax 

30 0 100
31 0 100 
32 0 100 
33 0 100 
34 0 100 
35 -0.15 0.14 
36 -100 100 
37 -0.53 -0.12 
38 0 100 
39 0 100 
40 0 100 
41 0 100 
42 0 100 
43 -100 100 
44 0.00 0.00 
45 0 100 
46 0 100 
47 -100 100 
48 0 100 
49 0.05 0.54 
50 0.04 0.31 
51 0 100 
52 0 100 
53 21.89 41.37 
54 0.00 0.13 
55 0 100 
56 0 100 
57 0 100 
58 -0.38 0.19 
59 -0.34 0.25 
60 -0.02 0.20 
61 -0.09 2.54 
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# Bounds 
  vmin           vmax 

62 0 0.14
63 -0.32 0.16 
64 0.01 0.14 
65 -0.04 0.02 
66 -0.46 0.14 
67 -0.28 0.10 
68 -0.27 0.16 
69 0.000048 0.0004 
70 0 0.46 
71 -0.07 1.28 
72 -0.31 0.41 
73 0 100 
74 -100 100 
75 0 0.94 
76 -100 100 

 

Note: All flux values are in µmol/million cells/day. A design constraint (-100, 100) 

indicates lower or upper bound for reversible unknown fluxes.  
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APPENDIX C: Flux distribution calculated by mixed-integer linear programming III.  

 

# 
Flux Distribution from Model III 

D1      D2      D3      D4      D5       D6      D7      D8 
1 0.00 1.08 1.08 0.00 0.00 1.08 1.08 0.00 
2 2.17 2.17 2.17 2.17 3.35 3.35 3.35 3.35 
3 2.17 2.17 2.17 2.17 3.35 3.35 3.35 3.35 
4 2.17 2.17 2.17 2.17 3.35 3.35 3.35 3.35 
5 4.41 4.41 4.41 4.41 6.77 6.77 6.77 6.77 
6 4.41 4.41 4.41 4.41 6.77 6.77 6.77 6.77 
7 0.66 0.66 0.66 0.66 3.02 3.02 3.02 3.02 
8 -0.19 -0.19 -0.19 -0.19 2.17 2.17 2.17 2.17 
9 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 

10 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 
11 10.52 10.52 10.52 10.52 10.52 10.52 10.52 10.52 
12 10.89 10.89 10.89 10.89 10.89 10.89 10.89 10.89 
13 17.71 17.71 17.71 17.71 17.71 17.71 17.71 17.71 
14 17.71 17.71 17.71 17.71 17.71 17.71 17.71 17.71 
15 6.81 6.81 6.81 6.81 6.81 6.81 6.81 6.81 
16 6.48 6.48 6.48 6.48 6.48 6.48 6.48 6.48 
17 6.48 6.48 6.48 6.48 6.48 6.48 6.48 6.48 
18 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 
19 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 
20 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 
21 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 
22 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 
23 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 
24 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 
25 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 
26 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 
27 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 
28 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 
29 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 
30 3.64 3.64 3.64 3.64 3.64 3.64 3.64 3.64 
31 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 
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# 
Flux Distribution from Model III 

D1      D2      D3      D4      D5       D6      D7      D8 
32 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 
33 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 
34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 
35 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 
36 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.01 
37 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 
38 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 
39 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 
40 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 
41 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 
42 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 
43 -6.46 -6.46 -6.46 -6.46 -6.46 -6.46 -6.46 -6.46 
44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
45 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
47 -3.53 -3.53 -3.53 -3.53 -3.53 -3.53 -3.53 -3.53 
48 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 
49 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 
50 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 
51 43.86 43.86 43.86 43.86 43.86 43.86 43.86 43.86 
52 15.17 15.17 15.17 15.17 15.17 15.17 15.17 15.17 
53 41.37 41.37 41.37 41.37 41.37 41.37 41.37 41.37 
54 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 
55 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 
56 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 
57 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 
58 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 
59 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 
60 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 
61 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 
62 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 
63 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 
64 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 
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# 
Flux Distribution from Model III 

D1      D2      D3      D4      D5       D6      D7      D8 
65 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
66 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 
67 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 
68 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 
69  <0.01a <0.01 a <0.01 a <0.01 a <0.01 a <0.01 a <0.01 a <0.01 a 
70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
71 -0.07 7.50 7.50 7.50 7.50 7.50 7.50 7.50 
72 0.00 -0.31 0.00 -0.31 0.00 0.00 -0.31 -0.31 
73 2.10 1.02 1.02 2.10 3.28 2.20 2.20 3.28 
74 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 
75 0.00 0.31 0.00 0.31 0.00 0.00 0.31 0.31 
76 3.64 3.64 3.64 3.64 3.64 3.64 3.64 3.64 
 

Note: All flux values are in µmol/million cells/day. 

a Exact value is 0.000048 
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APPENDIX D: Concentration of amino acid in different culture medium a 

 NAA RAA DAA 
L-arginine 0.08 0.42 0.56 
L-alanine 0.10 0.29 0.46 
L-serine 0.09 0.10 0.36 
L-threonine 0.12 0.79 1.18 
L-valine 0.16 0.87 1.49 
L-isoleucine 0.06 0.78 0.89 
L-leucine 0.10 0.83 1.02 
L-histidine 0.15 0.35 0.44 
L-glycine 0.16 0.17 0.41 
L-lysine 0.11 0.75 0.79 
L-proline 0.17 0.18 0.22 
L-tyrosine 0.05 0.40 0.72 
L-glutamate 0.09 0.11 0.11 
L-aspartate 0.01 0.01 0.01 
L-cysteine 0.01 0.13 0.13 
L-phenylalanine 0.04 0.42 0.42 
L-glutamine 0.65 6.85 6.85 
L-methionine 0.02 0.20 0.20 
L-asparagine 0.09 0.09 0.09 

 

a Values shown represent final concentration of amino acid supplementation during 

plasma exposure in the experimental design. NAA=no amino acid supplementation; 

RAA=”reference” amino acid supplementation; DAA=”designed” amino acid 

supplementation. 
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APPENDIX E: Hepatic metabolic network used for Chapter 4 and 5  

 
No. and Enzyme Stoichiometry 

Measurement Fluxes 

1mv  Gluocose-6-pase Glucose-6-P + H2O   Glucose + Pi 
'

1mv Hexokinase Glucose + Pi  Glucose-6-P + H2O 

 2mv  Lactate dehydrogenase Lactate + NAD+         Pyruvate + NADH + H+ 

3mv   Arginase Arginine + H2O     Urea + Ornithine 

4mv  Arginine Uptake 

5mv  NH4
+  Uptake 

6mv  Ornithine Secretion    

7mv  Alanine Uptake 

8mv  Serine Uptake 

9mv  Cysteine Uptake 

10mv  Glycine Uptake 

11mv  Tyrosine Uptake 

12mv  Glutamate Uptake 

13mv  Aspartate Uptake 

14mv  Acetoacetate Production 

15mv  Acetoacetate + NADH + H+  β-OH-butyrate + NAD+ 

16mv  Threonine Uptake 

17mv  Lysine Uptake 

18mv  Phenylalanine Uptake 

19mv  Glutamine Uptake 

20mv  Proline Uptake 

21mv  Methionine Uptake 

22mv  Asparagine Uptake 

23mv  Valine Uptake 

24mv  Isoleucine Uptake 

25mv  Leucine Uptake 

26mv  Albumin Synthesis 

27mv  Glycerol Uptake 

28mv  Palmitate Uptake 

29mv  Cholesterol esterase Cholesterol ester + H2O   Cholesterol + Palmitate 

30mv  TG Uptake 
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No. and Enzyme Stoichiometry 

Unknown Fluxes 

1uv   Phosphoglucose isomerase Fructose-6-P      Glucose-6-P 
'
1uv  Phosphoglucose 

isomerase 
Glucose-6-P      Fructose-6-P    

2uv  Fructose-1,6-P2ase-1 Fructose-1,6-P2 + H2O  Fructose-6-P + Pi 

        '
2uv  PFK-1 Fructose-6-P + Pi   Fructose-1,6-P2 + H2O 

3uv Two Steps 2 Glyceraldehyde-3-P  Fructose-1,6-P2 

         '
3uv Two Steps Fructose-1,6-P2     2 Glyceraldehyde-3-P 

4uv Four Steps 
Phosphoenolpyruvate + NADH + H+ + ATP + H2O  
Glyceraldehyde-3-P + Pi + NAD+ + ADP 

          '
4uv  Four Steps 

Glyceraldehyde-3-P + Pi + NAD+ + ADP  Phosphoenolpyruvate + 
NADH + H+ + ATP + H2O 

5uv  PEPCK Oxaloacetate + GTP   Phosphoenolpyruvate + GDP + CO2 

          '
5uv Pyruvate kinase Phosphoenolpyruvate + ADP   pyruvate + ATP 

6uv Pyruvate carboxylase Pyruvate + CO2 + ATP + H2O  Oxaloacetate + ADP + Pi +2 H+ 

          '
6uv  PDH Pyruvate + CoA + NAD+    Acetyl-CoA + CO2  + NADH 

7uv  Citrate synthase Oxaloacetate + Acetyl-CoA + H2O   Citrate + CoA + H+ 

8uv  Isocitrate dehydrogenase Citrate + NAD+      α-ketoglutarate + CO2 + NADH 

9uv  α-ketoglutarate 

dehydrogenas 
NAD+ + α-ketoglutarate + CoA  Succinyl-CoA + CO2  + NADH + H+ 

10uv  Succinyl-CoA synthetase, 

     succinate dehydrogenase 

Succinyl-CoA + Pi  + GDP + FAD  Fumarate + GTP + FADH2 + 
CoA 

11uv  Fumarase Fumarate + H2O   Malate 

12uv  Malate dehydrogenase Malate + NAD+     Oxaloacetate + NADH + H+ 

13uv  Carbamoyl-P-synthetase I,  

     ornithine transcabamylase 

Ornithine + CO2 + NH4
+ + 2ATP + H2O  Citrulline + 2ADP + 2Pi + 

3H+ 

14uv Argininosuccinase, 

Argininosuccinate synthetase     
Citrulline + Aspartate + ATP  Arginine + Fumarate +  AMP + PPi 

15uv  Alanine aminotransferase 
Alanine + 0.5 NAD+ + 0.5 NADP+ + H2O  Pyruvate + NH4

+ + 0.5 
NADPH + 0.5 NADH + H+ 

16uv  Serine  NH4
+ + Pyruvate 

17uv   3-mercaptopyruvate 

sulfurtransferase, transminase       

Cysteine + 0.5 NAD+ + 0.5 NADP+ + H2O + SO3
2-  Pyruvate + 

Thiosulfate + NH4
+ + 0.5 NADH + 0.5 NADPH + H+ 

18uv  Serine hydroxymethyl 

transferase 
Threonine + NAD+    Glycine + Acetyl-CoA + NADH 

19uv  Glycine DH, 

      Aminomethytransferase,  
      dihydrolipoyl DH 

Glycine + NAD+ + H4folate    Serine + N5,N10-CH2-H4folate + 
NADH + NH4

+ 

20uv  Nine Steps 
Tryptophan + 3H2O + 3O2 + CoA + 3NAD+ + FAD   3CO2 + FADH2 
+ 3NADH + 4H+ + NH4

+ + Acetoacetyl-CoA 

21uv  Three Steps Propionyl-CoA + ATP + CO2     Succinyl-CoA + AMP + PPi 
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No. and Enzyme Stoichiometry 

Unknown Fluxes 

22uv  Eight Steps 
Lysine + 3H2O + 5NAD+ + FAD + CoA    2NH4

+ +5H+ + 5NADH + 
2CO2 + FADH2 + Acetoacetyl-CoA 

23uv  Phenylalanine hydroxylase Phenylalanine + H4biopterin + O2   H2biopterin + Tyrosine + H2O 

24uv  Five steps 
Tyrosine + 0.5NAD+ +0.5NADP+ + H2O + 2O2  NH4

+ + 0.5NADH + 
0.5NADPH + H+ + CO2 + Fumarate + Acetoacetate 

25uv  Glutamate dehydrogenase I 
Glutamate + 0.5NAD+ + 0.5NADP+ + H2O   NH4

+ + 
α-ketoglutarate + 0.5NADP + 0.5NADPH + H+ 

26uv  Glutaminase Glutamine + H2O  Glutamate + NH4
+ 

27uv Two steps 
Ornithine + NAD+ + NADP+ + H2O  Glutamate + NH4

+ + NADH + 
NADPH + H+ 

28uv  Three steps 
Proline + 0.5 O2 + 0.5NAD+ +0.5NADP+   Glutamate + 0.5NADH + 
0.5NADPH + H+ 

29uv  Four steps 
Histidine + H4folate + 2H2O   NH4

+ + N5-formiminoH4folate + 
Glutamate 

30uv  Five steps 
Methionine + ATP + Serine + NAD+ + CoA   PPi + Pi + Adenosine + 
Cysteine + NADH + CO2 + NH4

+ + Propionyl-CoA 

31uv  Aspartate aminotransferase 
Aspartate + 0.5NAD+ + 0.5NADP+ + H2O  Oxaloacetate + NH4

+ + 
0.5NADH + 0.5NADPH + H+ 

32uv  Asparaginase Asparagine + H2O    Aspartate + NH4
+ 

33uv  Fatty acid oxidation  
Palmitate + ATP + 7FAD + 7NAD+ + 8CoA  8acetyl-CoA + 7FADH2 + 
7NADH + AMP + PPi 

34uv  Thiolase 2Acetyl-CoA   Acetoacetyl-CoA + CoA 

35uv Two steps Acetoacetyl-CoA + H2O   Acetoacetate + CoA 

36uv  ECT NADH + H+ + 0.5O2 + 3ADP  NAD+ + H2O + 3ATP 

37uv  ECT FADH2 + 0.5O2 + 2ADP  FAD + H2O + 2ATP 

38uv  Glucose-6-P dehydrogenase Glucose-6-P + 12NADP+ + 7H2O  6CO2 + 12NADPH + 12H+ + Pi 

39uv  Seven steps 
Valine + 0.5NADP+ + CoA + 2H2O + 3.5NAD+ + FAD   NH4

+ + 
0.5NADPH + 3H+ +3.5NADH + FADH2 + 2CO2 + Propionyl-CoA 

40uv  Six steps 
Isoleucine + 0.5NADP+ + 2H2O + 2.5NAD+ + FAD + 2CoA   NH4

+ + 
0.5NADPH + 3H+ + 2.5NADH +FADH2 + CO2 + Propionyl-CoA + 
Acetyl-CoA 

41uv  Six steps 
Leucine + 0.5NADP+ + H2O + 1.5NAD+ + FAD + ATP + CoA   NH4

+ 
+ 1.5NADH + 0.5NADPH + 2H+ + FADH2 + ADP + Pi + Acetoacetate + 
Acetyl-CoA 

42uv  lipoprotein and hepatic 

lipase 
TG + 3H2O  Glycerol + 3Palmitate + 3H+ 

43uv  Three steps Glucose-6-P + UTP + H2O   Glycogen + 2Pi + UDP 

44uv Glycerol-3-P-dehydrogenase Glycerol  + NAD+  Glyceraldehyde-3-P + NADH + H+ 

45uv   TG store 

46uv   O2 Uptake 

47uv   Histidine Uptake 

48uv  Tryptophan Uptake 
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P2 

 E + F 

P1 

C + D 

APPENDIX F: Small example of pathway energy balance (PEB) constraints 

 

 
 
 
  
 
 

Figure F-1: A small network with 6 reactions (4 intracellular reactions and two transport 

reactions), and 6 metabolites (A, B, C, E are internal metabolites, and D, F are external 

metabolites).  

 

Two elementary modes are identified which are determined by implementing this 

network in Matlab surface software Fluxanalyzer (Klamt et al. 2003): one includes 

reaction 1, 2 and 3, and another involves reaction 1,4,5,6 and reaction 3, described by 

matrix 

 
1 1 1 0 0 0
1 0 1 1 1 1
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                          (F-1) 

 
The Gibbs free energy and flux of each reaction is listed in Table F-1. 
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Table F-1: Free Gibbs energy of each reaction 

 Standard 
Gibbs 

Real Gibbs 
(Min) 

Real Gibbs 
(Max) 

Flux

R1 0
1GΔ  min[ ]ln

[ ]ert

ART
A

 max[ ]ln
[ ]ert

ART
A

 1v  

R2 0
2GΔ  0 min

2
max

[ ]ln
[ ]
BG RT
A

Δ +  0 max
2

min

[ ]ln
[ ]
BG RT
A

Δ +  2v  

R3 0
3GΔ  

max

[ ]ln
[ ]

ertBRT
B

 
min

[ ]ln
[ ]

ertBRT
B

 3v  

R4 0
4GΔ  0 min min

4
max

[ ] [ ]ln
[ ]

C DG RT
A

Δ +  0 max max
4

min

[ ] [ ]ln
[ ]

C DG RT
A

Δ +  4v  

R5 0
5GΔ  0 min min

5
max max

[ ] [ ]ln
[ ] [ ]
E FG RT
C D

Δ +  0 max max
5

min min

[ ] [ ]ln
[ ] [ ]
E FG RT
C D

Δ +  5v  

R6 0
6GΔ  0 min

6
max max

[ ]ln
[ ] [ ]

BG RT
E F

Δ +  0 max
6

min min

[ ]ln
[ ] [ ]

BG RT
E F

Δ +  6v  

 
Then the Gibbs free energy of the pathway is calculated by element-by-element 

multiplication of the Gibbs Free energy of each reaction with the matrix of elementary 

modes as follows: 

0 0 0
1 2 30
0 0 0 0 0
1 3 4 5 6

0 0 0

0
p

G G G
G

G G G G G

⎡ ⎤Δ Δ Δ
Δ = ⎢ ⎥

⎢ ⎥Δ Δ Δ Δ Δ⎣ ⎦
                (F-2) 

min

0 0 0min min ert
1 2 3

ert max max
p

0 0 0 0 0min ert min min min min min
1 3 4 5 6

ert max max max max max

[A] [B] [B]ΔG RTln ΔG RTln ΔG RTln 0 0 0
[A] [A] [B]

G
[A] [B] [C] [D] [E] [F] [B]ΔG RTln 0 ΔG RTln ΔG RTln ΔG RTln ΔG RTln
[A] [B] [A] [C] [D] [E] [F]

+ + +

Δ =
+ + + + +

max

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

                                                                            (F-3)       

0 0 0max max
1 2 3

min minmax

0 0 0 0 0max max max max max max
1 3 4 4 6

max min min min min

[ ] [ ] [ ]
ln ln ln 0 0 0

[ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ]

ln 0 ln ln ln ln
[ ] [ ] [ ] [ ] [ ] [ ]

ert

ert
p

ert

ert

A B B
G RT G RT G RT

A A B
G

A B C D C D BG RT G RT G RT G RT G RT
A B A A E F

⎡Δ + Δ + Δ +⎢
Δ =

Δ + Δ + Δ + Δ + Δ +
⎣

⎤
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥

⎦

                                                                                            

                                                                             (F-4)   
                                                                                                 
Given the matrix of the weighted energies of the pathways and the flux vector, two 

pathway energy balance constraints with standard Gibbs free energy can be considered as 
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follows:  

00 0 0
1 1 1 2 2 3 3 0PEB G v G v G v= Δ ⋅ + Δ ⋅ + Δ ⋅ <                    (F-5a) 

00 0 0 0 0
2 1 1 3 3 4 4 5 5 6 6 0PEB G v G v G v G v G v= Δ ⋅ + Δ ⋅ + Δ ⋅ + Δ ⋅ + Δ ⋅ <        (F-5b) 

Given the matrix of the weighted energies of the pathways and the flux vector, two 

pathway energy balance constraints with minimum Gibbs free energy can be considered 

as follows: 

min 0 0 0 ertmin min
1 1 1 2 2 3 3

ert max max

[B][A] [B]PEB (ΔG RTln ) (ΔG RTln ) (ΔG RTln ) 0
[A] [A] [B]

v v v= + ⋅ + + ⋅ + + ⋅ <  

 (F-6a) 

min 0 0 ertmin
2 1 1 3 3

ert max

0 0min min min min
4 4 5 5

max max max

0 min
6 6

max max

[B][A](ΔG RTln ) (ΔG RTln )
[A] [B]

[C] [D] [E] [F](ΔG RTln ) (ΔG RTln )
[A] [C] [D]
[B](ΔG RTln ) 0

[E] [F]

PEB v v

v v

v

= + + + ⋅

+ + ⋅ + + ⋅

+ + ⋅ <

                (F-6b) 

Given the matrix of the weighted energies of the pathways and the flux vector, two 

pathway energy balance constraints with maximum Gibbs free energy can be considered 

as follows: 

max 0 0 0max max ert
1 1 1 2 2 3 3

ert min min

[A] [B] [B]PEB (ΔG RTln ) (ΔG RTln ) (ΔG RTln ) 0
[A] [A] [B]

v v v= + ⋅ + + ⋅ + + ⋅ <  

                                                                            (F-7a) 

 
max 0 0max ert
2 1 1 3 3

ert min

0 0max mx max max
4 4 5 5

min min min

0 max
6 6

min min

[A] [B](ΔG RTln ) (ΔG RTln )
[A] [B]

[C] [D] [E] [F](ΔG RTln ) (ΔG RTln )
[A] [C] [D]
[B](ΔG RTln ) 0

[E] [F]

PEB v v

v v

v

= + + + ⋅

+ + ⋅ + + ⋅

+ + ⋅ <

                  (F-7b)  
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APPENDIX G: Comparison of unknown flux ranges predicted by MNFA model 
 DAA RAA NAA 
 Standard_ΔG Min_ΔG Max_ΔG Without_ΔG Standard_ΔG Min_ΔG Max_ΔG Without_ΔG Standard_ΔG Min_ΔG Max_ΔG Without_ΔG 
 min max min max min max min max min max min max min max min max min max min max min max min max 
1 0.00  0.02  0.00  0.08  0.00  0.01  0.00 1.00 0.00 0.32 0.42 0.67 0.00 0.07 0.00 0.67  0.89 0.89 0.89 0.89 0.89 0.89 0.85 2.63 
2 0.00  0.02  0.00  0.08  0.00  0.01  0.00 1.00 0.00 0.32 0.42 0.67 0.00 0.07 0.00 0.67  0.89 0.89 0.89 0.89 0.89 0.89 0.85 2.63 
3 0.00  0.02  0.00  0.08  0.00  0.01  0.00 1.00 0.00 0.32 0.42 0.67 0.00 0.07 0.00 0.67  0.89 0.89 0.89 0.89 0.89 0.89 0.85 2.63 
4 2.12  2.16  2.20  2.53  2.07  2.12  2.07 4.64 1.98 2.63 2.81 4.06 1.98 2.13 1.98 4.06  0.08 0.08 0.08 0.08 0.08 0.08 0.00 2.38 
5 2.12  2.16  2.20  2.53  2.07  2.12  2.07 4.64 1.98 2.63 2.81 4.06 1.98 2.13 1.98 4.06  0.08 0.08 0.08 0.08 0.08 0.08 0.00 2.38 
6 4.41  4.45  4.49  4.96  4.36  4.41  4.36 7.84 4.90 5.57 5.69 7.74 4.86 5.02 4.86 7.74  2.42 2.47 2.34 2.79 2.43 2.67 1.68 2.79 
7 22.61  22.66  26.09  31.08  22.11  22.61  16.12 32.65 19.35 20.76 20.05 33.02 19.70 20.01 19.20 33.05  16.28 16.38 16.28 22.49 16.28 17.54 7.50 32.93 
8 22.61  22.66  26.09  31.08  22.11  22.61  16.12 32.65 19.35 20.76 20.05 33.02 19.70 20.01 19.20 33.05  16.28 16.38 16.28 22.49 16.28 17.54 7.50 32.93 
9 24.07  24.12  27.25  32.42  23.47  23.98  17.60 34.13 19.09 20.42 19.81 32.79 19.41 19.71 18.96 32.82  14.08 14.25 14.08 20.12 14.08 15.11 7.49 33.09 
10 22.84  22.89  26.19  31.19  22.31  22.83  16.37 32.90 18.90 20.31 19.61 32.58 19.26 19.56 18.76 32.61  13.71 13.88 13.71 19.77 13.71 14.74 7.12 32.72 
11 23.61  23.66  27.19  32.29  23.26  23.74  16.94 33.47 19.81 21.29 20.52 33.50 20.19 20.50 19.67 33.53  13.83 14.00 13.83 20.01 13.83 14.90 7.24 32.93 
12 23.61  23.66  27.19  32.29  23.26  23.74  16.94 33.47 19.81 21.29 20.52 33.50 20.19 20.50 19.67 33.53  13.83 14.00 13.83 20.01 13.83 14.90 7.24 32.93 
13 0.90  0.90  0.90  1.11  0.99  1.07  0.72 1.11 0.56 0.68 0.56 0.68 0.56 0.60 0.56 0.68  0.21 0.23 0.21 0.30 0.21 0.30 0.20 0.30 
14 0.90  0.90  0.90  1.11  0.99  1.07  0.72 1.11 0.56 0.68 0.56 0.68 0.56 0.60 0.56 0.68  0.21 0.23 0.21 0.30 0.21 0.30 0.20 0.30 
15 -0.13  -0.13  -0.13  -0.12  -0.13  -0.12  -0.13 -0.12 -0.07 -0.06 -0.07 -0.06 -0.07 -0.06 -0.07 -0.06  0.02 0.04 0.02 0.17 0.02 0.13 0.02 0.17 
16 -0.50  -0.49  -0.62  -0.40  -0.62  -0.50  -0.62 -0.34 0.12 0.17 0.09 0.17 0.09 0.14 0.09 0.17  -0.29 -0.27 -0.32 -0.27 -0.30 -0.27 -0.32 -0.27 
17 -0.03  -0.02  -0.03  0.05  -0.01  0.04  -0.03 0.05 0.04 0.06 0.04 0.06 0.05 0.06 0.04 0.06  -0.07 -0.05 -0.07 -0.04 -0.07 -0.04 -0.07 -0.04 
18 -0.46  -0.45  -0.46  -0.37  -0.46  -0.44  -0.46 -0.37 0.22 0.25 0.20 0.25 0.20 0.25 0.20 0.25  -0.05 -0.04 -0.06 -0.04 -0.06 -0.04 -0.06 -0.04 
19 0.08  0.09  0.08  0.19  0.08  0.10  0.08 0.19 0.48 0.51 0.45 0.51 0.45 0.50 0.45 0.51  0.02 0.03 0.00 0.03 0.01 0.03 0.00 0.03 
20 2.35  2.38  2.64  3.20  2.75  2.82  1.21 3.20 0.86 1.30 0.73 1.43 1.09 1.15 0.73 1.43  5.51 5.58 5.51 6.50 5.51 6.12 1.12 6.77 
21 -1.23  -1.23  -1.23  -0.99  -1.22  -1.10  -1.23 -0.99 -0.20 -0.11 -0.21 -0.11 -0.19 -0.11 -0.21 -0.11  -0.37 -0.35 -0.37 -0.34 -0.37 -0.34 -0.37 -0.34 
22 -0.42  -0.41  -0.42  -0.36  -0.42  -0.41  -0.42 -0.36 -0.06 -0.02 -0.06 -0.02 -0.06 -0.04 -0.06 -0.02  -0.13 -0.11 -0.13 -0.11 -0.13 -0.11 -0.13 -0.11 
23 0.14  0.15  0.12  0.15  0.12  0.15  0.12 0.15 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33  -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 
24 -0.06  -0.06  -0.07  0.00  -0.07  -0.04  -0.07 0.00 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18  -0.05 -0.04 -0.05 -0.03 -0.05 -0.03 -0.05 -0.03 
25 0.73  0.73  0.54  0.73  0.65  0.72  0.54 0.75 -0.17 -0.12 -0.17 -0.11 -0.17 -0.12 -0.17 -0.11  -1.11 -1.06 -1.31 -0.93 -1.24 -1.05 -1.34 0.17 
26 2.06  2.08  1.56  2.17  1.78  2.24  1.56 2.54 2.66 3.32 2.24 3.32 2.24 3.32 2.24 3.32  4.75 4.85 0.11 2.93 0.00 0.00 0.00 3.00 
27 0.04  0.06  0.02  0.12  0.02  0.12  0.02 0.12 0.21 0.24 0.21 0.24 0.22 0.24 0.21 0.24  -0.03 -0.02 -0.03 -0.01 -0.03 -0.01 -0.03 -0.01 
28 0.30  0.30  0.19  0.30  0.29  0.30  0.19 0.30 0.23 0.26 0.23 0.26 0.23 0.26 0.23 0.26  0.29 0.29 0.29 0.34 0.29 0.33 0.29 0.40 
29 0.45  0.46  0.37  0.46  0.03  0.46  -0.53 0.46 -3.02 -2.24 -3.02 -1.68 -2.97 -1.77 -3.02 -1.68  -7.00 -6.96 -5.27 -1.99 -2.59 -2.13 -7.00 0.15 
30 -0.10  -0.10  -0.10  0.02  -0.09  0.02  -0.10 0.02 0.00 0.02 0.00 0.02 0.02 0.02 0.00 0.02  -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 
31 -0.50  -0.50  -0.61  -0.50  -0.59  -0.54  -0.61 -0.41 -0.30 -0.23 -0.30 -0.23 -0.26 -0.23 -0.30 -0.23  0.00 0.05 -0.13 0.05 -0.09 0.05 -0.13 0.05 
32 -0.11  -0.11  -0.12  -0.11  -0.12  -0.11  -0.12 -0.11 0.09 0.10 0.09 0.10 0.09 0.10 0.09 0.10  0.22 0.31 0.05 0.31 0.05 0.31 0.05 0.31 
33 2.10  2.11  2.35  2.99  1.92  2.00  1.52 3.51 1.61 1.71 1.61 3.17 1.61 1.63 1.61 3.28  0.98 0.99 0.98 1.48 0.98 1.04 0.98 4.14 
34 -1.40  -1.36  -2.36  -1.88  -1.88  -1.77  -2.36 -0.33 -1.24 -0.81 -1.37 -0.72 -1.09 -1.03 -1.37 -0.72  -4.41 -4.36 -5.58 -4.36 -4.95 -4.36 -5.85 0.03 
35 0.54  0.57  0.33  0.60  0.50  0.58  0.33 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  1.00 1.04 0.79 1.04 0.86 1.04 0.79 1.04 
36 48.69  48.78  55.67  65.33  47.96  48.93  35.48 69.28 41.61 44.70 43.45 69.80 42.42 43.13 41.33 69.80  34.20 34.49 34.20 46.60 34.20 36.67 16.09 65.71 
37 18.96  19.02  21.79  26.43  18.32  18.81  13.20 28.41 15.23 16.46 15.54 27.51 15.52 15.81 15.12 27.89  12.77 12.89 12.77 17.98 12.77 13.70 7.28 31.02 
38 0.03  0.04  0.03  0.05  0.03  0.04  0.02 0.05 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01  0.09 0.09 0.09 0.10 0.09 0.09 0.00 0.10 
39 -0.32  -0.32  -0.32  -0.29  -0.32  -0.30  -0.32 -0.29 -0.10 -0.08 -0.10 -0.08 -0.10 -0.08 -0.10 -0.08  -0.09 -0.08 -0.09 -0.08 -0.09 -0.08 -0.09 -0.08 
40 -0.24  -0.24  -0.24  -0.21  -0.24  -0.21  -0.24 -0.21 -0.01 0.01 -0.01 0.01 -0.01 0.01 -0.01 0.01  -0.08 -0.08 -0.08 -0.08 -0.08 -0.08 -0.08 -0.08 
41 -0.21  -0.21  -0.21  -0.17  -0.21  -0.21  -0.21 -0.17 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15  -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 
42 0.05  0.09  0.13  0.44  0.00  0.05  0.00 0.66 0.00 0.03 0.00 0.52 0.00 0.01 0.00 0.55  0.00 0.00 0.00 0.01 0.00 0.00 0.00 1.05 
43 0.27  0.67  0.19  0.99  0.26  0.99  0.00 1.00 0.10 0.67 0.00 0.01 0.35 0.67 0.00 0.67  0.40 0.40 0.40 0.40 0.40 0.40 0.36 2.58 
44 2.12  2.16  2.20  2.51  2.07  2.12  2.07 2.74 1.98 2.26 1.98 2.74 1.98 2.12 1.98 2.77  1.70 1.71 1.70 1.71 1.70 1.71 1.70 2.89 
45 0.82  0.88  0.47  0.80  0.86  0.93  0.25 0.93 0.66 0.95 0.18 0.95 0.69 0.95 0.14 0.95  0.91 0.95 0.91 0.95 0.91 0.95 -0.14 0.95 
46 75.00  75.09  86.60  100  75.00  76.22  52.45 100 60.71 65.95 62.47 100 62.53 63.55 59.93 100  63.56 64.14 63.56 84.19 63.56 68.58 26.78 100 
47 0.43  0.44  0.35  0.44  0.02  0.44  -0.55 0.44 -3.02 -2.25 -3.02 -1.69 -2.97 -1.78 -3.02 -1.69  -7.00 -6.96 -5.27 -1.99 -2.59 -2.14 -7.00 0.15 
48 2.35  2.38  2.64  3.20  2.75  2.82  1.21 3.20 0.86 1.30 0.73 1.43 1.09 1.15 0.73 1.43  5.51 5.58 5.51 6.50 5.51 6.12 1.12 6.77 
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APPENDIX H: Bounds on metabolite concentrations 

Because exact values of metabolite concentrations in hepatocytes are not be easily 

accessible, feasible ranges for metabolite concentrations [ minc , maxc ] are considered in this 

study. Intracellular concentrations are estimated from literature values and are expressed 

as a range of values reported or estimated (Table H-1); extracellular concentrations are 

supplied by the metabolite measurements reported in this work and have a range 

corresponding to the measured experiment uncertainty (Table H-2). 

 

The metabolites concentrations (oxaloacetate, acetyl-CoA, NAD+, NADH, citrate, 

α-ketoglutarate, succinyl-CoA, fumarate, FAD, FADH2, malate, aspartate, glutamate, 

NADP+, NADPH, Pi, ATP,ADP, and CoA), are considered separated in cytosol and 

mitochondria (expressed using subscript ‘m’) since those metabolites appear both in 

mitochondria and cytosol (Siess et al. 1978). The concentration ratios are considered for 

energy-current metabolites (ATP, ADP, AMP, GTP, GDP, UTP, UDP) and cofactors 

(NAD+, NADH, FAD, FADH2, NADP+, NADPH) instead of concentration of single 

metabolite; for example, the ratio of ATP/ADP was specified. Since the intracellular pH 

remains constant in the range of pH 7.0 to 7.1 while medium pH is around 7.4 (Longmore 

et al. 1969), the intracellular H+ concentration is fixed at 0.0001 mM in this study.  

 

For the metabolites’ uptake from the medium, their maximum concentrations in the 

transport reactions are equal to their concentrations in the medium supplementation, and 

minimum concentrations are assumed in a lower physiological value as 0.001 mM. On 

the other hand, for the metabolites secreted from the hepatocytes, their minimum 

intracellular concentrations in the transport reactions are equal to their concentrations in 
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the medium supplementation, and maximum concentrations attainable are assumed to be 

10 mM. Concentrations for some external metabolites (SO3
2-, thiosulfate, H4folate, N5, 

N10-CH2-H4folate, N5-formiminoH4folate, Adenosine, H2biopterin, and H4biopterin, 

cholesterol ester) are fixed at 1 mM.  

 

Table H-1: Concentration bounds of metabolites based on literature search (mM) 

Metabolites Min Max Source 
Glucose-6-Phosphate 1 10 (Van Schaftingen et al. 1980) 
Fructose-6-Phosphate 0.25 5 (Van Schaftingen et al. 1980) 
Fructose-1,6-Phosphate 0.5 5 (Van Schaftingen et al. 1980) 
Glyceraldehyde-3-Phosphate 0.0001 0.1 
Phosphoenolpyruvate 0.0001 0.001

(Berman and Newgard 1998; Burelle 
et al. 2000; Jones and Mason 1978) 

Pyruvate 0.02 0.3 (Jones and Mason 1978) 
Oxaloacetate 0.004 0.051 (Siess et al. 1978) 
Oxaloacetatem 0.002 0.062 (Siess et al. 1978; Siess et al. 1982; 

Siess et al. 1984) 
NAD+/NADH 1 10 (Williamson et al. 1967) 
(NAD+/NADH)m 1 10 (Williamson et al. 1967) 
Acetyl-CoA 0.048 0.112 (Siess et al. 1978) 
Acetyl_CoAm 0.63 1.12 (Siess et al. 1978) 
Citrate 0.33 1.84 (Siess et al. 1978) 
Citrate_m 2.54 10 (Siess et al. 1978; Siess et al. 1982; 

Siess et al. 1984) 
α-Ketoglutarate 0.07 0.74 (Siess et al. 1978) 
α-Ketoglutaratem 0.12 1.31 (Siess et al. 1978) 
Succinyl-CoAm 0.05 0.7 (Quant et al. 1989) 
Fumarate 0.07 6.002
Fumarate_m 0.018 0.892

[bock,1953] 

FAD/ FADH2 1 40 
(FAD/ FADH2)m 1 40 

(Beard and Qian 2005) 

Malate 0.35 3.01 (Siess et al. 1978) 
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Metabolites Min Max Source 
Malatem 0.09 4.46 (Siess et al. 1978; Siess et al. 

1982; Siess et al. 1984) 
Citrulline 1 5 (Boon and Meijer 1991) 
Aspartatem 0.19 7.53 (Siess et al. 1978; Siess et al. 

1982; Siess et al. 1984) 
Glutamatem 11.9 26.69 (Siess et al. 1978; Siess et al. 

1982; Siess et al. 1984) 
O2(g) 0.007 0.21 (Jones and Mason 1978). 
Propionyl-CoA 0.00001 0.0047 (Brass et al. 1990) 
Acetoacetyl-CoA 0.00001 0.00003 (Williamson et al. 1968) 
NADP+/NADPH 0.1 1 (Williamson et al. 1967) 
(NADP+/NADPH)m 0.01 0.1 (Williamson et al. 1967) 
TG 0.289 2.89 (Matthew et al. 1996a) 
Pi 5.0 17.8 (Soboll et al. 1978) 
Pim 7.4 11.3 (Soboll et al. 1978) 
PPi 0.027 0.109 (Guynn et al. 1974) 
H+ 0.0001 0.0001 (Longmore et al. 1969) 
Lactate 0.1 1.6 (Jones and Mason 1978) 
[β-OH-butyrate]/[acetoacetate] 0.57 0.78 (Iles et al. 1977) 
ATP/ADP 2.1 11.8 (Soboll et al. 1978) 
(ATP/ADP)m 0.1 0.7 (Soboll et al. 1978) 
ATP/AMP 3.1 12.9 (Soboll et al. 1978) 
(ATP/AMP)m 0.3 3.5 (Soboll et al. 1978) 
GTP/GDP 0.2 0.4 (Gines et al. 1996) 
UTP/UDP 0.033 5 (Arnaud et al. 2003) 
CO2 (g) 2 25 (Beard and Qian 2005; Iles et al. 

1977) 
Glycogen 0.00001 0.0002 (Garcia-Rocha et al. 2001) 
CoA 0.03 0.1 (Siess et al. 1978) 
CoAm 1.4 2.1 (Siess et al. 1978) 

Note: The subscript m denotes a metabolite in mitochondria  
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Table H-2: Concentration bounds of metabolites  

based on the amino acid supplementation (mM) 

Metabolites Min Max 
Arginine 0.001 0.08a, 0.42b, 0.56c 

Glutamine 0.001 0.65a, 6.85b, 6.85c 
Glycine 0.001 0.16a, 0.17b, 0.41c 
Proline 0.001 0.17a, 0.18b, 0.22c 
Histidine 0.001 0.15a, 0.35b, 0.44c 
Aspartate 0.019a, 0.031b, 0.040c 10 
Glutamate  0.605a, 1.569b, 1.862c 10 
Isoleucine 0.226a, 1.103b, 1.359c 10 
Leucine  0.175a, 0.843b, 1.461c 10 
Lysine  0.230a, 0.817 b, 1.241c 10 
Serine 0.417a, 0.447b, 1.039c 10 
Valine 0.335a, 1.067b, 2.144c 10 
Alanine 0.01a, 0.459b, 0.773c 0.10a, 10b, 10c 
Asparagine 0.001a, 0.001b, 0.224c 0.09a, 0.09b, 10c 
Cysteine 0.101a, 0.001b, 0.001c 10a, 0.13b, 0.13c 
Methionine 0.037a, 0.001b, 0.245c 10a, 0.20b, 10c 
Phenylalanine 0.093a, 0.001b, 0.001c 10a, 0.42b, 0.42c 
Threonine 0.168a, 0.001b, 1.631c 10a, 0.79b, 10c 
Tyrosine 0.078a, 0.001b, 0.953c 10a, 0.40b, 10c 
NH4

+ 0.4 10 
Ornithine 0.05 10 
Tryptophan 0.001 3 
Glycerol 0.001 1.21 
Palmitate 0.001 0.4 
Glucose 0.001a, 0.68b, 0.68c 0.68a, 10b, 10c 
Acetoacetate 0.15a, 0.14b, 0.15c 10 
Urea  0.38a, 1.18, 1.54c 10 
Cholesterol 0.455a, 0.671, 0.753c 10 
Cholesterol ester 0.001 3.6 

a: NAA=no amino acid supplementation; b: RAA= reference amino acid supplementation; 

c: DAA= designed amino acid supplementation 
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APPENDIX I: Transport rates of alanine, serine and glutamine under different 

conditional medium 

Data  
Point 

Concentration  
(mM) 

[Ala]  [Ser] [Gln]

Reaction Rate * 
(Measurement) 

Ala    Ser     Gln 

Reaction Rate* 
(Estimation) 

Ala      Ser    Gln 
1 0.2 0.2 1.5 0.2310 0.3795 1.0988 0.204 0.352 0.864 
2 0.2 0.2 1.5 0.2289 0.3805 1.106 0.204 0.352 0.864 
3 0.4 0.2 1.5 0.5384 0.4900 1.4665 0.501 0.529 0.865 
4 0.4 0.2 1.5 0.5026 0.3893 1.0392 0.501 0.529 0.865 
5 0.8 0.2 1.5 0.7856 0.3318 0.8739 0.650 0.373 0.868 
6 0.8 0.2 1.5 0.7872 0.3344 0.8973 0.650 0.373 0.868 
7 0.2 0.4 1.5 0.2078 0.9054 0.9811 0.161 0.555 0.851 
8 0.2 0.4 1.5 0.1982 0.8996 -- 0.161 0.555 --
9 0.4 0.4 1.5 0.5384 1.0277 1.4665 0.397 0.732 0.853 
10 0.4 0.4 1.5 0.4292 0.8241 0.8739 0.397 0.732 0.853 
11 0.8 0.4 1.5 0.516 0.5866 0.6068 0.423 0.576 0.856 
12 0.8 0.4 1.5 0.5744 0.5753 0.6013 0.423 0.576 0.856 
13 0.2 0.6 1.5 -0.2135 0.4385 0.4789 0.118 0.403 0.838 
14 0.2 0.6 1.5 -0.0146 0.4407 0.4431 0.118 0.403 0.838 
15 0.4 0.6 1.5 0.114 0.4813 0.5762 0.292 0.580 0.840 
16 0.4 0.6 1.5 0.1916 0.4855 0.516 0.292 0.580 0.840 
17 0.8 0.6 1.5 0.2144 0.3485 0.1378 0.195 0.424 0.843 
18 0.8 0.6 1.5 0.1666 0.3548 0.2532 0.195 0.424 0.843 
19 0.2 0.1 2 0.2135 0.0605 1.4193 0.195 0.052 1.286 
20 0.2 0.1 2 0.2316 -- 1.4005 0.195 -- 1.286 
21 0.4 0.1 2 0.4568 0.0396 1.3162 0.523 0.229 1.288 
22 0.4 0.1 2 0.4553 0.0464 1.3662 0.523 0.229 1.288 
23 0.8 0.1 2 0.6619 0.0004 1.1345 0.734 0.073 1.292 
24 0.8 0.1 2 0.6805 0.0062 1.2532 0.734 0.073 1.292 
25 0.2 0.1 4 0.2386 -0.0119 2.9747 -0.020 -0.147 2.543 
26 0.2 0.1 4 0.2398 -0.0673 3.0813 -0.020 -0.147 2.543 
27 0.4 0.1 4 0.4987 -0.0832 2.4495 0.308 0.030 2.547 
28 0.4 0.1 4 0.486 -0.0003 2.4439 0.308 0.030 2.547 
29 0.8 0.1 4 0.6893 -0.0036 2.9721 0.518 -0.126 2.555 
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Data  
Point 

Concentration  
(mM) 

[Ala]  [Ser] [Gln]

Reaction Rate * 
(Measurement) 

Ala    Ser     Gln 

Reaction Rate* 
(Estimation) 

Ala      Ser    Gln
30 0.8 0.1 4 0.7003 -0.0003 3.0334 0.518 -0.126 2.555
31 0.2 0.1 6 -0.5883 -0.1699 2.7946 -0.388 -0.243 3.153
32 0.2 0.1 6 -0.5734 -0.1519 2.8807 -0.388 -0.243 3.153
33 0.4 0.1 6 -0.0672 -- 3.2177 -0.060 --- 3.159
34 0.4 0.1 6 -0.0666 -- 3.2476 -0.060 --- 3.159
35 0.8 0.1 6 -0.2354 -0.1934 2.7653 0.150 -0.222 3.171
36 0.8 0.1 6 -0.2251 -0.178 2.6747 0.150 -0.222 3.171
37 0.2 0.1 8 -0.9394 -0.1504 2.9943 -0.908 -0.236 3.114
38 0.2 0.1 8 -0.8807 -0.1559 3.1568 -0.908 -0.236 3.114
39 0.4 0.1 8 -0.6733 -0.1573 3.2043 -0.579 -0.059 3.122
40 0.4 0.1 8 -0.6595 -0.1448 3.3048 -0.579 -0.059 3.122
41 0.8 0.1 8 -0.4046 -0.1531 3.2694 -0.369 -0.215 3.138
42 0.8 0.1 8 -0.3809 -0.1435 3.4830 -0.369 -0.215 3.138
43 0.1 0.2 2 0.0424 0.1128 1.4834 -0.028 0.134 1.276
44 0.1 0.2 2 0.0181 0.0503 1.286 -0.028 0.134 1.276
45 0.1 0.4 2 0.0019 0.2443 1.427 -0.034 0.337 1.259
46 0.1 0.4 2 -0.0441 0.1554 1.1554 -0.034 0.337 1.259
47 0.1 0.6 2 0.0407 0.2738 1.4501 -0.039 0.185 1.243
48 0.1 0.6 2 0.0011 0.1828 1.2113 -0.039 0.185 1.243
49 0.1 0.2 4 -0.1923 -0.0371 2.6702 -0.231 -0.064 2.524
50 0.1 0.2 4 -- -- -- --- --- --- 
51 0.1 0.4 4 -0.3981 0.0331 2.5339 -0.212 0.139 2.491
52 0.1 0.4 4 -0.3079 -0.0169 2.5510 -0.212 0.139 2.491
53 0.1 0.6 4 -0.4093 -0.0096 2.5737 -0.193 -0.013 2.457
54 0.1 0.6 4 -0.3037 0.0324 2.6463 -0.193 -0.013 2.457
55 0.1 0.2 6 -0.7439 -0.1664 2.9524 -0.586 -0.160 3.125
56 0.1 0.2 6 -- -0.1537 2.7910 --- -0.160 3.125
57 0.1 0.4 6 -0.7361 -0.0739 2.7299 -0.542 0.042 3.074
58 0.1 0.4 6 -0.6732 -0.0543 2.7700 -0.542 0.042 3.074
59 0.1 0.6 6 -0.392 -0.0748 3.0141 -0.499 -0.110 3.024
60 0.1 0.6 6 -0.7048 -0.0490 3.0051 -0.499 -0.110 3.024
61 0.1 0.2 8 -1.0355 -0.1783 3.0370 -1.093 -0.154 3.077
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Data  
Point 

Concentration  
(mM) 

[Ala]  [Ser] [Gln]

Reaction Rate * 
(Measurement) 

Ala    Ser     Gln

Reaction Rate* 
(Estimation) 

Ala      Ser    Gln
62 62 0.1 0.2 8 -0.96 -0.1586 2.7833 -1.093 -0.154
63 63 0.1 0.4 8 -0.7878 -0.0322 3.1341 -1.025 0.049 
64 64 0.1 0.4 8 -0.8291 -0.0034 3.0526 -1.025 0.049 
65 65 0.1 0.6 8 -0.9315 -0.1354 3.2511 -0.956 -0.103
66 66 0.1 0.6 8 -0.8231 -0.0978 3.2025 -0.956 -0.103

* flux rate (µmol/million cell/day) 
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APPENDIX J: Measurement data from experiment of amino acid supplementation 

Flux rate * 
without hormone supplementation (NH) with hormone supplementation (WH) 

RAA DAA RAA DAA 

 

HI LI HI LI HI LI HI LI 

1 0.563±0.439 1.284±0.183 1.614±0.609 2.51±0.125 1.003±0.502 0.548±0.121 1.195±0.343 0.668±0.352 

2 3.074±0.04 3.013±0.115 2.197±0.089 3.525±0.07 3.107±0.128 3.202±0.36 2.327±0.064 3.467±0.36 

3 0.838±0.131 0.718±0.156 1.556±0.049 1.192±0.131 1.117±0.13 1.18±0.051 1.459±0.246 1.504±0.182 

4 0.338±0.008 0.396±0.007 0.269±0.023 0.125±0.02 0.611±0.012 0.545±0.012 0.635±0.012 0.565±0.014 

5 0.022±0.003 -0.061±0.009 -0.52±0.021 -1.128±0.025 -0.467±0.003 -0.78±0.001 -1.294±0.017 -1.011±0.019 

6 -0.548±0.008 -0.286±0.004 -0.442±0.009 -0.376±0.004 -0.132±0.005 -0.336±0.004 -0.349±0.005 -0.521±0.034 

7 0.224±0.024 0.243±0.024 -0.041±0.017 -0.203±0.017 0.139±0.006 -0.169±0.009 0.043±0.012 -0.313±0.013 

8 -0.389±0.008 -0.238±0.006 -0.779±0.029 -0.738±0.021 -0.075±0.003 -0.347±0.006 -0.341±0.014 -0.679±0.023 

9 0.127±0.019 0.211±0.008 0.057±0.005 0.073±0.006 0.111±0.0038 0.0661±0.012 0.0396±0.014 0.0019±0.010

10 0.195±0.006 0.218±0.003 0.32±0.027 0.128±0.013 0.258±0.004 0.246±0.004 0.576±0.009 0.53±0.009 

11 -0.185±0.014 0.004±0.011 -0.667±0.046 -0.729±0.031 0.17±0.03 0.028±0.014 0.184±0.023 -0.233±0.059 

12 -1.083±0.024 -0.602±0.014 -1.211±0.032 -1.104±0.019 -0.456±0.006 -1.459±0.02 -1.448±0.02 -1.752±0.031 

13 -0.014±0.001 -0.005±0.001 -0.027±0.002 -0.047±0.002 0.009±0.001 -0.021±0.001 -0.017±0.001 -0.03±0.001 

14 0.2±0.035 0.19±0.042 0.2±0.034 0.15±0.001 0.18±0.006 0.14±0.024 0.16±0.018 0.15±0.009 

15 0.328±0.015 0.4±0.037 0.214±0.052 0.267±0.025 0.148±0.015 0.158±0.018 0.15±0.031 0.16±.0009 

16 -0.699±0.031 -0.077±0.017 -0.833±0.054 -0.764±0.045 0.643±0.021 0.207±0.023 -0.041±0.03 -0.451±0.044 

17 -0.66±0.024 -0.126±0.015 -0.344±0.03 -0.414±0.024 0.604±0.02 -0.067±0.023 -0.094±0.014 -0.451±0.026 

18 -0.337±0.015 -0.001±0.009 -0.38±0.024 -0.345±0.017 0.493±0.013 0.326±0.013 0.289±0.012 0.107±0.013 

19 2.622±1.283 2.622±1.283 2.846±1.083 2.846±1.083 2.666±0.688 2.768±0.538 2.173±0.777 1.799±0.717 

20 -0.816±0.528 -0.763±0.028 -1.094±0.367 -1.289±0.554 0.417±0.033 0.475±0.037 0.419±0.119 0.463±0.111 

21 -0.181±0.006 -0.017±0.004 -0.168±0.01 -0.191±0.011 0.122±0.008 0.011±0.01 0.152±0.035 -0.045±0.06 

22 -0.088±0.005 0.103±0.055 -0.331±0.03 -0.313±0.01 -0.02±0.005 0.081±0.005 -0.046±0.007 -0.134±0.006 

23 -1.072±0.02 -0.356±0.011 -0.778±0.044 -0.786±0.041 --- -0.197±0.022 -0.034±0.257 -0.654±0.026 

24 -0.92±0.017 -0.261±0.011 -0.728±0.044 -0.74±0.041 --- -0.32±0.022 -0.119±0.257 -0.469±0.026 

25 -0.827±0.021 -0.247±0.009 -0.712±0.03 -0.743±0.025 --- -0.013±0.02 -0.092±0.023 -0.441±0.037 

26 0.000517± 0.000192± 0.000548± 0.000185± 0.001049± 0.000708± 0.001245± 0.001091± 

27 2.001±0.007 2.044±0.014 1.983±0.025 2.075±0.042 2.021±0.023 2.107±0.127 2.048±0.018 2.075±0.007 

28 1.012±0.019 1.071±0.022 0.992±0.009 0.812±0.016 0.983±0.092 1.073±0.008 1.07±0.003 0.981±0.005 

29 1.944±0.27 1.422±0.10 1.759±0.056 1.864±0.352 0.778±0.099 0.671±0.128 0.801±0.225 0.753±0.208 

30 0.84±0.003 0.85±0.022 0.87±0.02 0.88±0.01 0.84±0.057 0.82±0.126 0.830 ±034 0.92±0.014 
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APPENDIX K: Intracellular flux distribution from model (II) 

 
# Flux Rate* 

Gluconeogenesis Pathway, PPP, Glycogen storage 

321 ,, uuu vvv  0.48 
54 , uu vv  3.05 

6uv  7.20 

38uv  0.14 

43uv  0.40 
TCA cycle 

87 , uu vv  26.33 

9uv  26.33 

10uv  27.09 

1211 , uu vv  29.20 
Urea Cycle 

1413 , uu vv  2.90 
Amino Acid Catabolism 

15uv  0.12 
16uv  1.50 
17uv  0.16 
18uv  0.62 
19uv  1.18 
20uv  0.73 
24uv  -0.40 
25uv  0.38 
26uv  2.15 
27uv  0.06 
29uv  0.42 
30uv  0.18 
31uv  -1.43 
32uv  0.13 
40uv  -0.09 
41uv  -0.47 
47uv  0.44 
48uv  0.73 



153 
 

Fatty Acid, Lipid and Glycerol Metabolism 
33uv  2.78 
34uv  1.31 
35uv  2.04 
42uv  0.13 

44uv  2.09 
45uv  0.56 

Oxygen Uptake , Electron Transport System 
36uv  58.65 
37uv  23.09 
46uv  82.34 

* µmol/million cell/day 
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